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Abstract—Under the assumption of long-range antiferromagnetic order at low temperatures, the spectral func-
tions and the density of states are calculated in the two-dimensional Hubbard model with half-filling in the Hub-
bard-I approximation. The results are compared with the data obtained using an exact numerical technique,
namely, the quantum Monte Carlo method. The influence of hopping to the next-to-nearest neighbor on the for-
mation of the electronic structure is considered. © 2004 MAIK “Nauka/Interperiodica”.
1. The Hubbard model taking into account electron
motion in solids along with the electron–electron inter-
action is one of the basic models in the theory of sys-
tems with strong electron correlations (SECs). The
point is that this model does reflect important effects
characteristic of systems with SECs, even though it is
insufficient for describing the properties of specific
materials quantitatively [1]. It is interesting to study
approximations in the atomic limit, because, as is
known, it is simpler to describe such systems by start-
ing with the local approach than with the theory of the
Hartree–Fock band limit [2]. In the limit of t ! U, the
Hubbard-I approximation yields a simple description of
a system in terms of two energy bands separated by a
Mott–Hubbard gap [1]. As the ratio t/U increases, this
approximation becomes incorrect a priori; however, it
is quite applicable to systems with SECs. In a diagram
technique based on Hubbard X operators [2, 3], the
Hubbard-I solution is a result of the Hartree–Fock
approximation. Using the quantum Monte Carlo
(QMC) method, one can compare the electronic struc-
ture of the Hubbard model obtained in the limit t ! U
in the Hubbard-I approximation and the results of exact
numerical calculations (see, e.g., [4, 5]). Such a com-
parison was performed in [4] to show that, at high tem-
peratures, the spectral functions A(k, ω) are sufficiently
well described by the Hubbard-I paramagnetic solu-
tion. At low temperatures, neither the Hubbard-I para-
magnetic solution nor the solution in the form of a spin
density wave (SDW) can even approximately repro-
duce the model electronic structure. It is known that the
SDW solution is applicable under conditions of weak
electron correlations, when U ! W = zt, but this solu-
tion is inapplicable to systems with SECs. In this paper,
the spectral functions of the two-dimensional (2D)
Hubbard model with half-filling are calculated in the
Hubbard-I approximation under the assumption of
long-range antiferromagnetic order at low tempera-
tures.
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Comparison of our results with the data obtained
using the QMC method showed that the spectral func-
tions are in reasonable agreement with the exact numer-
ical calculations, despite the disadvantages of the
approximation used. These disadvantages are as fol-
lows.

(i) According to the Mermin–Wagner theorem, there
is no antiferromagnetic order in a 2D system at finite
temperatures; hence, an interplane interaction or cer-
tain anisotropy should be assumed. Nevertheless, the
approximation used is appropriate, since we compare
the results of this study with QMC data for finite sys-
tems, for which the above-mentioned theorem is
invalid.

(ii) The Hubbard-I approximation does not yield a
self-consistent description of the antiferromagnetic
state; indeed, there is only a zero solution for the sub-
lattice magnetization m. For this reason, in the limit t !
U for a system with ne = 1, we construct an effective
Heisenberg Hamiltonian with the antiferromagnetic
interaction constant J = 4t2/U and calculate the magne-
tization self-consistently in the Heisenberg model. At
T = 0, m decreases from a nominal value due to zero
quantum fluctuations and we get m = 0.3 under the
assumption that the interplane interaction is weak in
comparison with the in-plane interaction.

It should be noted that going beyond the mean-field
approximation requires consideration of self-energy
one-loop diagrams [2, 3]. In the magnetically ordered
phase, the largest contribution comes from diagrams
describing spin-wave excitations. The main effect of
spin excitations consists in a renormalization of the
occupation numbers. According to [6], we define the
occupation numbers as

(1)
n f σ, n f σ,+ ne,=

n f σ, n f σ,– 2m 1 2nsf–( ).= =
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where 2nsf is the magnon concentration and nf, σ is the
number of electrons at a site with a specified spin pro-
jection. Thus, the introduction of the nonzero magneti-
zation of sublattices corresponds to consideration of the
first significant correction to the mean-field approxima-
tion.

2. The Hubbard model Hamiltonian can be written
as

(2)

Ĥ µN̂e– ε µ–( )n f σ,
1
2
---Un f σ, n f σ,+

f σ,
∑=

+ t f g, a f σ,
+

ag σ, H.c.+( ),
f g σ, ,
∑

PH
where (af, σ) is the creation (annihilation) operator

of an electron at site f with spin σ = ±1/2, nfσ = ,
ε is the one-electron energy in the crystal field, µ is the
chemical potential, U is the intra-atomic repulsion
matrix element, and tf, g is the hopping integral between
sites f and g in the nearest neighbor approximation.

In what follows, we analyze a simple spatially inho-
mogeneous solution to the above Hamiltonian for a 2D
square lattice with antiferromagnetic ordering of the
spins (the antiferromagnetic order near half-filling is
caused by kinetic superexchange in the system). In the
case of two sublattices, the Green’s function [7] is writ-
ten as

a f σ,
+

a fσ
+

a fσ
(3)G k ω,( ) 1
N
----

ik f f '–( ){ } a f a f '
+〈 | 〉〈 〉exp

f f ',
∑ ik g f–( ){ } ag a f

+〈 | 〉〈 〉exp
f g,
∑

ik f g–( ){ } a f ag
+〈 | 〉〈 〉exp

f g,
∑ ik g g '–( ){ } ag ag '

+〈 | 〉〈 〉exp
g g ',
∑

 
 
 
 
 
 
 
 

.=
Analytical expressions for the Green’s functions are
derived in the Hubbard-I approximation, which corre-
sponds to the following uncoupling of averages [1]:

  (4)

In the atomic limit, it is more convenient to use the
representation of Hubbard operators, with which the
conventional Fermi operators are related through the
linear combination

(5)

Therefore, the Green’s functions can be written in the
new representation (A, B are intersublattice indices) as

(6)

a f h σ,+ n f σ, a f ' σ,
+〈 | 〉〈 〉 n f σ,〈 〉 a f h σ,+ a f ' σ,

+〈 | 〉〈 〉 .

a f σ,
+

X f
σ 0,

2σX f
2 σ,

, a f σ,+ X f
0 σ,

2σX f
σ 2,

.+= =

GAA
u

 = XA
σ 2,

XA
2 σ,〈 | 〉〈 〉  = FA

σ 2,
E ε1–( )2 ν FB

σ 2,
t k( )+[ ](

– FA
0 σ,

t
2 k( ) E ε1– FB

0 σ,
U–( ) )/ E Ei–( ),

i 1=

4

∏

GAB
u

 = XA
σ 2,

XB
2 σ,〈 | 〉〈 〉  = FB

σ 2,
E ε1–( )2 ν FA

σ 2,
t k( )+[ ](

– FB
0 σ,

t
2 k( ) E ε1– FA

σ 2,
U–( ) )/ E Ei–( ),
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4

∏

GAA
l

XA
0 σ,

XA
σ 0,〈 | 〉〈 〉=

=  FA
0 σ,

E ε1–( ) ν2
 – FA

σ 2,
FB

σ 2,
t

2 k( )[ ](
where  = 〈  + 〉  and  = 〈  + 〉
are the filling factors, ε1 = (ε – µ), ν = (E – ε1 – U), and
superscripts l and u correspond to the lower and upper
Hubbard bands, respectively.

We restrict the analysis to the half-filling region,
where the chemical potential is described by the well-
known expression µ = ε + U/2 [8], which is valid for
any temperature and all values of the model parameters.
In this case, the equation defining the spectrum of qua-
siparticles in the 2D antiferromagnetic lattice has the
analytical solution

(7)

Since the Brillouin zone becomes twice as small in the
antiferromagnetic phase, each Hubbard subband in the
paraelectric phase is split into two. If the bands
obtained had been ordinary one-electron bands with a

+ FB
0 σ,

t k( ) ν2
FA

σ 2,
t k( )ν–[ ] ) / E Ei–( ),

i 1=

4

∏

GAB
l

XB
0 σ,

XA
σ 0,〈 | 〉〈 〉=

=  FB
0 σ,

E ε1–( ) ν2
 – FA

σ 2,
FB

σ 2,
t

2 k( )[ ](
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2 k( )n f σ, n f σ,+±(±=

– 2ε1 ε1 U+( ) )1/2.
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number of states per atom equal to unity, the total num-
ber of states would have been equal to four. However,
these bands correspond to quasiparticles with a frac-
tional spectral weight, which can be explicitly calcu-
lated using the QMC method. In our calculations, the

spectral weight is defined by the filling factor  =

〈  + 〉 .
It is noteworthy that the quasiparticle spectrum (7)

can be rewritten using the well-known solution for the
paramagnetic phase. In this case, it turns out that the
dispersion in the antiferromagnetic state has a form
similar to that for SDWs,

(8)

where ∆ = Um is the gap parameter, m = (1/2)(nf, σ –

) is the sublattice magnetization,  is the disper-
sion of the upper and lower Hubbard bands in the para-
magnetic phase with the renormalized Coulomb repul-

sion parameter  = , and

(9)

If the magnetization is zero, the obtained bands exactly
correspond to the upper and lower Hubbard bands in
the paraelectric phase. In the one-electron SDW state,
the quasiparticle dispersion is described by a formula
similar to Eq. (9), with ξ± being the dispersion of free
electrons.

Now, we consider the full spectral function of the
system, which is the sum of the imaginary parts of the
Green’s functions in Eq. (6),

(10)

and the one-electron density of states,

(11)

The approximation used does not contain informa-
tion on the spectral linewidths (the spectral density con-
tains delta functions). To compare our results with the
numerical QMC data, we approximate the delta func-
tions by a Lorentzian with the most appropriate param-
eter δ. This renormalization of the width and weight of
the quasiparticle spectral lines corresponds to the intro-
duction of a certain nonzero imaginary part of the self-
energy Σ(k, ω). We note that there is no one-to-one cor-
respondence between the parameter δ and temperature;
however, this parameter tends to zero as the tempera-
ture decreases. Despite the fact that the Mermin–Wag-
ner theorem forbids the existence of antiferromagnetic

Fg
m n,

Xg
m m,

Xg
n n,

E±
l u, ξ±( )

2
∆2

+ ,±=

n f σ, εk
±

Ũ U 1 4m
2

–

ξk
± 1

2
--- t k( ) t

2 k( ) Ũ
2

+±( ).=

A k ω,( ) 1
π
---Sp Im G k ω,( )( )–

1
π
---Im GAA

l k ω,( )(–= =

+ GBB
l k ω,( ) GAA'' k ω,( ) GBB'' k ω,( )+ + )

N ω( ) 1
N
---- A k ω,( ).

k

∑=
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Fig. 1. Spectral functions of the Hubbard model at high
temperatures T = 4t (Hubbard-I and QMC [4] calculations).
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Fig. 2. Spectral functions of the Hubbard model at high
temperatures T = 1t (Hubbard-I and QMC [4] calculations).
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Fig. 3. Spectral functions of the Hubbard model at interme-
diate temperatures T = 0.33t (Hubbard-I and QMC [4] cal-
culations).
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order in 2D systems at finite temperatures, it is gener-
ally assumed that the system is “effectively ordered” if
the spin correlation length becomes comparable to the
system size.
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Fig. 4. Spectral functions of the Hubbard model at low tem-
peratures T = 0.1t (Hubbard-I and QMC [4] calculations).
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Fig. 5. Density of states in the Hubbard model with half-fill-
ing (Hubbard-I and QMC [5] calculations).
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Fig. 6. Spectral functions of the Hubbard model (Hubbard-
I and tt'-Hubbard-I, t'/t = 0.3).
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Figures 1–5 show the determined spectral functions
and the density of states, as well as the results of exact
numerical QMC calculations from [4, 5]. In this case,
the following values of the system parameters were
used: U = 8t, ε – µ + U/2 = 0, and t(k) = –2t(coskx +
cosky). We assume that the sublattice magnetization
parameter m is equal to 0.3 in the low-temperature
range.

At high temperatures (Figs. 1, 2), the Hubbard-I
approximation reproduces the position and weight of
the spectral peaks corresponding to the upper and lower
Hubbard bands to sufficient accuracy. This is explained
by the fact that the spin correlation effects (disregarded
in this approximation) become insignificant above the
Néel temperature.

At T = 1.00t, QMC calculations [4] indicate very
weak satellites for an unoccupied state at the k = (0, 0)
point and for an occupied state at the k = (π, π) point.

These satellites correspond to the calculated bands 

and  with a very small spectral weight. Of course,
long-range antiferromagnetic ordering does not exist in
the system at such temperatures; however, we think that
there is a short-range magnetic order, which gives rise
to weak satellites in the function E(k).

At intermediate and low temperatures (Figs. 3, 4),
each Hubbard band in the paramagnetic state is split

into two subbands . In this case, one of the sub-
bands has the largest spectral weight, while the other
appears as a weak satellite. A nontrivial result obtained
using the QMC method and the Hubbard-I approxima-
tion is the spectral weight redistribution between strong
and weak peaks. The tendencies toward redistribution
of the spectral weight in our calculations and the QMC
calculations are retained. In some regions of the Bril-
louin zone [near k = (0, 0) and k = (π, π)], reasonable
agreement is observed in the shape and position of the
peaks in A(k, ω). However, the QMC and Hubbard-1
data significantly differ in other k-space regions [k =
(π/2, π/2)and k = (π, 0)].

The one-electron density of states (Fig. 5) at low
temperatures has two peaks corresponding to the occu-
pied (l) and unoccupied (u) Hubbard bands. The weak
satellites in the spectral density give rise to shoulders
on both peaks. Our results and the QMC data from [6]
are in qualitative agreement.

We also considered the influence of the next-to-
nearest neighbor on the formation of the electronic
structure. The Hamiltonian of the tt' model includes
hopping on a sublattice described by the term

 + H.c.). In the simplest case,
the k dependence of the parameter t' is described by the
formula t '(k) = 4t 'coskxcosky. The spectral functions of
the Hubbard model, corresponding to the Hubbard-I
antiferromagnetic solution, are shown in Fig. 6 for the
ratio t'/t ≈ 0.3. A comparison of the solutions shows that

E+
u

E–
l

E1 2,
l u,

(t f f ',' a f σ,
+

ag σ,f f ' A σ,∈,∑
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the most significant effect is the formation of additional
quasiparticle states at points (π, 0) and (π, π/4) of the
Brillouin zone. At the (π, 0) point, these states appear
as small satellites located near the main peak. The posi-
tion of the additional peaks is controlled by spin fluctu-
ations and the parameter t'. When the magnon concen-
tration 2nsf is zero and t' = 0, there are two dispersion-
less levels in the electronic structure, which lie above
the valence band top and below the conduction band
bottom.

3. Thus, it was shown that the spectral function at
low temperatures, determined using the Hubbard model
in the Hubbard-I approximation, as well as that
obtained using exact numerical QMC calculations,
consists of four peaks corresponding to antiferromag-
netic Hubbard subbands. The approximation used
retains the basic tendencies toward redistribution of the
spectral weight; however, quantitative disagreement is
observed in some regions of the k space. The density of
states in the Hubbard-I solution agrees with the QMC
calculations. A significant effect resulting from the
inclusion of the next-to-nearest neighbor leads in calcu-
lating the electronic structure is the formation of addi-
tional quasiparticle states at certain points of the Bril-
louin zone.
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