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Abstract—For a single-wall (14, 0) carbon nanotube, the total density of electronic states of the ideal structure
and of some possible defect structures is calculated in the framework of the band theory approach using Gaus-
sian-type orbitals and the approximation of the generalized density gradient. It is shown that allowance for
defects of the atomic structure of a nanotube makes it possible to adequately describe the existing experimental
data on nanotube electronic structure. In the framework of the same approach, the total density of electronic
states is calculated for an intermolecular contact of (5, 5) and (10, 0) single-wall carbon nanotubes formed due
to the creation of a 5–7 defect. It is shown that the electronic states related to the contact region and the 5–
7 defect lie in vicinity of the Fermi level. © 2004 MAIK “Nauka/Interperiodica”.
Atomic and electronic structures of a defect (13, 13)
carbon nanotube and of an intermolecular contact
between the (21, –2) and (22, –5) carbon nanotubes
formed by introducing a 5–7 defect were studied using
scanning tunneling microscopy (STM) and scanning
tunneling spectroscopy (STS) in [1–3]. In those studies,
it was shown that a defect introduced into an ideal
atomic network of a (13, 13) metal nanotube generates
a number of spectroscopic features located between the
first Van Hove singularities [1, 3] and that the energy
position and intensity of the new spectroscopic features
depend on the distance from the defect for which the
scanning tunneling spectrum is measured. In [1, 3], the
observed oscillations were interpreted in terms of reso-
nant backscattering of the incident electron plane wave
by quasibound electronic states of the defect. Experi-
mental STS spectra of the (21, –2)/(22, –5) intermolec-
ular contact measured in the vicinity of the structural
defect have shown that the electronic states of the
metallic (22, –5) structure and the semiconductor (21,
−2) structure are mixed. The relative weights of the
spectral features depend on the position of the measure-
ment point with respect to the contact. It has also been
shown that the features caused by the contact decay
over a distance of several nanometers. Local variations
in the densities of states for single-wall nanotubes were
experimentally measured in [2] and qualitatively inter-
preted as interference between the incident and
reflected electron waves. The dispersion law in single-
wall nanotubes with defects has been interpreted in
terms of quantum interference of electrons scattered by
defects [1].
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Another type of defects in semiconductor carbon
nanotubes caused by adsorption of O2 and NO2 mole-
cules by the carbon network of these objects was exper-
imentally studied in [4, 5]. Both chemical agents
increased the density of electronic states at the Fermi
level and converted semiconductor nanotubes into
metal nanotubes. On the basis of nonempirical calcula-
tions of the electronic structure [6] of a chemisorbed O2
molecule, these experimental results have been inter-
preted in terms of extra charge carriers (holes) at the
Fermi level and closing of the band gap in semiconduc-
tor p-type nanotubes.

In the theoretical study performed in [7], on the
basis of calculations of the electronic structure of sin-
gle-wall semiconductor nanotubes performed within
the tight-binding model and the local density functional
approximation, it was predicted that a 5–7 defect (a
Stone–Wales defect) should also result in closing of the
band gap in semiconductor nanotubes.

The tight-binding method was also used to calculate
a number of intermolecular contacts between nano-
tubes [8]. These theoretical results have qualitatively
confirmed the experimental observations reported
in [3].

Nevertheless, correct interpretation of some experi-
mental data even for nonchiral single-wall nanotubes
[9] is still lacking. The simplest example is sample no.
7 investigated in the pioneering work [9], where, in par-
ticular, the STM spectra of single-wall nanotubes were
measured for the first time. According to [9], this sam-
ple (of diameter d = 1.1 nm with chiral angle ϕ = 30°)
was a (14, 0) nanotube, which, according to [10], had to
have semiconductor properties. Nevertheless, in the
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experiment in [9], this sample had metallic properties.
In our opinion, the presence of defects in the structure
of the carbon (14, 0) nanotube would provide the most
reasonable interpretation of such fundamental differ-
ences between theory and experiment.

In order to check this assumption, we calculated the
electronic structure of an ideal (14, 0) carbon nanotube
and a (14, 0) carbon nanotube with different defects [a
Stone–Wales defect, double vacancy in the carbon net-
work (2V defect), a defect produced by embedding two
additional carbon atoms into the carbon network (an ad
dimmer defect), and two defects produced by saturating
one of the double carbon bonds by the OH and H
groups (2OH and 2H defects)]. All calculations were
performed using the approximation of a generalized
density gradient (the Perdew–Burke–Ernzerhof (PBE)
potential) [11] and the band theory approach using
Gaussian-type orbitals in the 3–21G, 6–31G, and 6–
31G* bases [12]. To correctly describe the electronic
structure of isolated defects, the length of the unit cell
was taken to be 20 Å. When modeling the variation in
the defect density in the atomic network, the length of
the unit cell (and, accordingly, the number of carbon
atoms in it) was varied. To study the electronic structure
of an intermolecular contact, we chose the structure
formed by the contact of a metal (5, 5) and semiconduc-
tor (10, 0) nanotubes. The intermolecular contact con-
sidered is formed by introducing one pentagon and one
heptagon into the (5, 5) or (10, 0) nanotube. To model
noninteracting contacts, the length of the unit cell was
increased to 40 Å.

Optimization of the geometry of defect structures
was performed using the method of the analytical gra-
dient of the potential energy surface and the PBE func-
tional [11] in the 3–21G basis. The number of atoms
per unit cell was varied from 226 for 2H and 2OH
defects (carbon–carbon bonds saturated by two atoms
of hydrogen or two functional groups, 2020 functions
in the 6–31G basis) to 334 for a 2V defect (3006 func-
tions in the 6–31G basis). The electronic structure of
all objects was calculated using 128 points of k space
in the Brillouin zone. The electronic structure of the
ideal (14, 0) nanotube was calculated using both the
PBE functional [11] and the hybrid PBE0 functional
[13], whose distinctive feature is the admixture of 25%
of the exact Hartree–Fock exchange to the pure PBE
potential of the density functional theory; this
approach makes it possible to take into account elec-
tronic correlations in the system more fully. It is
believed that this approach [13] is equivalent to the
Meller–Plesset fourth-order perturbation theory. The
PBE0 functional was shown to provide much better
agreement between the total theoretical electronic den-
sities of states (DOS) and the experimental STS spec-
tra of semiconductor nanotubes [14].

The unit cell of the intermolecular (5, 5)/(10, 0) con-
tact contains 360 carbon atoms (3240 functions in the
3–21G basis). The length of the unit cell for this struc-
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ture is 40 Å. Optimization of the geometry was per-
formed using the semiempirical quantum-chemical
PM3 method (for a cluster containing three unit cells)
and the analytical gradient of the potential energy. To
calculate the electronic structure, 64 points were taken
in k space in the Brillouin zone. For interpretation of
the data on the electronic structure of the intermolecu-
lar contact, band calculations for ideal (10, 0) and (5, 5)
nanotubes were performed using the PBE potential and
128 points in k space.

Figure 1 shows the experimental STS spectra
(Fig. 1, a [9]) and the theoretical densities of electronic
states calculated using the PBE (Fig. 1b) and PBE0
(Fig. 1, c) potentials for the ideal semiconductor (14, 0)
nanotube. It is seen from Fig. 1 that the experimental
spectra exhibit metallic conductivity, which is in dis-
agreement with the previous theoretical prediction [10].
In contrast to the experimental spectrum, the theoretical
densities of states obtained using both the PBE and
PBE0 potentials agree with the results from [10] and
are characterized by the presence of a band gap with a
width of about 1 eV (Fig. 1).

Figure 2 shows the experimental spectrum [9]
(Fig. 2, a) and a set of theoretical spectra for the struc-
tures with a Stone–Wales defect (Fig. 2, b) and 2H
(Fig. 2, c), 2OH (Fig. 2d), ad dimmer (Fig. 2, e), and 2V
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Fig. 1. (a) Experimental STS spectra [9] and the theoretical
(b) PBE and (c) PBE0 densities of states (DOS) for semi-
conductor zigzag (14, 0) carbon nanotubes. The inset shows
a photograph of the structure obtained with a scanning tun-
neling microscope [9]. It is clearly seen that the nanotube
has a zigzag structure.
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defects (Fig. 2, f). Introducing structural defects into
the ideal graphite network results in the appearance of
states in the band gap. In all cases, the main features of
the experimental densities of states at energies of
approximately –0.9 and 1.4 eV are described ade-
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Fig. 2. (a) Experimental STS spectrum of a (14, 0) carbon
nanotube (CNT) [9], (b) theoretical PBE 6–31G density of
states for a (14, 0) nanotube with a Stone–Wales defect (the
unit cell contains 226 carbon atoms), (c) theoretical PBE
6−31G densities of states for a (14, 0) nanotube with a 2H
defect (the unit cell contains 226 carbon atoms), (d) theoret-
ical PBE 6–31G density of states for a (14, 0) nanotube with
a 2OH defect (the unit cell contains 226 carbon atoms),
(e) theoretical PBE 6–31G density of states for a (14, 0)
nanotube with an ad dimmer defect created by sorption of a
C2 fragment at the carbon wall (the unit cell contains
282 carbon atoms), and (f) theoretical density of states TR

obtained for a rigid band of a 2V defect using the total PBE
6–31G densities of states calculated for 2V defect densities
of 0.3 and 0.6% per unit cell (the unit cell contains 334 and
332 carbon atoms, respectively).
P

quately. There is a gap in the density of states only for
the structure with a Stone–Wales defect (Fig. 2, b); all
other defects produce metallic-type densities of states.

Characteristic energy-dependent oscillations in the
density of states were simulated in [15] by using 1D
plane waves exp(ikx), where x is the space coordinate.
The incident plane wave can be resonantly reflected
from a quasibound defect state with reflection coeffi-
cient |R |2 [R = |R |exp(–i(kx + δ)), where δ is the phase
shift]. The corresponding standing wave can be written
as ψ(k, x) = exp(ikx) + |R |exp(–i(kx + δ)), which corre-
sponds to spatial oscillations in the densities of states
ρ(k, x) = |ψ(k, x)|2 = 1 + |R |2 + 2|R |cos(2kx + δ) [15].

In order to simulate the effect of the defect density
on the electronic structure of nanotubes, we performed
calculations of the band structure for a 2V defect with
two different cells. The first cell contained one defect
per unit cell (334 atoms, which corresponds to a defect
density of 0.3%), whereas the second cell had two
defects (the unit cell was the same; both defects were
placed on opposite ends and opposite faces of the unit
cell; the defect density was 0.6%). The translation vec-
tor for both unit cells was 25 Å.

Using this special choice of the unit cells, we can
write k1x ~ k2x (k1 is the wave vector of the defect state
with the former density and k2 is that for the defect state
with the latter density); therefore, we can obtain the
energy positions of the density-of-states oscillations for
both unit cells.

For systems with low defect densities, we can use
the model of independent centers [16] (assuming that
defects do not interact with each other) and the models
of rigid bands and impurity bands (a rigid band does not
depend on the occupation numbers, whereas the nature
of an impurity band is fully determined by the type and
density of the impurity). Application of these two mod-
els means that we can distinguish between the two inde-
pendent electronic subsystems of the system (naturally,
in narrow intervals of defect densities), namely, the
subsystem of defect states TD and the subsystem TR

formed by the other states with occupation numbers x
and (1 – x), respectively.

In terms of these two models, we can write two lin-
ear equations

where  and  are the total densities of states for the
systems with different defect densities.

For systems with a significant number of noninter-
acting defects uniformly distributed over the entire
atomic network, we can extract the quantity TR, since
different defects can mutually suppress oscillations in
the densities of states due to interference effects. Most

T1
T x1TD 1 x1–( )T R,+=

T2
T x2TD 1 x2–( )T R,+=
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T T2
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likely, TR can be seen in spectroscopic experiments for
such systems.

Figure 2, f shows TR obtained by using the theoreti-
cal densities of states for unit cells with 2V-defect den-
sities of 0.3 and 0.6%. It is clearly seen that such an
approach provides an opportunity to quantitatively
describe the experimental density of states obtained in
[9] for a (14, 0) nanotube.

The calculations described above show the high
quality of the results obtained for defect 1D carbon
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Fig. 3. The total densities of states for the (5, 5) and (10, 0)
nanotubes and for the (5, 5)/(10, 0) intermolecular contact.
Arrows indicate the features related to the (5, 5) structure,
triangles indicate the features related to the (10, 0) structure,
and asterisks denote the features related to the intermolecu-
lar contact itself. The (5, 5), (10, 0), and (5, 5)/(10, 0) struc-
tures are shown in the insets.
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nanostructures; thus, we may hope for a qualitative
description of the electronic structure of the (5, 5)/(10,
0) intermolecular contact (Fig. 3). The length of the unit
cell (~40 Å) was chosen to be sufficiently large to avoid
significant interaction between the defects. By applying
the translational symmetry to the unit cell, we can con-
struct an infinite zigzag structure in which the sections
with (5, 5) and (10, 0) structures are separated by the
structures containing five- and seven-membered rings
(the upper inset in Fig. 3).

Figure 3 shows the densities of states for the (5, 5)
and (10, 0) nanotubes and for the (5, 5)/(10, 0) intermo-
lecular contact. According to our nonempirical calcula-
tions, the intermolecular contact is metallic with a non-
zero density of electronic states at the Fermi level,
whose energy position is –4.7 eV. The features near the
Fermi level are produced by the electronic states corre-
sponding to the 5–7 defect, whereas the spectral fea-
tures below and above the Fermi level originate from
either (5, 5) or (10, 0) structures.

Comparison of the experimental STS spectra and
theoretical electronic densities of states calculated
using the band theory approach, Gaussian-type orbit-
als, and the PBE potential of the approximation of the
generalized density gradient shows that the method
described above can be successfully applied to calcu-
late the electronic structure of semiconductor single-
wall nanotubes with defects. Noticeable differences in
the densities of states of ideal nanotubes and nano-
tubes with defects can serve as an elementary test of
the imperfection of the atomic structure of this type of
object.
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