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An effective low-energy Hamiltonian is derived from a microscopic multiband p–d model in the regime of
strong electron correlations. The parameters of the p–d model are determined by comparison with the ARPES
data for undoped Nd2CuO4. The Hamiltonian is the t–J* model in which hopping and exchange slowly decay
with distance and are taken into account up to the fifth coordination sphere. The quasiparticle band structure is
calculated as a function of the doping concentration with regard to short-range magnetic order, and the super-
conductivity theory with the spin-fluctuation pairing mechanism is constructed. Assuming that the parameters
of the model do not depend on the doping level, we obtained quantitative agreement with the properties
observed experimentally for the normal and superconducting phases without introducing fitting parameters.
© 2004 MAIK “Nauka/Interperiodica”.
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1. There exist two types of high-Tc superconductors:
the p type, that is, hole-doped cuprates (La2 – xSrxCuO4

(LSCO), etc.) and the n type, that is, electron-doped
cuprates (Nd2 – xCexCuO4 (NCCO), Pr2 – xCexCuO4

(PCCO), etc.). Though cuprates of these two types con-
tain the base element of high-Tc superconductors,
namely, the CuO2 plane, their properties differ substan-
tially (see, for example, [1, 2]). In this work, a quanti-
tative theory has been constructed to describe the
dependence of the properties of the normal phase and
the critical temperature Tc(x) on the electron concentra-
tion x in n-type superconductors. The theory contains
no fitting parameters. The effective Hamiltonian in the
form of the t–J* model has been derived from the
microscopic multiband p–d model in the regime of
strong electron correlations (SECs). The parameters of
the model have been determined from experimental
data for undoped Nd2CuO4. The spin-fluctuation mech-
anism of superconductivity in the t–J model has long
been known. However, details of the effective Hamilto-
nian such as the slow decrease of interatomic hopings
and exchange interaction with distance (five coordina-
tion spheres have been taken into account) and the
occurrence of weakly correlated hopings (three-center
interactions, whose importance for determining Tc was
noted in [3]) have proved to be of fundamental impor-
tance in obtaining quantitative agreement for Tc(x) and
for the properties of the normal phase. Taking into
account short-range antiferromagnetic (AFM) order
has also been found to be critical for determining the
quasiparticle dispersion law, leading to the appearance
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of additional Van Hove singularities. Agreement with
experimental data for the electronic structure of the
normal phase and for Tc(x) has been obtained only with
allowance made simultaneously for all these details.

As for the symmetry of the order parameter, recent
experimental data (phase-sensitive experiments [4] and
resistance measurements in magnetic fields [5] in
NCCO, measurements of the penetration depth in
PCCO [6, 7], and angular-resolved photoemission
spectroscopy (ARPES) measurements [8]) point to the
d type of the order parameter (most likely, ).

Therefore, we will further investigate the supercon-
ducting state only with the  symmetry type.

2. The multiband p–d model [9] is an adequate
model for the description of high-Tc superconductivity
in cuprates [9]. The use of this model with strong elec-
tron correlations taken into account within the frame-
work of the generalized tight-binding method made it
possible to achieve quantitative agreement with the
ARPES data for undoped LSCO [10–12], to describe
the pinning of µ(x) in the p-type superconductors and
its absence in the n-type superconductors [13], and to
obtain an indirect optical gap in NCCO [14]. To con-
sider the superconducting phase, an effective low-
energy Hamiltonian for the multiband p–d model was
obtained in [15] using operator perturbation theory. The
effective Hamiltonian is asymmetric with respect to
electron and hole doping: the conventional t–J model is
appropriate for p-type systems, whereas the effective
singlet–triplet model is an adequate model for p-type
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systems with a complex band structure at the valence
band top. It was shown in [3] that the inclusion of the
three-center terms in the effective Hamiltonian plays a
very significant part in the consideration of the super-
conducting phase. With regard to the aforesaid, the
effective Hamiltonian for n-type superconductors
including three-center terms can be written using the
Hubbard operators as follows:

(1)

Here, Jfg = 2( )2/Ect is the exchange integral, Ect ≈
2 eV is the charge-transfer gap (an analogue of the

Hubbard term U), and  are the hopping integrals
corresponding to the annihilation of a quasiparticle in
the state M and its creation in the state N. The Hamilto-
nian parameters in Eq. (1) are expressed through micro-
scopic parameters of the p–d model (see [16], where a
set of microscopic parameters and the corresponding
model parameters for n-type cuprates are also given).
The distance dependence of the exchange and hopping
integrals is known, and the subsequent calculations in
this work were performed with the inclusion of all the
integrals up to the fifth coordination sphere. The param-
eters were obtained by comparison with the ARPES
data for undoped NCCO. Subsequently, they were con-
sidered fixed and independent of the doping level.

When the model given by Eq. (1) was applied to the
nonmagnetic phase, the equations-of-motion method
was used within the generalized Hartree–Fock approx-

imation [17]. In this case, correlators of the 〈 〉

and 〈 〉  types arise. Decoupling of the Hubbard
I type would lead to the following results:

where np are the occupation numbers of the single-par-
ticle state. However, spin fluctuations are completely
neglected in the case of such decoupling, whereas their
consideration crucially affects the calculated properties
of both the superconducting and normal phases (see,
for example, [18, 19]). Therefore, we will use the fol-
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lowing decoupling scheme that takes into account spin
fluctuations beyond the Hubbard I approximation:

Here, Cfg = 〈 〉  = 2〈 〉  are spin correlation
functions.

The spin correlators Cfg were calculated using the
two-dimensional t–J model of the CuO2 plane. The
self-energy equations with Green’s functions con-
structed on Hubbard operators were obtained using the
Mori formalism, which allows these functions to be
represented as continuous fractions. The elements of
the fractions for the electron and spin Green’s functions
contain correlators for close sites, and residual mem-
bers of the fractions are many-particle Green’s func-
tions. The latter are approximated by decoupling cor-
rected by the introduction of a vertex correction [20,
21]. This correction is determined from the condition
that the site magnetization is zero in the paramagnetic
state under consideration. This condition, the self-
energy equations for the electron and spin Green’s
functions, and the self-consistency conditions for corr-
elators form a closed system, which was solved by iter-
ations at a fixed chemical potential and a fixed temper-
ature. For small clusters and in the undoped case, the
results of calculations [22, 23] are in good agreement
with the data of the exact diagonalization and the
Monte Carlo method. The spin correlators used in this
work were obtained from the spin Green’s function cal-
culated within this self-consistent approach on a 20 ×
20 lattice.

It was shown in [23] that the damping of quasiparti-
cles Γk = –ImΣk (ω = 0), where Σk(ω) is the self-energy
part, is large in the vicinity of points (0, 0) and (π, π).
In the subsequent calculations, we broadened the spec-
tral peaks in the vicinity of these points by artificially
introducing Γk. The value of Γk itself was taken from
[24]. It should be noted that, as calculations showed,
the damping of quasiparticles introduced in this way
weakly affect such integral characteristics as chemical
potential µ(x) and superconducting transition tempera-
ture Tc(x).

3. The dispersion curves and corresponding densi-
ties of states calculated for the paramagnetic nonsuper-
conducting phase are shown in Fig. 1 for the t–J and
t−J* models with and without regard for spin correla-
tors. It is evident that the inclusion of three-center terms
leads to a strong change at the conduction band top, that
is, will have an effect at low doping levels x. In the AFM
phase, there is a symmetry in the spectrum of the
t−J model in the vicinity of the (π/2, π/2) and (π, 0)
points (see Fig. 1). Such a symmetry does not exist in
the paramagnetic phase. However, the inclusion of spin
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Fig. 1. Dispersion curves along the principal directions of the Brillouin zone and the density of states in the paramagnetic phase in
the t–J (dotted line) and t–J* (dashed line) models in the Hubbard I approximation and in the t–J* model with the inclusion of spin
correlators (heavy solid line). The solid horizontal line indicates the chemical potential calculated self-consistently for the latter
model. The spectrum of the t–J model in the AFM phase is also shown (dash–dot line).

t–J* model

t–J* model

t–J* model

t–J* model,
correlators Cfg results in a tendency toward the restora-
tion of symmetry in the points mentioned above.

The dependence µ(x) is shown in Fig. 2. It is seen
that the theoretical calculation is in perfect agreement
with the experimental data [13] shown in the same fig-
ure; in particular, the pinning of the chemical potential
is absent. The experimental [25] and calculated Fermi
surfaces (black heavy shading and light solid line) for
optimally doped (xopt = 0.15) NCCO are shown in the
inset in the same figure. Only one cross section is
observed experimentally. Because of the occurrence of
a pseudogap, spectral peaks differ in intensity along
this section. In the theory considered here, there are two
cross sections of the Fermi surface. However, because
the damping of quasiparticles strongly depends on the
momentum, the second section falls in the region of
large Γk (this region is shown by a light solid line in the
figure). This is why the second section should virtually
not be observed experimentally. In light of the above, it
may be argued that the calculated and experimental
Fermi surfaces are in good agreement.

4. Now, when we see that the t–J* model with the
approximation considered above gives good agreement
with the experimental data for the nonsuperconducting
phase, we pass to the consideration of the supercon-
ducting phase. The equations for the superconducting
order parameter ∆k obtained in this work are completely
similar to those given in [3, 26]; therefore, we will not
write them here. Note only that, first, the coupling con-
stant of the superconducting phase is substantially
renormalized as a result of taking into account three-
center terms [3]. Second, because we take into account
the hopping and exchange integrals up to the fifth coor-
JETP LETTERS      Vol. 80      No. 1      2004
dination sphere, the order parameter in the case of the
 symmetry type takes the form [26]

(2)

The experimental data for NCCO and PCCO [1, 2] and
the theoretical dependences of the superconducting
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Fig. 2. Chemical potential µ as a function of the doping
level x in the t–J* model with the inclusion of spin correla-
tors (solid line); the dashed line connects experimental
points [13]. The inset shows the experimental [25] and cal-
culated Fermi surfaces for Nd1.85Ce0.15CuO4.
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transition temperature Tc(x) obtained in this work are
compared in Fig. 3. Note that the experimental errors
shown in the figure are associated with differences in
sample quality rather than the accuracy of the determi-
nation of the superconducting transition temperature.
The inset shows the same theoretical dependence Tc(x)
but for a wider concentration range. Two pronounced
maxima of Tc at x = 0.15 and x = 0.53, as well as a weak
maximum at x = 0.08, are quite evident. The additional
maximum at small x in the t–J* model with self-consis-
tently calculated spin correlators was first obtained in
[27].

The observed dependence is easily understood from
simple physical considerations. In the superconductiv-
ity theory of the BCS type, there exists the relationship
Tc ∝  exp(–1/N(εF)V), where N(εF) is the density of
states at the Fermi level εF and V is the effective attrac-
tion. It is evident that a maximum in Tc(x) will be
reached when the chemical potential falls on a Van
Hove singularity. In the case of neglecting spin correla-
tors in the t–J model, only one Van Hove singularity
associated with the flat portion of the dispersion curve
at the (π, 0) point. As is known, in this case in the near-
est neighbor approximation, xopt = 0.33, and, with
regard for more than three coordination spheres, xopt =
0.53—a maximum in Tc(x) is also seen at this concen-
tration in the inset in Fig. 3. With the inclusion of three-
center terms (t–J* model), an additional singularity
appears because of the flat dispersion in the region of
the (π, π) point. However, this point corresponds to the
conduction band bottom. Therefore, the chemical
potential falls on this singularity only at very small x ≤
0.07, that is, in the region where the carrier mobility is
low and the short-range AFM order is still high. This

Fig. 3. Phase diagram for n-type cuprates: the theoretically
calculated dependence Tc(x) (heavy solid line) and experi-
mental dependences TN(x) for NCCO (dashed line; the
AFM and paramagnetic phases are on the left and on the
right of this line), Tc(x) for NCCO (dashed line with black
squares), and Tc(x) for PCCO (dash–dot line with black cir-
cles). The inset shows the theoretically calculated depen-
dence Tc(x) for a wider concentration range.

T
 (

K
)

leads to the fact that the superconducting state becomes
energetically unfavorable. However, in the t–J* model
with the inclusion of spin correlators, an additional sin-
gularity arises at –1.25 eV because of the saddle point
at (π, 0.4π) (see Fig. 1). This singularity is responsible
for the maximum in Tc(x) at x ≈ 0.15. It is on this singu-
larity that the chemical potential falls at the optimal
doping level. This is the reason why the distance
between the position of µ and the Van Hove singularity
corresponding to the plateau in the dispersion curve at
the (π, 0) point equals ∆EVH = 0.27 eV. This is in good
agreement with the experimental value ∝ 0.25–0.35 eV
[14, 28]. In contrast to the n type, ∆EVH in all the p-type
cuprates is small and less than 0.03 eV. Note that the
weak maximum in Tc(x) at x = 0.08 is associated with
the shoulder (kink) in the density of states at –1.2 eV
(see Fig. 1). Moreover, because the energy of the AFM
phase is lower than the energy of the normal and super-
conducting phases, this weak maximum and the entire
part of Tc(x) lying in the region of x < 0.14 below the
experimentally observed Neel temperature TN(x) will
not be revealed in the experiment.

5. Thus, in the framework of an effective model for
n-type high-Tc superconductivity and simple physical
approximations based on the inclusion of spin fluctua-
tions beyond the Hubbard I approach, we obtained
quantitative agreement with such experimental data as
the evolution of the chemical potential with the doping
level, the Fermi surface for optimally doped NCCO,
and the dependence Tc(x). Though analogous results for
the dependence Tc(x) were obtained previously in the
framework of the FLEX approximation [29], the
approach used in this work is characterized by physical
transparency and by the fact that it explicitly takes into
account the effects of strong electron correlations,
which play a very important role in high-Tc supercon-
ductors. It is shown that the physical mechanisms
responsible for the concentration dependence Tc(x) in
n-type cuprates are different from those in the p-type
cuprates. Namely, because of spin fluctuations, the sys-
tem tends to restore AFM ordering. In this case, the dis-
persion curve is transformed in such a way that it forms
flat portions in the vicinity of the (π, 0.4π) point (and
points symmetrical with respect to it). This leads to the
formation of an additional Van Hove singularity.
Because of this transformation of the density of states,
an additional superconducting “dome” arises at x of
order 0.15 in good agreement with experimental
results. Note once again that this study was free of fit-
ting parameters: all the parameters of the effective
model are unambiguously connected with the micro-
scopic parameters of the multiband p–d model. These
microscopic parameters were determined in our previ-
ous studies by comparison with the ARPES data for
undoped AFM cuprates.

As for the electron–phonon interaction, which was
not taken into account in this work, there are indica-
tions that this interaction is weak in n-type high-Tc
JETP LETTERS      Vol. 80      No. 1      2004
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superconductors. The first indication is that the isotope
effect is almost completely absent [30]. The second
indication is the absence of a kink in the (0, 0)–(π, π)
direction [31]. This is in sharp contrast with p-type
high-Tc superconductors, where the appearance of a
kink is considered as the manifestation of strong elec-
tron–phonon interaction.
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