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Abstract—Raman scattering spectra of RbMnCl3 are measured at room temperature under high hydrostatic
pressure. The results are interpreted based on first principles lattice dynamics calculations. The experimental
data obtained correlate with the calculations in the low frequency domain but disagree slightly in the region of
high-frequency vibrations. The transition from the hexagonal to the cubic perovskite phase observed earlier
(near 0.7 GPa) was confirmed, and new transitions to lower symmetry distorted phases were discovered (at
1.1 and 5 GPa). © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The RbMnCl3 crystal belongs to the large family of
perovskite-like structures with the general formula
ABX3. The smaller radius cations B (in this case, of
manganese) surrounded by anions X form fairly rigid
octahedral groups in these structures, with the larger
radius cations A located in the voids between these
groups. These octahedra can share corners to form a
classical cubic perovskite lattice (c-type packing in
Fig. 1a) or faces in the case of hexagonal structures
(h-type packing in Fig. 1b). Most of the widely known
oxygen-containing perovskites crystallize in the cubic
packing, and their properties have been studied in con-
siderable detail. Halogen-containing perovskites are
capable of forming both cubic and hexagonal lattices,
as well as mixed structural types consisting of combi-
nations of these two types [1], as illustrated in Fig. 1c.
These structures are exemplified by RbMnX3 crystals,
where X stands for a halogen. The fluoride RbMnF3 has
a cubic perovskite structure, the bromide RbMnBr3

possesses a hexagonal structure, and the chloride
RbMnCl3 has a mixed structure (Fig. 1c) [1, 2]. The
similarity in the chemical composition and structure of
these crystals gives grounds to suggest that a change in
the external conditions (temperature or pressure) may
induce phase transitions between these structural types,
which should inevitably manifest itself in anomalies in
the lattice dynamics. Indeed, RbMnCl3 exhibits a phase
transition with decreasing temperature (which is
accompanied by restoration of the soft mode in the
Raman spectrum [3]), as well as another transition from
1063-7834/04/4607- $26.00 © 21301
the hexagonal to cubic structure at high temperatures
and pressures. In [4], a fine-grained RbMnCl3 powder
was subjected to a hydrostatic pressure of above
0.7 GPa and annealed under pressure (for half an hour
at 700°C), after which the cubic structure stabilized in
this way was studied under normal conditions. In [5],
the cubic structure was observed to form in a part of the
sample volume at comparable temperatures and pres-
sures. Although it was pointed out that the actual
annealing temperature affects the pressure of the transi-
tion to the cubic phase only slightly, this transition has
nevertheless not been observed at room temperature
to date.

Recent theoretical studies of this group of crystals
[6] performed in an ab initio approach [7] revealed that
the hexagonal structure of RbMnCl3 should become
unstable with increasing hydrostatic pressure, with the
cubic modification of the crystal becoming energeti-
cally preferable (the calculated pressure at which the
hexagonal lattice should lose stability is about 1 GPa,
which correlates well with the experimental value of
0.7 GPa). According to those calculations, the onset of
instability of the hexagonal lattice should be attributed
to the high polarizability of the halogen ion and the
breakdown of the fine balance between the multipole
contributions to the energy of the hexagonal structure.
Considering that the difference between the calculated
energies of the cubic and hexagonal RbMnCl3 lattices
is very small and depends on pressure only weakly,
those calculations obviously require experimental veri-
fication, both to test the validity of this approach for
calculating the ion interaction potential as a whole and,
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in particular, to look for the existence of a room temper-
ature transition of the hexagonal to cubic structure in
RbMnCl3 under pressure.

This stimulated our present comparative experimen-
tal investigation of polarized Raman spectra in the hex-
agonal phase of RbMnCl3 and of the vibrational spec-
trum calculated by the method proposed in [7] and by
another technique similar to it [8] and a study of the
effect of hydrostatic pressure on the Raman spectrum of
this crystal.

(a)

(b)

(c)

Fig. 1. Octahedral group packing in ABX3 polytypes.
(a) Cubic perovskite structure and (b) double-layer hexago-
nal and (c) six-layer hexagonal structures.
P

2. STRUCTURE AND SYMMETRY 
OF THE CRYSTAL

The crystals intended for experimental study were
Bridgman-grown in a quartz ampoule by multiple
recrystallization. The grown bright red boules were
40 mm in diameter and up to 50 mm long and were
inspected to select regions with no inclusions, crystal-
lites, or other structural defects visible with a micro-
scope. The samples fabricated for polarization mea-
surements were rectangular parallelepipeds measuring
3 × 4 × 5 mm, with two edges oriented along the a and
c crystallographic axes. The orientation was performed
using the x-ray technique to within ±15′ and using a
polarization microscope; in the course of experiments
conducted under normal conditions, the crystal orienta-
tion was checked periodically from the absence of bire-
fringence in the sample and from the Rayleigh scatter-
ing background level. The techniques employed to
grow the single crystals and prepare the samples are
described in [3].

At room temperature, the structure of the crystal
belongs to space group P63/mmc, Z = 6 [1, 9]. Each of
the ions in the unit cell can occupy two symmetry-inde-
pendent positions, with the five atomic coordinates not
being fixed by crystal symmetry (Table 1). As follows
both from experimental studies [9] and from calcula-
tions of the equilibrium crystal structure [6], the MnCl6

octahedra differ slightly from the ideal shape; indeed,
they are extended along the hexagonal axis.

The vibrational representation can be decomposed
into irreducible representations at the center of the Bril-
louin zone for the hexagonal phase as

(1)

with the Raman tensor components in which the vibra-
tional modes of the corresponding symmetry are active
being shown in parentheses. While this result differs
somewhat from the expression given in [3], it agrees
with the number of vibrational degrees of freedom per
unit cell and is in accord with [8].

One can write a similar expression for the cubic
phase (Pm3m, Z = 1),

(2)

This expression does not contain Raman active vibra-
tions. As follows from a comparison of Eqs. (1) and (2),
the selection rules for these structures are essentially
different, which greatly simplifies their assignment by
Raman spectroscopy.

Γ 5A1g xx yy zz, ,( ) 6E1g xz yz zx zy, , ,( )+=

+ 8E2g xx yy xy yx, , ,( ) A1u 7A2u 2B1u 6B2u+ + + +

+ 9E1u 7E2u 2A2g 6B1g B2g,+ + + +

Γ 4F1u F2u.+=
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3. EXPERIMENTAL TECHNIQUE
AND RESULTS

3.1. Raman Scattering under Normal Conditions

The experiment under normal conditions was per-
formed on a computerized DFS-24-based Raman spec-
trometer. The experimental techniques used, the design
of the setup, and the data treatment chosen were
described in considerable detail in [10]. Ar+ laser polar-
ized radiation served for pumping (500 mW, 514.5 nm).

We obtained spectra in four scattering geometries:
y(xx)z with the expected lines, according to Eq. (1),
5A1g + 8E2g; y(xy)z with 8E2g lines, y(xz)x with 6E1g

lines; and y(zz)x with 5A1g lines. The results obtained
are displayed in Fig. 2.

The y(xz)x and y(zz)x components are seen to be
substantially weaker than the others (the spectra are
plotted on an arbitrary scale, but the drop in scattering
intensity is evident from the deteriorating signal/noise
ratio). Obviously enough, this is due to a strong anisot-
ropy in the crystal susceptibility. Out of the five
expected A1g lines, only two, at 55 and 178 cm–1, can be
reliably detected in Fig. 2c. To search for the others, the
spectra in Figs. 2a and 2b need to be compared. In com-
parison with Fig. 2b, Fig. 2a reveals a strong increase in
intensity in the region of 260 cm–1 and a somewhat
weaker, but still clearly pronounced increase near
138 cm–1. The remaining maxima in Figs. 2a and 2b,
namely, the maxima at 49, 60, 78, 154, 174, and
218 cm–1, should be assigned to E2g-type vibrations.
Note that the strongest spectral line at 260 cm–1 also
manifests itself in the xy component, although at a sub-
stantially lower intensity, which may be due to either
sample misorientation or to the radiation becoming
depolarized by defects in the crystal structure. The
remaining, weakest component of the xz spectrum is
shown in Fig. 2d. Out of the six expected E1g lines, one
sees reliably only the maxima at 55, 111, and 153 cm–1,
with a tentative identification of a weak line near
80 cm–1; its intensity is, however, comparable to the
background level.

3.2. Raman Scattering under Pressure

Room temperature experiments under high hydro-
static pressure (up to 9 GPa) were carried out on a dia-
mond anvil setup similar to the one employed in [11,
12]; the chamber containing the sample was 0.25 mm in
diameter and 0.1 mm in height. The pressure was deter-
mined to within 0.05 GPa from the luminescence band
shift of ruby [12, 13], a microcrystal of which was
placed near the nonoriented sample measuring 50–
70 µm. The pressure-transmitting medium was a highly
dehydrated mixture of ethyl and methyl alcohols. The
Raman spectra were also excited by an Ar+ laser
(514.5 nm, 500 mW) and recorded with an OMARS 89
(Dilor) multichannel Raman spectrometer. Because of
the small sample size and the strong diffuse scattering,
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      200
only the high-frequency part of the spectrum (150–
500 cm–1) was recorded. Simultaneously, the domain
structure and birefringence in the sample were
observed with a polarization microscope.

The transformation of the spectrum with pressure is
shown in Fig. 3. The high-frequency part of the spec-
trum observed under normal pressure coincides with
that shown in Fig. 2a; namely, one clearly sees a strong
peak at 260 cm–1, a weak maximum at 218 cm–1, and an
increase in intensity as the 154–174 cm–1 doublet is
approached. A similar pattern (with a slight increase in
the peak frequency) is observed when the pressure is
increased to ~0.4 GPa, where the spectral intensity
begins to gradually fall off. At the same time, the micro-
scope reveals the appearance and growth of an optically
isotropic region in the crystal. Note that the possible
phase separation at the pressure-induced transition to
the cubic phase was pointed out in [5]. At pressures
above 0.75 GPa, there is no Raman scattering at all and
the crystal becomes completely optically isotropic
(with the exception of small regions on the surface,
which may be due either to surface defects or to crystal
interaction with the pressure-transmitting medium).
This phase transition point agrees satisfactorily with
the value of 1.1 GPa quoted in [6] and the transition
pressure of 0.7 GPa reported in [4].

As the pressure increases above ~1.1 GPa, Raman
scattering reappears, but its spectrum changes the pat-
tern in that the 218 cm–1 line is absent and a doublet
forms in its place in the region of 200 cm–1. On the
whole, the pattern of the spectrum (in this high-fre-
quency part, which derives primarily from stretch
vibrations of the bonds forming the octahedral groups)
closely resembles that of the spectra of “cubic” perovs-
kites after transition to the rhombohedrally distorted
phase (see, e.g., [14]). As the pressure increases, the
intensity of the Raman lines and their frequencies
increase. At pressures near 5 GPa, the frequency growth
rate increases, while the line intensities start to wane
noticeably, which may indicate the onset of one more
phase transition (Fig. 4). No other transient phenomena
are observed in the spectra as the pressure is increased
still more (up to 9.65 GPa). As the pressure is relieved,
the crystal recovers its original state by passing through
the same sequence of changes. Multiple transitions

Table 1.  Positions of atoms in the six-layer hexagonal struc-
ture of RbMnCl3 (in units of ah = 7.1 Å, ch = 19.0 Å [8])

Ion Position x y z

Rb1 2(b) 0 0 1/4

Rb2 4(f) 1/3 2/3 z1

Mn1 2(a) 0 0 0

Mn2 2(f) 1/3 2/3 z2

Cl1 6(h) y1 2y1 1/4

Cl2 12(k) y1 2y2 z3
4
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Fig. 2. Room-temperature polarized Raman spectra of
RbMnCl3 measured in different scattering geometries.
PH
through the first detected point of transition from the
hexagonal to the optically isotropic phase do not entail
its displacement, nor are any hysteresis phenomena
observed (within the measurement accuracy), in con-
trast with [4], where the annealed cubic phase persisted
after the removal of pressure.
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Fig. 3. Pressure-induced transformation of the high-fre-
quency part of a Raman spectrum.
YSICS OF THE SOLID STATE      Vol. 46      No. 7      2004



HYDROSTATIC PRESSURE–INDUCED PHASE TRANSITIONS 1305
4. MODELING OF THE SPECTRUM

To calculate the vibrational spectrum, we used the
Gordon–Kim model and took into account the ion elec-
tronic density distortion up to quadrupoles [7, 15]. The
electronic density of the crystal in this model is repre-
sented as the sum of electronic densities of individual
ions:

(3)

where  and  are the dipole and quadrupole
components of the ion electronic density, respectively.
The electronic density of an ion was calculated in terms
of the Watson sphere, which describes the effect of the
crystal environment [7, 15]:

(4)

where Z is the ion charge and RW is the radius of the Wat-
son sphere. The total crystal energy can be written as

(5)

where Eself is the sum of the ion self-energies,

(6)

is the interaction energy of spherically symmetric
ions, and

(7)

are the energies of the dipole–dipole, quadrupole–qua-
drupole, and dipole–quadrupole interactions, respec-
tively;  and  are the diagonal matrices of the
dipole and quadrupole polarizabilities of single ions
calculated by the Steinheimer method (for more details,
see [7]). The short-range parts of the ion pair interac-
tions Φ(ll ') are calculated in terms of the density func-
tional theory as

(8)

ρi r( ) ρi
l( )

r( )Ylm θ φ,( ),
m l–=

l
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and the long-range part of the interaction potential

(9)

is calculated by Ewald’s method. The fitting parameters
of the structure (Table 1), as well as the dipole and qua-
drupole ion moments, were determined from the fol-
lowing energy minimum conditions:

[whence it follows that

(10)

with A being a matrix that is the inverse of that of the
dipole–dipole interaction in Eq. (7)] and

which yields the equation

where

(11)

Cij
l l '+( ) ∇ l l '+( ) 1

Rij

---------=

∂E
∂d
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Fig. 4. Pressure dependences of the strongest spectral line
frequencies. Dashed vertical lines indicate the tentative
transition points, and solid straight lines are linear extrapo-
lations.
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Note that the structural parameters calculated in this
way are almost identical to the figures derived experi-
mentally [8]. Equations (3)–(11) are discussed in more
detail in [6].

To calculate the vibrational spectrum of a crystal,
one has to take into account the dependence of its
energy (5) on the displacements of ions from their equi-
librium positions. The corresponding expression for the
dynamic matrix, including the electronic polarizability
of ions and their breathing modes in the crystal environ-
ment, can be written in the form (for a crystal of arbi-
trary symmetry) [7]

(12)

The matrices entering Eq. (12) are defined as follows:

(13)

Dαβ q jj ',( )
iqX jj '–( )exp

M jM j '

-------------------------------=

× 1
2
---Z jCαβ

2( ) q jj ',( )Z j ' D̃RR
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where Na is the number of atoms in a unit cell and the
lattice sum matrices C (2) and C (4) describe the contribu-
tions from long-range Coulomb interactions to the
dynamic matrix. The short-range interaction contribu-
tions can be cast as

(14)

Note that this approach to calculating the frequen-
cies and eigenvectors of lattice vibrations differs some-
what from the method proposed in [8], where the Gor-
don–Kim model was used to determine the Born–
Mayer potential coefficients.
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Table 2.  Vibration frequencies in the hexagonal phase (in cm–1)

Vibration mode Calc. Data from [8] Exp. Vibration mode Calc. Data from [8] Exp.

A1g 52 40 55 E1g 25 44

A1g 90 161 E1g 53 120 55

A1g 114 254 138 E1g 69 157 80?

A1g 149 339 178 E1g 97 171 111

A1g 189 368 260 E1g 155 301 153

A1u 87i 20i E1g 65i 51i

A2g 61 63 E1u(LO/TO) 49i/73i 40

A2g 85i 71 E1u(LO/TO) 0/0 0

A2u(LO/TO) 0/0 0 E1u(LO/TO) 50/15 56

A2u(LO/TO) 42/36 35 E1u(LO/TO) 53/51 64

A2u(LO/TO) 73/59 56 E1u(LO/TO) 74/69 119

A2u(LO/TO) 86/83 146 E1u(LO/TO) 98/80 171

A2u(LO/TO) 141/88 202 E1u(LO/TO) 111/104 242

A2u(LO/TO) 157/144 271 E1u(LO/TO) 136/128 244

A2u(LO/TO) 200/187 352 E1u(LO/TO) 186/163 330

B1g 30 26 E2g 24 39

B1g 70 62 E2g 42 55 49

B1g 77 99 E2g 53 80 60

B1g 83 174 E2g 76 143 78

B1g 155 296 E2g 90 216 154

B1g 185 356 E2g 105 242 174

B1u 61 74 E2g 157 306 218

B1u 88i 44i E2g 67i 39i

B2g 84i 53i E2u 86i 7

B2u 52 53 E2u 27 42

B2u 57 112 E2u 32 82

B2u 114 221 E2u 80 135

B2u 148 276 E2u 95 166

B2u 150 339 E2u 119 215

B2u 202 391 E2u 163 328
To make a symmetry analysis of the eigenvectors of
the normal lattice vibration modes obtained by diago-
nalizing the dynamic matrix (12), we made use of the
projection operators to expand the eigenvectors in
terms of a set of basis functions for irreducible repre-
sentations of the crystal symmetry group. We con-
structed a complete vibrational representation P(g) for
the space group of the hexagonal phase and used it to
calculate the projection operators [16]:

(15)

where d(ρ) is the dimension of a representation ρ of a
point symmetry operation, N(g) is the dimension of the

Pρ
d ρ( )
N g( )
------------ χρ g( )P g( ),

g G∈
∑=
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symmetry group, χρ(g) is the character of the matrix of
the irreducible representation ρ, P(g) is the vibrational
representation of the symmetry operation of the given
irreducible representation ρ of group G, Pρ is the pro-
jection operator, and summation is performed over all
symmetry group operations. An eigenvector f of vibra-
tion transforms according to the irreducible representa-
tion ρ of group G provided it satisfies the criterion [16]

(16)

This algorithm of expansion of the dynamic matrix
eigenvectors in terms of irreducible representations was
realized with the Mathematica 4.2 software package.

Pρf
N g( )
d ρ( )
------------f .=
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Table 3.  Eigenvectors of fully symmetric lattice vibrations in the hexagonal phase

Atom Coor-
dinate

Frequency (cm–1)
Atom Coor-

dinate
Frequency (cm–1)

52 91 114 149 189 52 91 114 149 189

Rb X 0.000 0.000 0.000 0.000 0.000 Cl X 0.012 –0.016 0.024 –0.006 0.004
Y 0.000 0.002 0.000 0.000 0.000 Y 0.012 –0.016 0.024 –0.006 0.004
Z 0.000 0.000 0.000 0.000 0.000 Z 0.000 0.000 0.000 0.000 0.000

Rb X –0.001 0.000 0.000 0.000 0.000 Cl X –0.012 0.013 –0.024 0.006 –0.004
Y 0.000 0.000 0.000 0.000 0.000 Y 0.000 0.000 0.000 0.000 0.000
Z 0.000 0.000 0.000 0.000 0.000 Z 0.000 0.000 0.000 0.000 0.000

Rb X 0.000 0.000 0.000 0.000 0.000 Cl X 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.000 0.000 0.000 Y –0.012 0.006 –0.024 0.006 –0.004
Z –0.012 0.001 0.005 –0.003 0.001 Z 0.000 0.000 0.000 0.000 0.000

Rb X 0.000 0.000 0.000 0.000 0.000 Cl X –0.003 –0.005 –0.002 0.010 0.018
Y 0.000 0.000 0.000 0.000 0.000 Y –0.002 –0.005 –0.002 0.010 0.018
Z 0.012 –0.001 –0.006 0.003 –0.001 Z 0.002 0.007 0.002 –0.001 0.003

Rb X 0.000 0.000 0.000 0.000 0.000 Cl X 0.003 0.005 0.002 –0.009 –0.019
Y 0.000 0.000 0.000 0.000 0.000 Y 0.000 –0.001 0.000 0.000 0.000
Z –0.012 0.001 0.006 –0.003 0.001 Z 0.002 0.007 0.002 –0.001 0.003

Rb X 0.000 0.000 0.000 0.000 0.000 Cl X 0.000 –0.001 0.000 0.000 0.000
Y 0.000 0.000 0.000 0.000 0.000 Y 0.002 0.002 0.002 –0.010 –0.018
Z 0.012 –0.001 –0.005 0.003 –0.001 Z 0.002 0.007 0.002 –0.001 0.003

Mn X 0.000 0.000 0.000 0.000 0.000 Cl X 0.003 0.005 0.002 –0.009 –0.019
Y 0.000 0.000 0.000 0.000 0.000 Y 0.002 0.006 0.002 –0.009 –0.019
Z 0.000 0.000 0.000 0.000 0.000 Z –0.002 –0.007 –0.002 0.001 –0.003

Mn X 0.000 0.000 0.000 0.000 0.000 Cl X –0.003 –0.005 –0.002 0.010 0.018
Y 0.000 0.000 0.000 0.000 0.000 Y 0.000 0.000 0.000 0.000 0.000
Z 0.000 0.000 0.000 0.000 0.000 Z –0.002 –0.007 –0.002 0.001 –0.003

Mn X 0.000 0.001 0.000 0.000 0.000 Cl X 0.000 –0.001 0.000 0.000 0.000
Y 0.000 –0.005 0.000 0.000 0.000 Y –0.002 –0.003 –0.002 0.010 0.018
Z –0.001 0.003 0.006 0.011 –0.005 Z –0.002 –0.007 –0.002 0.001 –0.003

Mn X 0.000 0.001 0.000 0.000 0.000 Cl X 0.003 0.005 0.002 –0.009 –0.019
Y 0.000 0.006 0.000 0.000 0.000 Y 0.002 0.006 0.002 –0.000 –0.019
Z 0.001 –0.003 –0.005 –0.011 0.005 Z 0.002 0.007 0.002 –0.001 0.003

Mn X 0.000 0.001 0.000 0.000 0.000 Cl X –0.003 –0.005 –0.002 0.010 0.018
Y 0.000 0.006 0.000 0.000 0.000 Y 0.000 0.000 0.000 0.000 0.000
Z –0.001 0.003 0.005 0.011 –0.005 Z 0.002 0.007 0.002 –0.001 0.003

Mn X 0.000 0.001 0.000 0.000 0.000 Cl X 0.000 –0.001 0.000 0.000 0.000
Y 0.000 –0.005 0.000 0.000 0.000 Y –0.002 –0.003 –0.002 0.010 0.018
Z 0.001 –0.003 –0.006 –0.011 0.005 Z 0.002 0.007 0.002 –0.001 0.003

Cl X –0.012 0.013 –0.025 0.006 –0.004 Cl X –0.003 –0.005 –0.002 0.010 0.018
Y –0.012 0.013 –0.025 0.006 –0.004 Y –0.002 –0.005 –0.002 0.010 0.018
Z 0.000 0.000 0.000 0.000 0.000 Z –0.002 –0.007 –0.002 0.001 –0.003

Cl X 0.012 –0.016 0.024 –0.006 0.004 Cl X 0.003 0.005 0.002 –0.009 –0.019
Y 0.000 0.001 0.000 0.000 0.000 Y 0.000 –0.001 0.000 0.000 0.000
Z 0.000 0.000 0.000 0.000 0.000 Z –0.002 –0.007 –0.002 0.001 –0.003

Cl X 0.000 0.000 0.000 0.000 0.000 Cl X 0.000 –0.001 0.000 0.000 0.000
Y 0.012 –0.006 0.025 –0.006 0.004 Y 0.002 0.002 0.002 –0.010 –0.018
Z 0.000 0.000 0.000 0.000 0.000 Z –0.002 –0.007 –0.002 0.001 –0.003
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5. RESULTS AND DISCUSSION

The results of the calculations of the eigenfrequen-
cies and their assignment according to irreducible rep-
resentations of the crystal symmetry group are com-
pared in Table 2 with the results quoted in [8] and the
frequencies of the experimentally observed Raman
spectral lines; the eigenvectors of the fully symmetric
(A1g) vibrations are presented in Table 3.

The calculated and experimental frequencies for all
vibration modes are seen to be in satisfactory agree-
ment considering that the method of calculation did not
employ fitting parameters. Some of the calculated fre-
quencies turned out to be imaginary, which indicates
the lattice of the hexagonal phase to be unstable at 0 K
and is in accord with the phase transition in RbMnCl3
observed to occur at 272 K [3] (a comprehensive anal-
ysis of the origin of this instability is given in [8] in
terms of a similar approach; we do not dwell on it here).
We did not succeed in observing the lowest frequency
modes near 20 cm–1, apparently because of the low-fre-
quency dynamics undergoing strong rearrangement at
this phase transition; this could also be associated, how-
ever, with the strong wing of Rayleigh scattering in this
region. In accordance with experiment, the calculation
shows that the highest frequency vibrations correspond
to the irreducible representation A1g; an analysis of their
eigenvectors (Table 3) suggests that such vibrations are
primarily connected with the chlorine ions being dis-
placed in the Mn–Cl bond direction (although they also
have a small contribution from the manganese ions and
even an insignificant contribution from the heavy rubid-
ium ions). As seen from Table 2, the disagreement
between the calculated and experimental frequencies is
the largest in this spectral region.

In the middle frequency range, the agreement
between the calculated and experimental frequencies is
noticeably better; the dynamics is governed here appar-
ently primarily by long-range Coulomb interactions of
the ions. Interestingly, the heavy rubidium ions provide
a substantial contribution to the eigenvectors of the
fairly high-frequency modes at 114 and 149 cm–1,
which is even larger than that to the lower lying modes
(Table 3).

Note that the calculation of the crystal lattice poten-
tial and of the phonon spectrum performed in [8] took
into account only the Coulomb interaction of point ions
and the short-range repulsion of spherically symmetric
free ions. However, as shown in [7], the energetically
preferable structure for RbMnCl3 in this case is cubic
rather than hexagonal. Stabilization of the latter struc-
ture is determined by the polarization energy, which is
connected with the presence of dipole and quadrupole
ion moments.

Note, however, that the frequency spectra obtained
by the methods used in [7] and [8] are qualitatively sim-
ilar; also similar are the numbers of imaginary frequen-
cies corresponding to vibrations that are unstable at low
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
temperatures (the lowest positive frequency of 7 cm–1,
which was obtained with the Born–Mayer potential,
turned out to be imaginary when the multipole distor-
tions of the electronic density were included). This sim-
ilarity suggests that an analysis of the origin of the lat-
tice instability at low temperatures (which is deter-
mined primarily by the low-frequency dynamics)
should yield similar results in both cases. Good qualita-
tive agreement is also observed in the middle frequency
range (up to 50–60 cm–1). By contrast, in the region of
high-frequency vibrations, which are associated prima-
rily with the stretch vibrations of the Mn–Cl bonds, the
results are in obvious disagreement. Apparently, this
indicates overestimation of the force constants of these
bonds with the Born–Mayer potential, whereas the
multipole approximation underestimates them.

The agreement between the calculated (1.1 GPa)
and experimental (0.7 GPa) pressures for the transition
from the hexagonal to cubic phase should apparently be
considered satisfactory. This is corroborated by the
optical isotropy of the crystal and the absence of Raman
scattering. Note that this phase transition, associated
with a considerable rearrangement of the lattice, entails
separation of the phases that coexist in the pressure
interval 0.4–0.8 GPa (and, possibly, at still higher pres-
sures near the sample surface, where structural defects
should play an appreciable role).

6. CONCLUSIONS

Thus, our study has revealed that the fitting parame-
ter–free method proposed in [8, 15] permits efficient
calculation of the lattice stability and dynamics of ionic
crystals in fairly complex structures. A comparative
analysis of Raman scattering and of the calculated lat-
tice vibration spectrum for the RbMnCl3 hexagonal
phase made it possible to assign most of the Raman
lines allowed by the selection rules and to determine the
eigenvectors of the corresponding vibrations. Some dif-
ferences between the experimental and calculated fre-
quencies observed in the high-frequency part of the
spectrum can be tentatively related to the covalency of
the Mn–Cl bonds.

The pressure-induced transition from the hexagonal
to cubic phase, which was earlier observed to occur
only at high temperatures, has been detected at room
temperature, in full agreement with calculations [5].
This transition takes place through separation of the
phases that coexist in the range 0.4–0.8 GPa, which cor-
relates with the calculated pressure of 1.1 GPa at which
the hexagonal phase becomes unstable; the phase tran-
sition was found to be reversible and was not accompa-
nied by noticeable hysteresis effects. A further increase
in pressure was observed to drive transitions at 1.1 GPa
and, tentatively, at 5 GPa.
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