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Abstract—An effective Hamiltonian for ZrTi cation ordering in PbZr,Ti; _,O5 solid solutionsis written out.
To determine the parameters of the effective Hamiltonian, a nonempirical calculation is performed within an
ionic-crystal model taking into account the deformation and dipole and quadrupol e polarizabilities of ions. The
thermodynamic properties of cation ordering are studied using the Monte Carlo method. The calculated phase
transition temperatures (180 and 250 K for the concentrations x = 1/3 and 1/2, respectively) are much lower
than the melting temperature of the compound under study. At such temperatures, the ordering kineticsisfrozen
and, in redlity, the phase transition to the ordered phase does not occur, in agreement with experimental obser-
vations. Within the same ionic-crystal model, we calculated the high-frequency permittivity, Born dynamic
charges, and the lattice vibration spectrum for a completely disordered phase and certain ordered phases. It is
shown that soft vibration modes, including ferroelectric ones, exist in the lattice vibration spectrum of both the
completely disordered and the ordered phases. © 2004 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Solid solutions of lead titanate and lead zirconate
Pbzr,Ti,_,O; (PZT) have been attracting research
attention for many decades; a great number of experi-
mental and theoretical studies have dealt with their
physical properties. The PZT system has a complicated
phase diagram and anumber of interesting propertiesin
terms of both theory and application (in particular, high
values of the piezoelectric constants).

At high temperatures, PZT has a perovskite struc-
ture. As the temperature is decreased, this compound
exhibits structural phase transitions to arhombohedral,
an orthorhombic, or amonoclinic phase with ferroelec-
tric or antiferroelectric ordering, depending on the
Zr/Ti content ratio (see, eg., [1] and references
therein). Phase transitions related to the ordering of tet-
ravalent zirconium and titanium cations have not been
observed experimentally at any concentration or tem-
perature; however, there are experimental indications
that, in the samples under study, there exist small
regionswith an ordered distribution of titanium and zir-
conium ions over the lattice sites [2]. Apparently, the
presence of such ordered regions has asignificant effect
on lattice instability with respect to ferroelectric, anti-
ferroelectric, and rotational distortions[3]. The proper-
ties of the solid solutions, in particular, the energies of
different structures [4], some lattice vibration frequen-
cies in the distorted phases [3], and Born effective
charges in the disordered and ordered phases [5-§],
were studied by performing ab initio calculations using
different approaches in combination with the density
functional method. However, the phase transitions

related to ordering of titanium and zirconium ions over
the lattice sites were not discussed in the papers men-
tioned above; it was only noted that the energy of such
ordering is small, because the valences of ions ran-
domly distributed over the perovskite structure are

equal.

In this paper, we perform anonempirical calculation
within an ionic-crystal model including the deforma-
tion and dipole and quadrupole polarizabilities of ions
to study phase transitions related to ordering of tita-
nium and zirconium ions and determine the entire
vibration frequency spectrum of the disordered phase,
the vibration frequencies at g = O for the ordered
phases, the Born effective charges, and the high-fre-
quency permittivity.

In Section 2, we introduce an effective Hamiltonian
describing phase transitions of the order—disorder type
in amodel two-component Zr/Ti aloy. The parameters
of the effective Hamiltonian, in which interactions
within the first three coordination shells are taken into
account, are determined by cal culating the total energy
of the crystal in different ordered phases. At certain val-
ues of the parameters of the effective Hamiltonian,
using the Monte Carlo method, we study the thermody-
namic properties of the system, namely, the phase tran-
sition temperatures and the temperature dependences of
the heat capacity and of the long-range and short-range
order parameters.

In Section 3, inthe virtual-crystal approximation for
different values of the Zr/Ti content ratio, we calculate
the permittivity, Born effective charges, and the entire
lattice vibration spectrum of the cubic phase of the dis-
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ordered crystal for different concentrations x. Analo-
gous calculations are also carried out for certain
ordered phases of PbZzr,Ti,_,O5; with x = /3 and 1/2;
however, for brevity, we present here only the vibration
frequencies at the center of the Brillouin zone.

Finaly, in Section 4, we summarize the results of
the study.

2. STATISTICAL MECHANICS
OF B-CATION ORDERING

To describe phase transitions related to B-cation
ordering in PbZr,Ti; _,O5 solid solutions, we use the
effective-Hamiltonian method in which only the
degrees of freedom related to positional disorder of tita-
nium and zirconium atoms at the sites of the crystal lat-

tice (the b positions in the O; space group) are taken

into account. In this case, the problem of B-cation
ordering in AB'B"O; solid solutions is equivalent to the
problem of ordering in a two-component aloy and we
can use amodel based on the assumption that the atoms
of a solution are placed at the sites of a certain rigid
crystal lattice [9]. The configuration energy of the solu-
tion isexpressed asthe sum of all interatomic pair inter-
action potentials. In this model, the Hamiltonian of the
system can be written as

1 '
= éz[VB‘B‘(rki rj)nanjB
K, j
+Vep(Tu TN N, +2Veg(furdnen; 1 (D)
=3 [0 e(ry) + " Her(r )] + Ho,
j

where vgg, Vgg, and vgg are the pair interaction
potentials between B' atoms, between B" atoms, and
between B' and B" atoms, respectively, at lattice sitesr,
and r; and pg and pg- are the chemical potentials of the

cations B' and B". The quantities njB' and njB " areran-
dom functions defined as follows: if sitej is occupied
by aB' atom, then njB' =1land nJB =0, and if sitej is
occupied by a B" atom, then njB' =1.The

quantities nJ-B' and nJ-B" satisfy the relation njB' + n]B =
1. Using this relation, we can rewrite Eq. (1) as[9]

22 V(I r])nk

=0and n]B

j _Hzn +H01 (2)

where
V(1) = Veg(Na ) + Vee(rery)
—2Vgp(ri rj)
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is the effective interaction constant and
M = He(rj) —He(r))

+ g(VB'B'(rkv r)=Vee(rer;))

isthe chemical potential of the system.

The effective interaction constants are evaluated by
performing a nonempirical calculation of the total
energy of the crystal in the Gordon—Kim model with
inclusion of the dipole and quadrupole polarizabilities
of ions[10, 11]. The total energy is

E = Es+E,+E;+Eyq+ Er, (3)
where

Na
_ 1 (0) (00)
ES——ZZIZiC Z+ zlcb (Vi,Vj,|Ri—Rj|),(4)
i,j= i,j=

Lal(v))

B=1
11 2
+q>i(j,a)s(Vi:Vj’|Ri—RJ|)—Ci(j,)aB%DF ()

N, 3

+ 33 POV Y, R -R) -CLZ),
i,j=la=1

Na

3
1
e Zz yz [a '(v)
316(¢.(,2?By5(v“v Ri=R|)=Clps) [a]° ©)

1N
_ézz

(20) (2)
CDIJ GB(VI' V |Ri - RJ|) _CiLGBZJ)’

(21)

3
Z IJ qu(VUV |Ri_Rj|)
B,y =

i

mn—\

(7)

(3) y
'l apy ) P

Here, E; is the interaction energy of spherically sym-
metric ions; E,, E,, and E,, are the interaction energies

of dipole and quadrupole moments; Eqyy; = ZN: . E
1

Ri—R)|

long-range part of the interactions, which is calculated

by the Ewald method; ® s, (Vi, Vi, |R; — Ry]) is the

short-range part of theinteraction; and P{" (q°" ) arethe
dipole (quadrupole) moments of ions, which can be
found by minimizing the total energy of the crystal [11].

is the

is the self-energy of ions; C( ) ="
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To find the crystal energy in the disordered phase,
we use the virtual-crystal approximation. In this
approximation, the short-range part of pair interactions
of avirtual ion BCwith the other ions (i) is

1 I I
®ig = XPjg + (1 -X) P 8)

The contribution from the virtual ion to the self-energy
can be written as
Es" = XEg"+ (1—xX)Epr. 9)
The quadrupole and dipole polarizabilities of the vir-
tual ion B are

ag? = xag®+ (1-x)as’. (10)
Thelong-range part of the interaction remains the same
asthat for the pure components of the solutions.

Let usdiscussthe phasetransitionin aPbZr,Ti; _,O;
solid solution related to ordering of the B cations in the
case where x = 1/2 and 1/3. Furthermore, in the effec-
tive Hamiltonian (2), we restrict ourselves to interac-
tionswithin thefirst three coordination shells. To calcu-
late the effective constants, we find the energies of sev-
eral structures with different ordering of the titanium
ions. For the ordered structures, we use the notation
from [12], where an analogous calculation of the ener-
gies was performed for the PbSc,,,Ta,;,05 solid solu-
tion. Table 1 lists the configuration motif, the lattice
parameters of the ordered structures, the energies per
ABO; formula unit calculated without and with regard
to relaxation of Pb and O ions, and expressions of the
energy in terms of the effective constants defined in
Eq. (2). Thetable a so givesthe energies of mixtures of
pure substances PbTiO; (PTO) and PbZrO; (PZO) for
concentrationsx = 1/2 and 1/3. It is seen from the Table 1
that at any concentration the most favorable ordered
structure considered is the structure with Zr and Ti cat-
ions ordered aong the body diagonal of the cubic unit
cell of the disordered phase. However, without taking
the relaxation of Pb and O ionsinto account, this struc-
ture has a somewhat greater energy than the mixture of
the pure substances. For concentration x = 1/2, the
result obtained agrees with calculations performed by
other authors [4]. The difference in the energies of the
two unrelaxed structures with ordering along the [111]
and [100] directions obtained in this study (5.3 mRy)
also agrees with the results obtained in other calcula-
tions (4.6 and 5.9 mRy [4]).

Since only the degrees of freedom related to posi-
tional disorder of B' and B" atoms are taken into account
in the effective Hamiltonian, the effective interaction
constants are cal culated using the energies of unrelaxed
structures. The energy expressed in terms of the effec-
tive constants contains a constant energy E,, which is
independent of the positions of B' and B" ions and can
be taken as the zero of energy. The calculated effective
interaction constants are listed in Table 2.

PHYSICS OF THE SOLID STATE Vol. 46 No. 7

2004

1293

To study the statistical properties of the phase tran-
sitions related to the ordering of B cations in the
PbZr,Ti, _,O3; compounds (x = 1/2, 1/3), in addition to
using the effective Hamiltonian (2), we applied the
standard Monte Carlo method [13].

The Monte Carlo procedure consists in the follow-
ing. Astheinitial structure, we take one of the ordered
structures or the completely disordered structure at a
fixed temperature. One Monte Carlo step is sequential
running over all lattice sites. For each site (), one of the
nearest neighbors is randomly chosen (S). If the atoms
at sitessand s are of the same type, then the configura-
tion remains unchanged. If the atoms at sites s and s
differ in type, then we calculate the energy difference
between the initial configuration and the configuration
in which the atoms in sites sand s change places:

3
AEconf — z 2(mg')B' — ml(al')B" + 5) Vi, (11)
i=1

where mg)B is the number of ith nearest B'-type neigh-

bors of aB'-type atom, mg)B is the number of ith near-
est B'-type neighbors of a B"-type atom before the per-

mutation,andd=1ifi=1and d=0ifi =2, 3.

The latter condition means that the nearest neigh-
bors change places. The permutation is accepted and
the configuration is taken to be new in the following
cases. (i) AE®" < 0 or (i) AE®" > 0 if & <
exp[-AE®"/KT], where & is a random number and
O0<é&¢<1

After each Monte Carlo step, we calculate the
energy of the configuration, the short-range order
parameter o, and thelong-range order parameter ). The
short-range order parameter is defined by [14]

- Ng g — Ngg-(disorder)

: , (12)
Ngg-(Order) —ngg-(disorder)

where Ngg.(disorder) = ZNx (1 — X) is the number of

B'B" pairsin the completely disordered solid solution, Z
is the coordination number, N is the number of atoms
in the solution, and x is the concentration of atoms of
type B'.

For concentration x = 1/2, the structures with order-
ing alongthe[111], [110], and [100] directions havethe
lowest energies; therefore, they are of greatest interest.
For each of these structures, we calculate the short-
range and long-range order parameters.

For different completely ordered structures in the
case where x = 1/2, the values of ngg-(order) are

Ne(111) = 6N, Ny (110) = 4N,
Ngg(100) = 2N.
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Table 1. Energies of different ordered PbZr,Ti, _,O5 structures

Configuration Calculated energies without regard
{IKL} {MNOP} to theion self-energy, eV
B'=+1,B"=-1 Ey ] fth
. pressions of the energy
0 @ Laztz;(c):e:p??r%n’ge\';ers in terms of the effective
without relaxation with relaxation constants v;
x=1/2
-11-11 a=b=c=2 —158.128282 —158.253272 6v,+8v,— 2+ E
Ay 1 3~ H 0
{1-11-1}
B'B" along [111]
-11-1-1 a=b=c=2 —158.074271 —158.180158 3v,+ 6V, +8vy— W2+ E
2l 3 0
{111-1}
{1111} a=b=a, —158.056270 —158.227649 2v, +8v,+ 8vy— /2 + Ey
{-11-1-1} c=2a,
B'B" along [100]
{1-11-1} a=b=.2a,, —158.091386 —158.210677 4y, +8v,— U2+ E
=N 1 2 0
{1-11-1} cC=a
B'B" along [110]
{-1-1-11} a=b=c=2a, —158.091829 —158.203578 4y, + 6V, +4v,— 2 + Ey
{111-1}
{1-1-1-1} a=b=c=2a, —158.073826 —158.160574 3v,+8vy+4vy— /2 + Ey
{111-1}
{1111} a=b=a, -158.012134 —158.900837 Vit4v,+4vy—u/i2+ Ey
{1111}+ c=4a,
{-1-1-1-1}
{-1-1-1-1}
1/2PZ0 + 1/2PTO -158.157773
x=1/3
B'B" along [100] a=b=a, —159.074277 —159.210991 (4vq + 16v, + 16v5—20)/3 + E,
c=3a
B'B" along [111] a=b= ﬁao , —159.133164 —159.259862 4v,+4v, +4v,—2u/3 + Ey
c = J/3a,
1/3PZ0 + 2/3PTO —159.229638

For concentration x = 1/3, two ordered structures were

Table 2. Effective interaction constants (in meV) considered, namely, those with ordering along the

v v v [111] and [100] directions. The number of B'B" pairs
1 2 3 for the ordered structuresin the case of x = 1/3is
~12.22 161 -0.86 Nee(111) = 4N, nNgg(100) = 4/3N.
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Fig. 1. Temperature dependence of the excess heat capacity
related to B-cation ordering in the PbZry,Tiy»O3 solid
solution.

Thelong-range order parameter for x = 1/2 isdefined as
4Rg(B)

N
where Rg(B") is the number of atoms of type B' at their
“sites proper.”

For different types of ordering, the B' sites are
defined by the following conditions:

1

: (13)

explim(x+y+2z)] = 1, (149)
for ordering along the [111] direction,
exp[im(x+y)] = 1, (14b)
for ordering along the [110] direction, and
exp[iT(x)] = 1, (14c)

for ordering along the [100] direction, where x, y, and z
are the site coordinates.

For concentration x = 1/3, the long-range order
parameter is

_ 1/9Rg(B) ‘

= 2‘ 1 (15)
The B' sites are defined by the following conditions:

Tt
cos%%—(x+y+z)% =1, (16a)
for ordering along the [111] direction and
T
cos%% =1, (16b)

for ordering along the [100] direction.

We studied lattices 16 x 16 x16 in size for x = 1/2
and 18 x 18 x 18 for x = 1/3 with periodic boundary
conditions. The first 10 000 steps at each temperature
are disregarded and are not included in averaging the
quantities E®", ), and 0. The average values E®"[]
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Fig. 2. Temperature dependence of the long-range and

short-range order parameters in the PbZry,Tiq,O5 solid

solution.

400

[(E®" )21 M and [dCare cal culated in two steps. After
p = 50 steps, the group averages are calcul ated:

1g 1g
s Bi;ni’ o E)izlci, (a7

EECOMQ] - 1. i E‘conf |:(Eoonf)ZDb - 1. P (Eponf)Z
25 25

Then, the averaging over M = 500 groupsis performed:
1o 1o
O = M;Dﬂg, (o0 = M‘Zl [of],

M

|:EconfE| — % Z |:EconfmJ’ (18)
i=1
M

HECOM)ZD — %Z |:(Ec;onf)ZDJ.

The heat capacity of the system is defined as C =
ki-I-Z (mEconf )ZD_ [Econf B)

The temperature dependences of the heat capacity
and of the short-range and long-range order parameters
for x=1/2 are shown in Figs. 1 and 2. At low tempera-
tures, the only stable structure is the structure with the
ordering along the [111] direction, which appears both
upon heating and cooling. The structures with other
ordering types are unstable; this can be seen from
Fig. 2. The long-range order parameters of the struc-
tureswith ordering along the[110] and [100] directions
are equa to zero throughout the entire temperature
range. The phase transition from the ordered to the dis-
ordered state occurs at atemperature of about 250 K. As
noted in Section 1, experimental data show that order-
ing does not occur in the PbZry;,Ti,,,04 solid solution.
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Fig. 3. Same asin Fig. 1 but for the PbZr3Ti,303 solid
solution.
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Fig. 4. Temperature dependence of the long-range and
short-range order parameters for the PbZry3Ti5 303 solid
solution. Dashed lines show the order parameter for order-
ing along [111] with a B-cation ratio of 1 : 2, points repre-
sent the order parameter for ordering along [111] with a
B-cationratio of 1: 1 in the heating and cooling modes, and
triangles represent the short-range order parameter.

Since the ordering processes in solid solutions, as well
asinmetal aloys, arediffusivein character, thekinetics
of these processes is frozen at the transition tempera-
ture obtained, T = 250 K, which is much smaller than
the melting temperature of PZT (T, ~ 1200 K); there-
fore, the phase transition to an ordered state does not
occur.

The temperature dependences of the heat capacity
and of the short-range and long-range order parameters
for concentration x = 1/3 are shown in Figs. 3 and 4.
The structurewith the 1 : 2 ratio and ordering along the
[111] direction is metastable for this concentration. If
we start the Monte Carlo procedure at a low tempera-
ture from this configuration, then the structure col-
lapses with increasing temperature. Part of the solution
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becomes ordered along the body diagonal to the Zr/Ti
ratio of 1: 1, and regions of pure Ti appear. With afur-
ther increase in temperature (near 180 K), the ordered
regions with the 1: 1 ratio become disordered. In the
cooling regime, ordered regions with the 1: 1 ratio
appear at 180 K, and this structure survives down to low
temperatures. A peak in the heat capacity is observed to
occur at 180 K. There are experimental indications [2]
that nanodomains with the ordering of Zr and Ti ionsin
aratioof 1: 1 existin PZT solid solutions at low tem-
peratures.

3. LATTICE DYNAMICS OF THE DISORDERED
AND CERTAIN ORDERED PHASES

The freguency vibration spectrum, high-frequency
permittivity, Born effective charges, and elastic moduli
of the ordered phases of PbZr,Ti; _,O5 solid solutions
are calculated within the Gordon—Kim model of ionic
crystals with regard to deformability and dipole and
guadrupole distortions of the electronic density of ions.
The corresponding formulas for calculations can be
found in [15]. In the case of disordered solid solutions,
we calculated the dynamic properties using the virtual-
crystal approximation; i.e., in the dynamic matrix, al
but the long-range Coulomb contributions are calcu-
lated by expanding the interaction energy of a virtual
(BLion with the other ions into a Taylor seriesin small
displacements.

First, we discuss the case of disordered solid solu-
tions, which, like the pure components, have a cubic
perovskite structure and one molecule per unit cell.

Table 3 lists the calculated lattice cell parameters,
high-frequency permittivity, Born effective charges,
and elastic moduli for the pure components PbZrO; and
PbTiO; and for solid solutions with concentrations x =
1/3, 1/2, and 2/3. For comparison, the results of other
abinitio calculations[16, 17] are dso0 presented. Figure5
shows the calculated vibration spectrum of the disor-
dered PbZr,;,Ti;,05 solid solution for symmetry points
and directions in the Brillouin zone, and Table 4 lists
the calculated vibration frequencies at the I (0, 0, 0) and
R(1/2, 1/2, 1/2) points for the pure components and for
the disordered solutions with concentrations x = 1/3,
1/2, and 2/3. It is seen from Tables 3 and 4 that the
results of our calculations agree (within 10-30%) with
the results of other ab initio calculations (except for the
value of g, for PbTiO; obtained in [17]). In solid solu-
tions, as well as in the pure components, there are soft
modes in the vibration spectrum. We note that, in addi-
tion to apolar vibration mode, our calculations for pure
PbTiO; predict antiferroelectric lattice instability and
that the vibration mode R,;, whose eigenvectors corre-
spond to rotation of the TiO4 octahedron, turnsout to be
hard. At the same time, in PbZrO;, in addition to the
ferroelectric and antiferroelectric instabilities, there
exists a soft mode R,5 related to rotation of the ZrO,
octahedron. All three types of instability exist in asolid
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Table 3. Lattice parameter a,, permittivity €., Born effective charge Z, and elastic moduli C;; for crystals PbZr,Ti, _,O3 in

the virtual-crystal approximation

C

X 2, A € Zep Zmn Zor Zos | 102GPa | 107GPa | 102GPa
0 | 383 490 | 278 5.67 —493 | 176 258 116 114
3.97* 824% | 390%* | 7.06** | -583** | —256+*
13 | 391 521 | 278 5.78 —a97 | -1.79 245 0.99 0.96
12 | 395 487 | 277 5.62 _468 | -1.86 234 0.91 0.90
3.00%%* 3.02%%% | GAT* | _Bgexx | _pBakks
23 | 397 481 | 277 5.56 _453 | -1.90 242 0.89 0.86
1 | 403 450 | 277 5.35 —415 | -1.98 2.36 0.80 0.78
4.12* 6.97% | 3.92%* | 585+ | —481%* | —2.4gr

* Calculated by the pseudopotential method and the linear-response method [17].
** Calculated by the pseudopotential method and the frozen-phonon method [16].
*** Calculated by the pseudopotential method in the virtual-crystal approximation [6].

solution if the position of atetravalent cation is occu-
pied by the virtual atom B[]

It is seen from Table 1 that, for concentration x =
1/2, there are two ordered structures of lowest energies.
The structure with the B' and B" cations ordered along
the [001] direction has the P4/mmm symmetry, and the
structure with ordering along the [111] direction (the
elpasolite structure) has the Fm3m symmetry. For both
structures, there are adjustable parameters. In the tet-
ragonal structure, the oxygen ions located between the
Zr and Ti ions, as well asthe Pb ions, can be displaced
along the z axis. In the elpasolite structure, there is a
degree of freedom related to “breathing” of the oxygen
octahedron. We minimized thetotal energy with respect
to the volume and the free parameters at a constant
value of theratio c/a = 2.0 for the tetragonal lattice. For
the el pasolite structure, the oxygen octahedron isdrawn
tothe Ti ion by 0.05 A. For the tetragonal structure, the

oxygen and lead ions are displaced along the z axis to
the Ti ion by 0.11 A. The calculated unit cell parame-
ters, high-frequency permittivity, and Born effective
charges for these two ordered structures at x = 1/3 and
1/2 are given in Tables 5 and 6; for comparison, the
results of other calculations are also presented. It is
seen from Tables 5 and 6 that the Born dynamic charges
calculated inthisstudy (especialy for theleadion) both
in the disordered and in the ordered phases at concen-
trations x = 1/2 and 1/3 are somewhat smaller than
those obtained using the pseudopotential method [18].
It isinteresting to note that, in the pure components of
a solution, the effective charge of the titanium ion
exceeds that of the zirconium ion, whereas for the
ordered structures the effective charge of the zirconium
ion either is approximately equal to or exceeds that of
the titanium ion.

ot T~ | W |
s 200 ;é§i 200 Z—T
r X M r R X R M

Fig. 5. Phonon spectrum of PbZry,Ti1;,03 calculated in the virtual-crystal approximation.
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Table 4. Vibration frequencies (cm™) for PbZr, Ti, _,O5 calculated for various concentrationsin the virtual-crystal approxi-

mation (the mode degeneracy is indicated in parentheses)

q=0
X TO1(2) LO1 T3 TO2(2) LO2 TO3(2) LO3
0 87.3i 142.0 180.8 236.7 318.9 437.8 616.3
144i* 104* 121* 410* 497* 673*
1/3 88.3i 121.6 154.6 2225 288.7 442.8 608.2
1/2 89.5i 114.7 156.4 219.7 289.6 448.4 600.7
2/3 88.4i 113.3 153.4 218.2 285.5 470.8 611.4
1 91.9i 104.9 150.0 2141 2835 488.2 609.3
131i* 90* 30** 63* 310* 486* 720%*
140i** 170** 600**
q=R
Ri5(3) Ros(3) Ri5(3) Ros(3) Ri2(2) Ry
0 110.5i 51.3 1775 383.0 423.8 718.9
1/3 119.4i 67.8i 171.8 365.7 438.6 691.2
1/2 113.3i 77.5i 178.8 342.2 451.6 676.8
2/3 110.9i 93.6i 181.5 328.5 483.9 677.5
1 105.0i 113.3i 190.9 299.7 510.8 661.6

* Calculated by the pseudopotential method and the frozen-phonon method [15].
** Calculated by the pseudopotential method and the linear-response method [16].

Table5. Lattice parameters, Born effective charges, and permittivity for ordered PbZr,,Tiq;,05 solid solutions with different
ordering types (for the ordering along [001], the Ol ionslie between Zr and Ti ions, the O2 ions lie in the same plane as the

Zr ions, and the O3 ionslie in the same plane asthe Ti ions)

. € Zpy Zyi Zz Zon Zop Zos
Ordering ag, A

11 | 33 | xx | zz | xX XX | zZz | XX | zZ |XXW| ZzZ | XYY | z
Along [111] |a=7.88 | 497|497 | 278 5.48 577 -1.85|-4.71
Along[001] |a=3.95, | 501|485|278|284|552|6.02|6.10|553|-1.79|-4.98|-5.02| 212|511, |-1.51

c/la=20 -1.93 -1.71

Along[001] |a=399, | - - 3.0 53 6.0 -4.6 21 21
(caculaion | c/la=207
datafrom [5])

We calculated the entire lattice vibration spectrain
low-energy ordered PZT phases at concentrations x =
1/3 and 1/2. The limiting optical vibration frequencies
at q=0aregivenin Table 7. For comparison, the table
also lists the results of ab initio LAPW calculations of
limiting frequenciesin the PbZr,,Ti,,,05 phase ordered
along the[111] direction [3]. We see from Table 7 that,
for both values of the Zr/Ti ratio in the ordered phases,
the crystal lattice is unstable with respect both to the
ferroelectric mode (100.6i and 115i cm™ in the phases

P3m1 and P4mm for x = 1/3, respectively, and 87.3i

and 103.5i cm™ in the phases Fm3m and P4/mmm for
x = 1/2, respectively) and to other vibration modes. We

PHYSICS OF THE SOLID STATE \Vol. 46

note that, in the ordered Pb,ZrTiOg with an elpasolite
structure, in addition to the ferroelectric soft mode,
there is a soft T;; mode that is very close in energy
(87i cm™) and whose eigenvectors correspond to rota-
tions of the TiOg (ZrOg) octahedrons. Thus, for a Zr/Ti
ratio close to 1/2, we might expect both polar and rota-
tiona distortions of the crystal lattice. It is seen from
Table 7 that the PbyZrTi,O4 compound with ordering
along the[111] and [001] directionsiseven more unsta-
ble with respect to aferroelectric mode or other vibra-
tion modes that are close in energy. For these values of
the Zr/Ti ratio, the pattern of lattice distortions during
structural phase transitions can be more complicated.
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Table 6. Permittivity and Born effective charges for ordered PbZr;3Ti,:05 solid solutions with different ordering types

Ordering along [001] (calculation data) Ordering along[111] (our calculation
this study [18] data)
lon €11 €33 €11 €33 €11 €33
5.09 5.28 - - 511 5.04
Zix Zz Zix Zz Zix Zz
Pb1 2.88 2.87 3.90 4.04 2.86 2.96
Pb2 2.81 2.92 3.88 3.53 2.93 2.65
Pb3 2.88 2.87 3.90 4,04 2.86 2.96
Til 5.50 6.52 6.77 6.65 5.63 5.07
Ti2 5.50 6.52 6.77 6.65 5.63 5.07
Zr 6.09 5.87 6.33 6.69 5.24 5.75
01 -1.65 -5.32 —2.58 -5.39 -1.69 -5.23
02 -5.16 -1.62 —-5.58 —2.34 -1.57 -5.20
O3 -1.72 -1.62 —-2.72 -2.34 -1.57 -5.20
o4 -1.55 —6.09 —2.53 -5.57 -1.65 —-4.91
05 -5.16 -1.62 —-5.58 —2.34 -1.79 —4.93
06 -1.72 -1.62 —-2.72 —-2.34 -1.65 -4.91
o7 -1.65 -5.32 —2.58 -5.39 -1.79 —-4.93
08 —5.06 —2.17 -5.17 —2.94 -1.65 —-4.91
09 -1.96 —2.17 -2.33 —-2.94 -1.65 -4.91

Table 7. Vibration frequencies (cm™) at q = 0for ordered PZT structureswith concentration x = 1/3 and 1/2 (the mode degen-
eracy isindicated in parentheses)

PbgZrTi,Oq PbsZrTiOg
ordering along [111], rderina alona 1001 ordering along [111], Fm3m rdering along [001
P3mil symmetry ° girmrg] Z/I?n%([a(t)r?/ ], symmetry (Cal culation data) OP%?’I’TTT?YT?S?/mgI"L%?I‘);,
(our calculation data) (our calculation data) this study 3] (our calculation data)
100.6i 218.1 115.0i 185.6 87.3i(2) 125i 103.5i 379.7
98.9i 219.2 95.5i 186.6(2) 87.0i(3) 101.8i 398.6
94.6i(2) 2374 67.51(2) 1955 58.2i(3) 16i 28.8(2) 431.9
66.7i 261.8 235 202.0 117.0 75.9 453.3
52.8i 286.5 22.8i 203.9 157.3(3) 82.6 5175
52.7i 299.6 63.3(2) 2270 217.5(2) 106.3 625.6
16.9i(2) 332.2 91.4(2) 296.6 226.9(3) 158 1194 626.1
3.6i 335.3(2) 97.6 3195 276.5 120.8
42.3 357.3 102.3 375.9 361.3(2) 326 158.9
78.3 370.6 116.0 383.4(2) 372.2 357 159.4
90.3(2) 3721 138.7(2) 384.8 442.6(2) 538 164.8(2)
120.9 459.8 141.8 4429 456.6(2) 190.3
147.9(2) 489.3(2) 160.3(2) 452.1 608.2 197.5
156.8 491.8 167.5(2) 551.0 699.7 838 205.9
207.4 622.2 1725 628.7 210.6
2116 687.5 181.7 650.6 212.9
214.7(2) 723.7 1834 666.0 2138
215.2 2933
PHYSICS OF THE SOLID STATE Vol. 46 No.7 2004
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4. CONCLUSIONS

Thus, we have written out the effective Hamiltonian
and studied the thermodynamic properties of cation
ordering in PbZr,Ti,_,O; solid solutions using the
Monte Carlo method. We have calculated the parame-
tersof the effective Hamiltonian by performing nonem-
pirical total-energy calculations for structures with dif-
ferent types of zirconium and titanium ion ordering.
The energies were calculated using the ionic-crysta
model with regard to deformability and dipole and qua-
drupole polarizabilities of the ions. By carrying out
Monte Carlo calculations, we determined the cation-
ordering phase transition temperatures T, = 180 and
=250 K for concentrations x = 1/3 and 1/2, respectively.
For the compound under study, these temperatures are
much lower than the melting temperature (T,a: ~
1200 K). Due to the alloy ordering being diffusive in
character, the ordering kinetics at temperatures close to
room temperature is frozen and in reality the phase
transition in the ordered phase does not occur, in agree-
ment with experiment.

Using the same ionic-crystal model, we have calcu-
lated the high-frequency permittivity, Born dynamic
charges, and the lattice vibration spectra for the com-
pletely disordered and for the ordered phases of lowest
energies. It was found that there are soft vibration
modes, including ferroelectric modes, in the lattice
vibration spectrum both in the completely disordered
and in the ordered phases; moreover, afew soft modes
of different symmetry have almost equal energies.
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