
  

Physics of the Solid State, Vol. 46, No. 7, 2004, pp. 1291–1300. Translated from Fizika Tverdogo Tela, Vol. 46, No. 7, 2004, pp. 1252–1260.
Original Russian Text Copyright © 2004 by Zinenko, Sofronova.

             

LATTICE DYNAMICS 
AND PHASE TRANSITIONS

                       
Statistical Mechanics of Cation Ordering and Lattice Dynamics 
of PbZrxTi1 – xO3 Solid Solutions

V. I. Zinenko and S. N. Sofronova
Kirensky Institute of Physics, Siberian Division, Russian Academy of Sciences, 

Akademgorodok, Krasnoyarsk, 660036 Russia
e-mail: zvi@iph.krasn.ru
Received August 28, 2003

Abstract—An effective Hamiltonian for Zr–Ti cation ordering in PbZrxTi1 – xO3 solid solutions is written out.
To determine the parameters of the effective Hamiltonian, a nonempirical calculation is performed within an
ionic-crystal model taking into account the deformation and dipole and quadrupole polarizabilities of ions. The
thermodynamic properties of cation ordering are studied using the Monte Carlo method. The calculated phase
transition temperatures (180 and 250 K for the concentrations x = 1/3 and 1/2, respectively) are much lower
than the melting temperature of the compound under study. At such temperatures, the ordering kinetics is frozen
and, in reality, the phase transition to the ordered phase does not occur, in agreement with experimental obser-
vations. Within the same ionic-crystal model, we calculated the high-frequency permittivity, Born dynamic
charges, and the lattice vibration spectrum for a completely disordered phase and certain ordered phases. It is
shown that soft vibration modes, including ferroelectric ones, exist in the lattice vibration spectrum of both the
completely disordered and the ordered phases. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Solid solutions of lead titanate and lead zirconate
PbZrxTi1 – xO3 (PZT) have been attracting research
attention for many decades; a great number of experi-
mental and theoretical studies have dealt with their
physical properties. The PZT system has a complicated
phase diagram and a number of interesting properties in
terms of both theory and application (in particular, high
values of the piezoelectric constants).

At high temperatures, PZT has a perovskite struc-
ture. As the temperature is decreased, this compound
exhibits structural phase transitions to a rhombohedral,
an orthorhombic, or a monoclinic phase with ferroelec-
tric or antiferroelectric ordering, depending on the
Zr/Ti content ratio (see, e.g., [1] and references
therein). Phase transitions related to the ordering of tet-
ravalent zirconium and titanium cations have not been
observed experimentally at any concentration or tem-
perature; however, there are experimental indications
that, in the samples under study, there exist small
regions with an ordered distribution of titanium and zir-
conium ions over the lattice sites [2]. Apparently, the
presence of such ordered regions has a significant effect
on lattice instability with respect to ferroelectric, anti-
ferroelectric, and rotational distortions [3]. The proper-
ties of the solid solutions, in particular, the energies of
different structures [4], some lattice vibration frequen-
cies in the distorted phases [3], and Born effective
charges in the disordered and ordered phases [5–8],
were studied by performing ab initio calculations using
different approaches in combination with the density
functional method. However, the phase transitions
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related to ordering of titanium and zirconium ions over
the lattice sites were not discussed in the papers men-
tioned above; it was only noted that the energy of such
ordering is small, because the valences of ions ran-
domly distributed over the perovskite structure are
equal.

In this paper, we perform a nonempirical calculation
within an ionic-crystal model including the deforma-
tion and dipole and quadrupole polarizabilities of ions
to study phase transitions related to ordering of tita-
nium and zirconium ions and determine the entire
vibration frequency spectrum of the disordered phase,
the vibration frequencies at q = 0 for the ordered
phases, the Born effective charges, and the high-fre-
quency permittivity.

In Section 2, we introduce an effective Hamiltonian
describing phase transitions of the order–disorder type
in a model two-component Zr/Ti alloy. The parameters
of the effective Hamiltonian, in which interactions
within the first three coordination shells are taken into
account, are determined by calculating the total energy
of the crystal in different ordered phases. At certain val-
ues of the parameters of the effective Hamiltonian,
using the Monte Carlo method, we study the thermody-
namic properties of the system, namely, the phase tran-
sition temperatures and the temperature dependences of
the heat capacity and of the long-range and short-range
order parameters.

In Section 3, in the virtual-crystal approximation for
different values of the Zr/Ti content ratio, we calculate
the permittivity, Born effective charges, and the entire
lattice vibration spectrum of the cubic phase of the dis-
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ordered crystal for different concentrations x. Analo-
gous calculations are also carried out for certain
ordered phases of PbZrxTi1 – xO3 with x = 1/3 and 1/2;
however, for brevity, we present here only the vibration
frequencies at the center of the Brillouin zone.

Finally, in Section 4, we summarize the results of
the study.

2. STATISTICAL MECHANICS 
OF B-CATION ORDERING

To describe phase transitions related to B-cation
ordering in PbZrxTi1 – xO3 solid solutions, we use the
effective-Hamiltonian method in which only the
degrees of freedom related to positional disorder of tita-
nium and zirconium atoms at the sites of the crystal lat-

tice (the b positions in the  space group) are taken
into account. In this case, the problem of B-cation
ordering in AB'B''O3 solid solutions is equivalent to the
problem of ordering in a two-component alloy and we
can use a model based on the assumption that the atoms
of a solution are placed at the sites of a certain rigid
crystal lattice [9]. The configuration energy of the solu-
tion is expressed as the sum of all interatomic pair inter-
action potentials. In this model, the Hamiltonian of the
system can be written as

(1)

where vB'B', vB''B'', and vB'B'' are the pair interaction
potentials between B' atoms, between B'' atoms, and
between B' and B'' atoms, respectively, at lattice sites rk

and rj and µB' and µB'' are the chemical potentials of the

cations B' and B''. The quantities  and  are ran-
dom functions defined as follows: if site j is occupied

by a B' atom, then  = 1 and  = 0, and if site j is

occupied by a B'' atom, then  = 0 and  = 1. The

quantities  and  satisfy the relation  +  =
1. Using this relation, we can rewrite Eq. (1) as [9]
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is the effective interaction constant and

is the chemical potential of the system.
The effective interaction constants are evaluated by

performing a nonempirical calculation of the total
energy of the crystal in the Gordon–Kim model with
inclusion of the dipole and quadrupole polarizabilities
of ions [10, 11]. The total energy is

(3)

where

(4)

(5)
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Here, Es is the interaction energy of spherically sym-
metric ions; Ep, Eq, and Epq are the interaction energies

of dipole and quadrupole moments; Eself = 

is the self-energy of ions;  =  is the

long-range part of the interactions, which is calculated

by the Ewald method; (Vi , Vj , |Ri – Rj |) is the

short-range part of the interaction; and ( ) are the
dipole (quadrupole) moments of ions, which can be
found by minimizing the total energy of the crystal [11].
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To find the crystal energy in the disordered phase,
we use the virtual-crystal approximation. In this
approximation, the short-range part of pair interactions
of a virtual ion 〈B〉  with the other ions (i) is

(8)

The contribution from the virtual ion to the self-energy
can be written as

(9)

The quadrupole and dipole polarizabilities of the vir-
tual ion B are

(10)

The long-range part of the interaction remains the same
as that for the pure components of the solutions.

Let us discuss the phase transition in a PbZrxTi1 – xO3
solid solution related to ordering of the B cations in the
case where x = 1/2 and 1/3. Furthermore, in the effec-
tive Hamiltonian (2), we restrict ourselves to interac-
tions within the first three coordination shells. To calcu-
late the effective constants, we find the energies of sev-
eral structures with different ordering of the titanium
ions. For the ordered structures, we use the notation
from [12], where an analogous calculation of the ener-
gies was performed for the PbSc1/2Ta1/2O3 solid solu-
tion. Table 1 lists the configuration motif, the lattice
parameters of the ordered structures, the energies per
ABO3 formula unit calculated without and with regard
to relaxation of Pb and O ions, and expressions of the
energy in terms of the effective constants defined in
Eq. (2). The table also gives the energies of mixtures of
pure substances PbTiO3 (PTO) and PbZrO3 (PZO) for
concentrations x = 1/2 and 1/3. It is seen from the Table 1
that at any concentration the most favorable ordered
structure considered is the structure with Zr and Ti cat-
ions ordered along the body diagonal of the cubic unit
cell of the disordered phase. However, without taking
the relaxation of Pb and O ions into account, this struc-
ture has a somewhat greater energy than the mixture of
the pure substances. For concentration x = 1/2, the
result obtained agrees with calculations performed by
other authors [4]. The difference in the energies of the
two unrelaxed structures with ordering along the [111]
and [100] directions obtained in this study (5.3 mRy)
also agrees with the results obtained in other calcula-
tions (4.6 and 5.9 mRy [4]).

Since only the degrees of freedom related to posi-
tional disorder of B' and B'' atoms are taken into account
in the effective Hamiltonian, the effective interaction
constants are calculated using the energies of unrelaxed
structures. The energy expressed in terms of the effec-
tive constants contains a constant energy E0, which is
independent of the positions of B' and B'' ions and can
be taken as the zero of energy. The calculated effective
interaction constants are listed in Table 2.
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To study the statistical properties of the phase tran-
sitions related to the ordering of B cations in the
PbZrxTi1 – xO3 compounds (x = 1/2, 1/3), in addition to
using the effective Hamiltonian (2), we applied the
standard Monte Carlo method [13].

The Monte Carlo procedure consists in the follow-
ing. As the initial structure, we take one of the ordered
structures or the completely disordered structure at a
fixed temperature. One Monte Carlo step is sequential
running over all lattice sites. For each site (s), one of the
nearest neighbors is randomly chosen (s'). If the atoms
at sites s and s' are of the same type, then the configura-
tion remains unchanged. If the atoms at sites s and s'
differ in type, then we calculate the energy difference
between the initial configuration and the configuration
in which the atoms in sites s and s' change places:

(11)

where  is the number of ith nearest B'-type neigh-

bors of a B'-type atom,  is the number of ith near-
est B'-type neighbors of a B''-type atom before the per-
mutation, and δ = 1 if i = 1 and δ = 0 if i = 2, 3.

The latter condition means that the nearest neigh-
bors change places. The permutation is accepted and
the configuration is taken to be new in the following
cases: (i) ∆Econf ≤ 0 or (ii) ∆Econf > 0 if ξ <
exp[−∆Econf/kT], where ξ is a random number and
0 < ξ < 1.

After each Monte Carlo step, we calculate the
energy of the configuration, the short-range order
parameter σ, and the long-range order parameter η. The
short-range order parameter is defined by [14]

(12)

where NB'B''(disorder) = (1 – x) is the number of

B'B'' pairs in the completely disordered solid solution, 
is the coordination number, N is the number of atoms
in the solution, and x is the concentration of atoms of
type B'.

For concentration x = 1/2, the structures with order-
ing along the [111], [110], and [100] directions have the
lowest energies; therefore, they are of greatest interest.
For each of these structures, we calculate the short-
range and long-range order parameters.

For different completely ordered structures in the
case where x = 1/2, the values of nB'B''(order) are
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Table 1.  Energies of different ordered PbZrxTi1 – xO3 structures

Configuration
{IJKL} {MNOP}
B' = +1, B'' = –1

Lattice parameters
(a0 = 3.95 Å)

Calculated energies without regard
to the ion self-energy, eV

Expressions of the energy
in terms of the effective

constants v iwithout relaxation with relaxation

x = 1/2

{–1 1 –1 1} a = b = c = 2a0 –158.128282 –158.253272 6v1 + 8v3 – µ/2 + E0

{1 –1 1 –1}

B'B'' along [111]

{–1 1 –1 –1} a = b = c = 2a0 –158.074271 –158.180158 3v1 + 6v2 + 8v3 – µ/2 + E0

{1 1 1 –1}

{1 1 1 1} a = b = a0, –158.056270 –158.227649 2v1 + 8v2 + 8v3 – µ/2 + E0

{–1 –1 –1 –1} c = 2a0

B'B'' along [100]

{1 –1 1 –1} , –158.091386 –158.210677 4v1 + 8v2 – µ/2 + E0

{1 –1 1 –1} c = a0

B'B'' along [110]

{–1 –1 –1 1} a = b = c = 2a0 –158.091829 –158.203578 4v1 + 6v2 + 4v3 – µ/2 + E0

{1 1 1 –1}

{1 –1 –1 –1} a = b = c = 2a0 –158.073826 –158.160574 3v1 + 8v2 + 4v3 – µ/2 + E0

{1 1 1 –1}

{1 1 1 1} a = b = a0 –158.012134 –158.900837 v1 + 4v2 + 4v3 – µ/2 + E0

{1 1 1 1}+ c = 4a0

{–1 –1 –1 –1}

{–1 –1 –1 –1}

1/2PZO + 1/2PTO –158.157773

x = 1/3

B'B'' along [100] a = b = a0, –159.074277 –159.210991 (4v1 + 16v2 + 16v3 – 2µ)/3 + E0

c = 3a0

B'B'' along [111] , –159.133164 –159.259862 4v1 + 4v2 + 4v3 – 2µ/3 + E0

1/3PZO + 2/3PTO –159.229638

J K

N O
I L

M P

a b 2a0= =

a b 2a0= =

c 3a0=
Table 2.  Effective interaction constants (in meV)

v1 v2 v3

–12.22 –1.61 –0.86
P

For concentration x = 1/3, two ordered structures were
considered, namely, those with ordering along the
[111] and [100] directions. The number of B'B'' pairs
for the ordered structures in the case of x = 1/3 is

nB'B'' 111( ) 4N , nB'B'' 100( ) 4/3N .= =
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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The long-range order parameter for x = 1/2 is defined as

(13)

where RB'(B') is the number of atoms of type B' at their
“sites proper.”

For different types of ordering, the B' sites are
defined by the following conditions:

(14a)

for ordering along the [111] direction,

(14b)

for ordering along the [110] direction, and

(14c)

for ordering along the [100] direction, where x, y, and z
are the site coordinates.

For concentration x = 1/3, the long-range order
parameter is

(15)

The B' sites are defined by the following conditions:

(16a)

for ordering along the [111] direction and

(16b)

for ordering along the [100] direction.
We studied lattices 16 × 16 ×16 in size for x = 1/2

and 18 × 18 × 18 for x = 1/3 with periodic boundary
conditions. The first 10 000 steps at each temperature
are disregarded and are not included in averaging the
quantities Econf, η, and σ. The average values 〈Econf 〉 ,

η
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Fig. 1. Temperature dependence of the excess heat capacity
related to B-cation ordering in the PbZr1/2Ti1/2O3 solid
solution.
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〈(Econf )2〉 , 〈η〉 , and 〈σ〉  are calculated in two steps. After
p = 50 steps, the group averages are calculated:

(17)

Then, the averaging over M = 500 groups is performed:

(18)

The heat capacity of the system is defined as C =

(〈(Econf )2〉  – 〈Econf 〉2).

The temperature dependences of the heat capacity
and of the short-range and long-range order parameters
for x = 1/2 are shown in Figs. 1 and 2. At low tempera-
tures, the only stable structure is the structure with the
ordering along the [111] direction, which appears both
upon heating and cooling. The structures with other
ordering types are unstable; this can be seen from
Fig. 2. The long-range order parameters of the struc-
tures with ordering along the [110] and [100] directions
are equal to zero throughout the entire temperature
range. The phase transition from the ordered to the dis-
ordered state occurs at a temperature of about 250 K. As
noted in Section 1, experimental data show that order-
ing does not occur in the PbZr1/2Ti1/2O3 solid solution.
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Fig. 2. Temperature dependence of the long-range and
short-range order parameters in the PbZr1/2Ti1/2O3 solid
solution.
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Since the ordering processes in solid solutions, as well
as in metal alloys, are diffusive in character, the kinetics
of these processes is frozen at the transition tempera-
ture obtained, T = 250 K, which is much smaller than
the melting temperature of PZT (Tmelt ~ 1200 K); there-
fore, the phase transition to an ordered state does not
occur.

The temperature dependences of the heat capacity
and of the short-range and long-range order parameters
for concentration x = 1/3 are shown in Figs. 3 and 4.
The structure with the 1 : 2 ratio and ordering along the
[111] direction is metastable for this concentration. If
we start the Monte Carlo procedure at a low tempera-
ture from this configuration, then the structure col-
lapses with increasing temperature. Part of the solution

T, K

C
/R

0.7

0.5

0.3

0.1

0 100 200 300 400

Fig. 3. Same as in Fig. 1 but for the PbZr1/3Ti2/3O3 solid
solution.

T, K

σ,
 η

1.0

0.8

0.6

0.4

0.2

0 100 200 300 400

σ

η

Fig. 4. Temperature dependence of the long-range and
short-range order parameters for the PbZr1/3Ti2/3O3 solid
solution. Dashed lines show the order parameter for order-
ing along [111] with a B-cation ratio of 1 : 2, points repre-
sent the order parameter for ordering along [111] with a
B-cation ratio of 1 : 1 in the heating and cooling modes, and
triangles represent the short-range order parameter.
P

becomes ordered along the body diagonal to the Zr/Ti
ratio of 1 : 1, and regions of pure Ti appear. With a fur-
ther increase in temperature (near 180 K), the ordered
regions with the 1 : 1 ratio become disordered. In the
cooling regime, ordered regions with the 1 : 1 ratio
appear at 180 K, and this structure survives down to low
temperatures. A peak in the heat capacity is observed to
occur at 180 K. There are experimental indications [2]
that nanodomains with the ordering of Zr and Ti ions in
a ratio of 1 : 1 exist in PZT solid solutions at low tem-
peratures.

3. LATTICE DYNAMICS OF THE DISORDERED 
AND CERTAIN ORDERED PHASES

The frequency vibration spectrum, high-frequency
permittivity, Born effective charges, and elastic moduli
of the ordered phases of PbZrxTi1 – xO3 solid solutions
are calculated within the Gordon–Kim model of ionic
crystals with regard to deformability and dipole and
quadrupole distortions of the electronic density of ions.
The corresponding formulas for calculations can be
found in [15]. In the case of disordered solid solutions,
we calculated the dynamic properties using the virtual-
crystal approximation; i.e., in the dynamic matrix, all
but the long-range Coulomb contributions are calcu-
lated by expanding the interaction energy of a virtual
〈B〉  ion with the other ions into a Taylor series in small
displacements.

First, we discuss the case of disordered solid solu-
tions, which, like the pure components, have a cubic
perovskite structure and one molecule per unit cell.

Table 3 lists the calculated lattice cell parameters,
high-frequency permittivity, Born effective charges,
and elastic moduli for the pure components PbZrO3 and
PbTiO3 and for solid solutions with concentrations x =
1/3, 1/2, and 2/3. For comparison, the results of other
ab initio calculations [16, 17] are also presented. Figure 5
shows the calculated vibration spectrum of the disor-
dered PbZr1/2Ti1/2O3 solid solution for symmetry points
and directions in the Brillouin zone, and Table 4 lists
the calculated vibration frequencies at the Γ(0, 0, 0) and
R(1/2, 1/2, 1/2) points for the pure components and for
the disordered solutions with concentrations x = 1/3,
1/2, and 2/3. It is seen from Tables 3 and 4 that the
results of our calculations agree (within 10–30%) with
the results of other ab initio calculations (except for the
value of ε∞ for PbTiO3 obtained in [17]). In solid solu-
tions, as well as in the pure components, there are soft
modes in the vibration spectrum. We note that, in addi-
tion to a polar vibration mode, our calculations for pure
PbTiO3 predict antiferroelectric lattice instability and
that the vibration mode R25, whose eigenvectors corre-
spond to rotation of the TiO6 octahedron, turns out to be
hard. At the same time, in PbZrO3, in addition to the
ferroelectric and antiferroelectric instabilities, there
exists a soft mode R25 related to rotation of the ZrO6
octahedron. All three types of instability exist in a solid
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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Table 3.  Lattice parameter a0, permittivity ε∞, Born effective charge Z, and elastic moduli Cij for crystals PbZrxTi1 – xO3 in
the virtual-crystal approximation

x a0, Å ε∞ ZPb Z〈B〉 ZO1 ZO3
C11,

102 GPa
C12,

102 GPa
C44,

102 GPa

0 3.83 4.90 2.78 5.67 –4.93 –1.76 2.58 1.16 1.14

3.97* 8.24* 3.90** 7.06** –5.83** –2.56**

1/3 3.91 5.21 2.78 5.78 –4.97 –1.79 2.45 0.99 0.96

1/2 3.95 4.87 2.77 5.62 –4.68 –1.86 2.34 0.91 0.90

3.99*** 3.92*** 6.47*** –5.28*** –2.54***

2/3 3.97 4.81 2.77 5.56 –4.53 –1.90 2.42 0.89 0.86

1 4.03 4.50 2.77 5.35 –4.15 –1.98 2.36 0.80 0.78

4.12* 6.97* 3.92** 5.85** –4.81** –2.48**

    * Calculated by the pseudopotential method and the linear-response method [17].
  ** Calculated by the pseudopotential method and the frozen-phonon method [16].
*** Calculated by the pseudopotential method in the virtual-crystal approximation [6].
solution if the position of a tetravalent cation is occu-
pied by the virtual atom 〈B〉 .

It is seen from Table 1 that, for concentration x =
1/2, there are two ordered structures of lowest energies.
The structure with the B' and B'' cations ordered along
the [001] direction has the P4/mmm symmetry, and the
structure with ordering along the [111] direction (the
elpasolite structure) has the Fm3m symmetry. For both
structures, there are adjustable parameters. In the tet-
ragonal structure, the oxygen ions located between the
Zr and Ti ions, as well as the Pb ions, can be displaced
along the z axis. In the elpasolite structure, there is a
degree of freedom related to “breathing” of the oxygen
octahedron. We minimized the total energy with respect
to the volume and the free parameters at a constant
value of the ratio c/a = 2.0 for the tetragonal lattice. For
the elpasolite structure, the oxygen octahedron is drawn
to the Ti ion by 0.05 Å. For the tetragonal structure, the
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      200
oxygen and lead ions are displaced along the z axis to
the Ti ion by 0.11 Å. The calculated unit cell parame-
ters, high-frequency permittivity, and Born effective
charges for these two ordered structures at x = 1/3 and
1/2 are given in Tables 5 and 6; for comparison, the
results of other calculations are also presented. It is
seen from Tables 5 and 6 that the Born dynamic charges
calculated in this study (especially for the lead ion) both
in the disordered and in the ordered phases at concen-
trations x = 1/2 and 1/3 are somewhat smaller than
those obtained using the pseudopotential method [18].
It is interesting to note that, in the pure components of
a solution, the effective charge of the titanium ion
exceeds that of the zirconium ion, whereas for the
ordered structures the effective charge of the zirconium
ion either is approximately equal to or exceeds that of
the titanium ion.
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Fig. 5. Phonon spectrum of PbZr1/2Ti1/2O3 calculated in the virtual-crystal approximation.
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Table 4.  Vibration frequencies (cm–1) for PbZrxTi1 – xO3 calculated for various concentrations in the virtual-crystal approxi-
mation (the mode degeneracy is indicated in parentheses)

x
q = 0

TO1(2) LO1 T2u(3) TO2(2) LO2 TO3(2) LO3

0 87.3i 142.0 180.8 236.7 318.9 437.8 616.3

144i* 104* 121* 410* 497* 673*

1/3 88.3i 121.6 154.6 222.5 288.7 442.8 608.2

1/2 89.5i 114.7 156.4 219.7 289.6 448.4 600.7

2/3 88.4i 113.3 153.4 218.2 285.5 470.8 611.4

1 91.9i 104.9 150.0 214.1 283.5 488.2 609.3

131i* 90* 30** 63* 310* 486* 720**

140i** 170** 600**

q = R

R15(3) R25(3) R15(3) R25'(3) R12'(2) R2'

0 110.5i 51.3 177.5 383.0 423.8 718.9

1/3 119.4i 67.8i 171.8 365.7 438.6 691.2

1/2 113.3i 77.5i 178.8 342.2 451.6 676.8

2/3 110.9i 93.6i 181.5 328.5 483.9 677.5

1 105.0i 113.3i 190.9 299.7 510.8 661.6

  * Calculated by the pseudopotential method and the frozen-phonon method [15].
** Calculated by the pseudopotential method and the linear-response method [16].

Table 5.  Lattice parameters, Born effective charges, and permittivity for ordered PbZr1/2Ti1/2O3 solid solutions with different
ordering types (for the ordering along [001], the O1 ions lie between Zr and Ti ions, the O2 ions lie in the same plane as the
Zr ions, and the O3 ions lie in the same plane as the Ti ions)

Ordering a0, Å
ε∞ ZPb ZTi ZZr ZO1 ZO2 ZO3

11 33 xx zz xx zz xx zz xx zz xx, yy zz xx, yy zz

Along [111] a = 7.88 4.97 4.97 2.78 5.48 5.77 –1.85 –4.71

Along [001] a = 3.95, 5.01 4.85 2.78 2.84 5.52 6.02 6.10 5.53 –1.79 –4.98 –5.02 –2.12 –5.11, –1.51

c/a = 2.0 –1.93 –1.71

Along [001] 
(calculation 
data from [5])

a = 3.99, 
c/a = 2.07

– – 3.0 5.3 6.0 –4.6 –2.1 –2.1
We calculated the entire lattice vibration spectra in
low-energy ordered PZT phases at concentrations x =
1/3 and 1/2. The limiting optical vibration frequencies
at q = 0 are given in Table 7. For comparison, the table
also lists the results of ab initio LAPW calculations of
limiting frequencies in the PbZr1/2Ti1/2O3 phase ordered
along the [111] direction [3]. We see from Table 7 that,
for both values of the Zr/Ti ratio in the ordered phases,
the crystal lattice is unstable with respect both to the
ferroelectric mode (100.6i and 115i cm–1 in the phases

 and P4mm for x = 1/3, respectively, and 87.3i
and 103.5i cm–1 in the phases Fm3m and P4/mmm for
x = 1/2, respectively) and to other vibration modes. We

P3m1
P

note that, in the ordered Pb2ZrTiO6 with an elpasolite
structure, in addition to the ferroelectric soft mode,
there is a soft T1g mode that is very close in energy
(87i cm–1) and whose eigenvectors correspond to rota-
tions of the TiO6 (ZrO6) octahedrons. Thus, for a Zr/Ti
ratio close to 1/2, we might expect both polar and rota-
tional distortions of the crystal lattice. It is seen from
Table 7 that the Pb3ZrTi2O9 compound with ordering
along the [111] and [001] directions is even more unsta-
ble with respect to a ferroelectric mode or other vibra-
tion modes that are close in energy. For these values of
the Zr/Ti ratio, the pattern of lattice distortions during
structural phase transitions can be more complicated.
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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Table 6.  Permittivity and Born effective charges for ordered PbZr1/3Ti2/3O3 solid solutions with different ordering types

Ion

Ordering along [001] (calculation data) Ordering along [111] (our calculation 
data)this study [18]

ε11 ε33 ε11 ε33 ε11 ε33

5.09 5.28 – – 5.11 5.04

Zxx Zzz Zxx Zzz Zxx Zzz

Pb1 2.88 2.87 3.90 4.04 2.86 2.96
Pb2 2.81 2.92 3.88 3.53 2.93 2.65
Pb3 2.88 2.87 3.90 4.04 2.86 2.96
Ti1 5.50 6.52 6.77 6.65 5.63 5.07
Ti2 5.50 6.52 6.77 6.65 5.63 5.07
Zr 6.09 5.87 6.33 6.69 5.24 5.75
O1 –1.65 –5.32 –2.58 –5.39 –1.69 –5.23
O2 –5.16 –1.62 –5.58 –2.34 –1.57 –5.20
O3 –1.72 –1.62 –2.72 –2.34 –1.57 –5.20
O4 –1.55 –6.09 –2.53 –5.57 –1.65 –4.91
O5 –5.16 –1.62 –5.58 –2.34 –1.79 –4.93
O6 –1.72 –1.62 –2.72 –2.34 –1.65 –4.91
O7 –1.65 –5.32 –2.58 –5.39 –1.79 –4.93
O8 –5.06 –2.17 –5.17 –2.94 –1.65 –4.91
O9 –1.96 –2.17 –2.33 –2.94 –1.65 –4.91

Table 7.  Vibration frequencies (cm–1) at q = 0 for ordered PZT structures with concentration x = 1/3 and 1/2 (the mode degen-
eracy is indicated in parentheses)

Pb3ZrTi2O9 Pb3ZrTiO6

ordering along [111],

P m1 symmetry
(our calculation data)

ordering along [001],
P4mm symmetry

(our calculation data)

ordering along [111], Fm3m 
symmetry (calculation data)

ordering along [001],
P4/mmm symmetry

(our calculation data)this study [3]

100.6i 218.1 115.0i 185.6 87.3i(2) 125i 103.5i 379.7
98.9i 219.2 95.5i 186.6(2) 87.0i(3) 101.8i 398.6
94.6i(2) 237.4 67.5i(2) 195.5 58.2i(3) 16i 28.8(2) 431.9
66.7i 261.8 23.5i 202.0 117.0 75.9 453.3
52.8i 286.5 22.8i 203.9 157.3(3) 82.6 517.5
52.7i 299.6 63.3(2) 227.0 217.5(2) 106.3 625.6
16.9i(2) 332.2 91.4(2) 296.6 226.9(3) 158 119.4 626.1
3.6i 335.3(2) 97.6 319.5 276.5 120.8

42.3 357.3 102.3 375.9 361.3(2) 326 158.9
78.3 370.6 116.0 383.4(2) 372.2 357 159.4
90.3(2) 372.1 138.7(2) 384.8 442.6(2) 538 164.8(2)

120.9 459.8 141.8 442.9 456.6(2) 190.3
147.9(2) 489.3(2) 160.3(2) 452.1 608.2 197.5
156.8 491.8 167.5(2) 551.0 699.7 838 205.9
207.4 622.2 172.5 628.7 210.6
211.6 687.5 181.7 650.6 212.9
214.7(2) 723.7 183.4 666.0 213.8
215.2 293.3

3
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4. CONCLUSIONS

Thus, we have written out the effective Hamiltonian
and studied the thermodynamic properties of cation
ordering in PbZrxTi1 – xO3 solid solutions using the
Monte Carlo method. We have calculated the parame-
ters of the effective Hamiltonian by performing nonem-
pirical total-energy calculations for structures with dif-
ferent types of zirconium and titanium ion ordering.
The energies were calculated using the ionic-crystal
model with regard to deformability and dipole and qua-
drupole polarizabilities of the ions. By carrying out
Monte Carlo calculations, we determined the cation-
ordering phase transition temperatures Tc ≈ 180 and
≈250 K for concentrations x = 1/3 and 1/2, respectively.
For the compound under study, these temperatures are
much lower than the melting temperature (Tmelt ~
1200 K). Due to the alloy ordering being diffusive in
character, the ordering kinetics at temperatures close to
room temperature is frozen and in reality the phase
transition in the ordered phase does not occur, in agree-
ment with experiment.

Using the same ionic-crystal model, we have calcu-
lated the high-frequency permittivity, Born dynamic
charges, and the lattice vibration spectra for the com-
pletely disordered and for the ordered phases of lowest
energies. It was found that there are soft vibration
modes, including ferroelectric modes, in the lattice
vibration spectrum both in the completely disordered
and in the ordered phases; moreover, a few soft modes
of different symmetry have almost equal energies.
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