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Abstract—We consider the problem of determining the parameters for high-Tc superconducting copper oxides.
Alternative approaches, the ab initio LDA and LDA + U calculations and the generalized tight-binding (GTB)
method for strongly correlated electron systems, are used to calculate hopping and exchange parameters of the
effective singlet–triplet model for the CuO2 layer. The resulting parameters are in remarkably good agree-
ment with each other and with parameters extracted from experiment. This set of parameters is proposed for
proper quantitative description of the physics of hole-doped high-Tc cuprates in the framework of effective mod-
els. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

High-Tc superconducting cuprates (HTSCs) belong
to the class of substances where strong electron corre-
lations are important. This circumstance and also the
fact that these substances have nontrivial phase dia-
grams (see, e.g., reviews in [1]) complicate the descrip-
tion of HTSCs in the framework of first-principle (ab
initio) methods, especially in the low-doping region.
Therefore, the most adequate method for theoretical
investigations of HTSCs is currently the model
approach. Effective models of HTSCs (e.g., the t–J
model) usually contain free parameters that can be fit-
ted to experimental data (comparison of the calculated
and experimental Fermi surfaces, dispersion curves,
etc.), but the question concerning correctness of these
parameters arises in the model approach. One possible
way to answer this question is to obtain relations
between the parameters of some effective model and
the microscopic parameters of the underlying crystal
structure. The underlying crystal structure of HTSCs
can be described either by the three-band Emery model
[2, 3] or by the multiband p–d model [4]. One can com-
pare the parameters in these models with the parame-
ters obtained by a very different approach, e.g., with ab
initio calculated parameters. This does not mean that
the ab initio band structure is correct. Due to strong
electron correlations, it is certainly incorrect in the low-
doping region, where these correlations are most signif-
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icant. Nevertheless, single electron parameters are of
interest and may be compared with the appropriate
parameters obtained by fitting to experimental ARPES
data.

In the present paper, we obtain relations between
microscopic parameters of the multiband p–d model
and parameters of the effective singlet–triplet t–J model
for hole-doped HTSCs. We then compare these param-
eters and the t–J model parameters obtained in the ab
initio calculations. In Section 2, the details of ab initio
calculations within the density functional theory are
presented. In Section 3, the effective singlet–triplet
model is formulated as the low-energy Hamiltonian for
the multiband p–d model with the generalized tight-
binding (GTB) method applied. In both methods, the
parent insulating compound La2CuO4 is investigated.
The parameters are obtained at zero doping because,
within the GTB method, the evolution of the band
structure with doping is described only by changes in
the occupation numbers of zero-hole, single-hole, and
two-hole local terms, while all the parameters are fitted
in the undoped case and are therefore fixed for all dop-
ing levels. The resulting parameters of both approaches
(GTB and ab initio) are in very good qualitative and
quantitative agreement with each other and with the
parameters extracted from experiment. Also, these
parameters are in reasonable agreement with the t–J
model parameters used in the literature. We conclude
that the obtained set of model parameters should be
used in effective models for proper quantitative
description of HTSCs in the whole doping region.
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2. AB INITIO CALCULATION
OF PARAMETERS

The band structure of La2CuO4 was obtained in the
framework of the linear muffin-tin orbital method [5] in
the tight-binding approach [6] (TB-LMTO) within the
local density approximation (LDA). The crystal struc-
ture data [7] corresponds to tetragonal La2CuO4. The
effective hopping parameters tρ were calculated by the
least-squares fit procedure to the bands obtained in the
LDA calculation [8]. The effective exchange interac-
tion parameters Jρ were calculated using the formula
derived in [9], where the Green function method was
used to calculate Jρ as the second derivative of the
ground-state energy with respect to the magnetic
moment rotation angle via eigenvalues and eigenfunc-
tions obtained in the LDA + U calculation [10]. The
LDA + U approach makes it possible to obtain the
experimental antiferromagnetic insulating ground state
for the undoped cuprate: in contrast, the LDA approach
gives a nonmagnetic metallic ground state [10]. The
Coulomb parameters U = 10 eV and J = 1 eV used in
the LDA + U calculation were obtained in constrained
LSDA supercell calculations [11].

3. GTB METHOD AND FORMULATION
OF THE EFFECTIVE SINGLET–TRIPLET MODEL

The t–J [12] and Hubbard [13] models are widely
used to investigate HTSCs compounds. In using these
models, one can in principle describe qualitatively
essential physics. The parameters in these models (i.e.,
the hopping integral t, antiferromagnetic exchange J,
and Hubbard repulsion U) are typically extracted from
experimental data. Therefore, these parameters do not
have a direct microscopical meaning. A more system-
atic approach is to write the multiband Hamiltonian for
the real crystal structure (which now includes parame-
ters of this real structure) and map this Hamiltonian
onto some low-energy model (like the t–J model). In
this case, parameters of the real structure could be taken
from the ab initio calculations or fitted to experimental
data.

It is convenient to use the three-band Emery p–d
model [2, 3] or the multiband p–d model [4] as the start-
ing model that properly describes crystal structure of
the cuprates. The set of microscopic parameters for the
first model was calculated in [14, 15]. While this model
is simpler than the multiband p–d model, it lacks some
significant features, namely, the importance of 

orbitals on copper and pz orbitals on apical oxygen.
Nonzero occupancy of  orbitals was demonstrated in

XAS and EELS experiments, which shows 2–10%
occupancy of  orbitals [16, 17] and 15% doping-

dependent occupancy of pz orbitals [18] in all p-type
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(hole-doped) HTSCs. In order to take these facts into
account, the multiband p–d model should be used,

(1)

where cfλσ is the annihilation operator in the Wannier
representation of the hole at site f (copper or oxygen) at

orbital λ with spin σ, and nfλσ = cfλσ . The indices λ
run through  ≡ dx and  ≡ dz orbitals on cop-

per, px and py atomic orbitals on plane oxygen sites, and
pz orbital on apical oxygen; eλ is the single-electron

energy of the atomic orbital λ;  includes hopping
matrix elements between copper and oxygen (tpd for

hopping dx  px, py; /  for dz  px, py;  for
dz  pz) and between oxygen and oxygen (tpp for
hopping px  py;  for hopping px, py  pz). The

Coulomb matrix elements  include intraatomic
Hubbard repulsions of two holes with opposite spins on
one copper and oxygen orbital (Ud, Up), between differ-
ent orbitals of copper and oxygen (Vd, Vp), the Hund
exchange on copper and oxygen (Jd, Jp), and nearest
neighbor copper–oxygen Coulomb repulsion Vpd .

The GTB method [19] consists in exact diagonaliza-
tion of the intracell part of p–d Hamiltonian (1) and per-
turbative account for the intercell part. For
La2 − xSrxCuO4, the unit cell is the CuO6 cluster, and the
problem of nonorthogonality of the molecular orbitals
of adjacent cells is solved explicitly, by constructing the
relevant Wannier functions on a five-orbital initial basis
of atomic states [20, 21]. In the new symmetric basis,
the intracell part of the total Hamiltonian is diagonal-
ized, allowing one to classify all possible effective qua-
siparticle excitations in the CuO2-plane according to
symmetry.

Calculations [20, 21] of the quasiparticle dispersion
and spectral intensities in the framework of the multi-
band p–d model using the GTB method are in very
good agreement with the ARPES data on insulating
compound Sr2CuO2Cl2 [22, 23] (see Fig. 1).

Other significant results of this method are as fol-
lows [24, 25].

(i) Pinning of the Fermi level in La2 – xSrxCuO4 at
low concentrations was obtained in agreement with
experiments [26, 27]. This pinning appears due to the
in-gap state; the spectral weight of this state is propor-
tional to the doping concentration x, and when the
Fermi level reaches this in-gap band, it “stacks” there.
In Fig. 2, the doping dependence of the chemical poten-
tial shift ∆µ for n-type high-Tc Nd2 – xSrxCuO4 (NCCO)

H pd eλ µ–( )n fλσ T fg
λλ 'c fλσ

+ cgλ'σ

λ λ ' σ, ,
∑

f g,〈 〉
∑+

f λ σ, ,
∑=

+
1
2
--- V fg

λλ 'c fλσ1

+ c fλσ3
cgλ'σ2

+ cgλ'σ4
,

σ1 σ2 σ3 σ4, , ,
∑

f g λ λ ', , ,
∑

c fλσ
+

d
x

2
y

2–
d

3z
2

r
2–

T fg
λλ '

     t pd 3      t pd'

     t pp'      

V fg
λλ '
 AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004



PARAMETERS OF THE EFFECTIVE SINGLET–TRIPLET MODEL 561

                
and p-type high-Tc La2 – xSrxCuO4 (LSCO) is shown.
The localized in-gap state also exists in NCCO for the
same reason as in LSCO, but its energy is determined
by the extremum of the band at the point (π/2, π/2) and
appears to be above the bottom of the conductivity
band. Therefore, the first doped electron enters the band
state at (π, 0), and the chemical potential merges into
the band for a very small concentration. At higher x, it
reaches the in-gap state with pinning at 0.08 < x < 0.18
and then µ again moves into the band. The dependence
µ(x) for NCCO is quite asymmetric to the LSCO and
also agrees with experimental data [26].

(ii) The experimentally observed [28] evolution of
the Fermi surface with doping from the hole type (cen-
tered at (π, π)) in the underdoped region to the electron
type (centered at (0, 0)) in the overdoped region is qual-
itatively reproduced in this method.

(iii) The pseudogap feature for La2 – xSrxCuO4 is
obtained as a lowering of the density of states between
the in-gap state and the states at the top of the valence
band.

The above results were obtained with the following
set of the microscopic parameters:

(2)

.

As the next step, we formulate the effective model.
The simplest way to do this is to completely neglect the
contribution of the two-particle triplet state 3B1g . Then,
there is only one low-energy two-particle state, the
Zhang–Rice-type singlet 1A1g , and the effective model
is the usual t–J model. However, in the multiband p–d
model, the difference eT – eS between the energies of the
two-particle singlet and the two-particle triplet depends
strongly on various model parameters, particularly on
the distance of apical oxygen from planar oxygen, the
energy of apical oxygen, and the difference between
the - and -orbital energies. For realistic

values of the model parameters, εT – εS is close to
0.5 eV [21, 32], in contrast to the three-band model,
where this value is about 2 eV (this case was considered
in [29, 30]). To take the triplet states into account, we
derive the effective Hamiltonian for the multiband p–d
model by exclusion of the intersubband hopping
between lower (LHB) and upper (UHB) Hubbard sub-
bands, similarly to [12].

The Hubbard X-operator  ≡ |p〉〈 q| on site f repre-
sents a natural language to describe strongly correlated
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electron systems, and we therefore use these operators
in the rest of the paper. The X-operators are constructed
in the Hilbert space, which consists of the vacuum nh = 0
state |0〉 , the single-hole |σ〉 = {|↑〉 , |↓〉} state of b1g sym-
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Fig. 1. The GTB method dispersion (doping concentration
x = 0) of the top of the valence band and the bottom of the
conduction band divided by the insulating gap. Horizontal
dashed lines mark the in-gap states whose spectral weight is
proportional to x. Points with error bars represent experi-
mental ARPES data for Sr2CuO2Cl2 [22].
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Fig. 2. Dependence of the chemical potential shift ∆µ on the
concentration of doping x for Nd2 – xSrxCuO4 and
La2 − xSrxCuO4. Straight lines are results of the GTB cal-
culations; filled circles with error bars are experimental
points [26].
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metry, the two-hole singlet state |S〉  of 1A1g symmetry,
and the two-hole triplet state |TM〉  (where M = +1, 0,
−1) of 3B1g symmetry.

We write the Hamiltonian as H = H0 + H1, where
the excitations via the charge transfer gap Ect are
included in H1 . We then define the operator H(e) =
H0 + eH1 and perform the unitary transformation

(e) = exp(–ie )H(e)exp(ie ). The vanishing of the

term linear in e in (e) gives the equation for the

matrix , H1 + i[H0, ] = 0. The effective Hamilto-
nian is obtained in the second order in e; at e = 1, it is
given by

(3)

Thus, for the multiband p–d model (1) in the case of
electron doping (n-type systems), we obtain the usual
t–J model,

(4)

where Sf are spin operators and nf are the particle num-

ber operators. The term Jfg = 2( )2/Ect is the exchange
integral, and Ect is the energy of the charge-transfer gap
(similar to U in the Hubbard model, Ect ≈ 2 eV for
cuprates). The chemical potential µ is included in ε1.

For p-type systems, the effective Hamiltonian has
the form of a singlet–triplet t–J model [31],

(5)

where H0 (the unperturbed part of the Hamiltonian) and
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Table 1.  Parameters of the effective singlet–triplet model
for p-type cuprates obtained in the framework of the GTB
method (all values in eV)

ρ Jρ

(0, 1) 0.373 0.587 –0.479 0.034 0.156 0.115

(1, 1) 0.002 –0.050 0.015 –0.011 0 0.0001

(0, 2) 0.050 0.090 –0.068 0.015 0.033 0.0023

(2, 1) 0.007 0.001 –0.006 –0.004 0.001 0

tρ
00 tρ

SS tρ
0S tρ

TT tρ
ST
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Ht (the kinetic part of H) are given by

The superscripts of hopping integrals (0, S, T) corre-
spond to excitations that are accompanied by hopping
from site f to g, i.e., the Hamiltonian involves the terms

. The relation between these effec-

tive hoppings and microscopic parameters of the multi-
band p–d model is as follows:

(6)

The factors µ, ν, λ, ξ, χ are the coefficients of the Wan-
nier transformation performed in the GTB method and
u, v, γa , γb , γz , γp are the matrix elements of the annihi-
lation and creation operators in the Hubbard X-operator
representation.

The resulting Hamiltonian (5) is the generalization
of the t–J model to account for the two-particle triplet
state. A significant feature of the effective singlet–trip-
let model is the asymmetry of n- and p-type systems,
which is known experimentally. We can therefore con-
clude that, for n-type systems, the usual t–J model is
applicable, while for p-type superconductors with com-
plicated structure at the top of the valence band, the sin-
glet–triplet transitions play an important role.

Using the set of microscopic parameters (2) in
Table 1, we present numerical values of the hopping
and exchange parameters calculated in accordance
with (6).

4. COMPARISON OF PARAMETERS

The resulting parameters from ab initio [8] and GTB
calculations are presented in Table 2. Here, ρ is the con-
necting vector between two copper centers, tρ is the
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hopping parameter (equal to , see (5) and (6), in the
effective singlet–triplet model), and Jρ is the antiferro-
magnetic exchange integral.

As one can see, despite slight differences, the
parameters in both methods are very close and show
similar dependence on distance. It is worth mentioning

that both methods give a disproportionality between 
and Jρ. In the usual t–J model, the proportionality Jρ =

2 /U occurs as soon as this t–J model is obtained from
the Hubbard model with the Hubbard repulsion U. In

the singlet–triplet model, the intersubband hopping 
that determines the value of Jρ is different from the

intrasubband hopping  that determines tρ. This leads
to a more complicated relation between tρ and Jρ.

In the framework of the LDA band structure of
YBa2CuO7 + x and within the orbital projection
approach, it was shown [33] that the one-band Hamil-
tonian reduced from the eight-band Hamiltonian should
include not only the nearest neighbor hopping terms (t),

tρ
SS

tρ
2

tρ
2

tρ
0S

tρ
SS

Table 2.  Comparison of ab initio parameters [8] and parame-
ters obtained in the framework of the GTB method (all values
in eV)

ab initio GTB method

ρ tρ Jρ tρ Jρ

(0, 1) 0.486 0.109 0.587 0.115

(1, 1) –0.086 0.016 –0.050 0.0001

(0, 2) –0.006 0 0.090 0.0023

(2, 1) 0 0 0.001 0
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
but also second (t ') and third (t '') nearest neighbor hop-
pings. In the GTB method, the dependence of the hop-
pings tρ on distance automatically results from the dis-
tance dependence of the coefficients of the Wannier
transformation performed in this method (see Eq. (6)).
To show the correspondence between the results of dif-
ferent authors, we compare our parameters and the
parameters widely used by different groups in Table 3.

The parameters extracted from experimental data
are listed in columns I–VI of Table 3. The LDA calcu-
lated parameters are presented in columns VII and VIII.
Our results for hoppings agree best with columns III,
VII, and VIII. This similarity is not surprising. In the
LDA calculations, the bandwidth of strongly correlated
electron systems is usually overestimated because the
strong Coulomb repulsion of electrons is not taken into
account properly. However, it is well known that the
Fermi surface obtained by this method is in very good
agreement with experiments. The main contribution to
the shape of the Fermi surface comes from the kinetic
energy of the electrons (hopping parameters), and there-
fore the values of hoppings should be properly estimated
by the LDA calculations (columns VII, VIII). In [37, 38]
(column III), the parameters were obtained by fitting the
LSCO tight-binding Fermi surface to the experimental
one. This procedure gives the same values as the LDA
calculation. By the same technique, the parameters for
Bi2Sr2CaCu2O8 + x (Bi2212, column IV) were obtained
[37, 38]. These parameters are different from those in
the LSCO case and in the present paper; the most
straightforward explanation is a more complicated
structure of the Fermi surface of compound Bi2212. In
the present paper, single-layer (LSCO-like) compounds
are considered and the effects of multiple CuO2 planes
(i.e., bilayer splitting) are neglected. The difference
between our hoppings and hoppings in column V
Table 3.  Comparison of the calculated parameters and parameters used in the literature

Quan-
tity

0* 0** I*** II*** III*** IV*** V*** VI*** VII**** VIII**** IX***** X*****

LSCO LSCO LSCO LSCO LSCO Bi2212 YBCO SCOC YBCO LSCO LSCO YBCO

this 
work

this 
work [34] [35, 36] [37, 38]

SCOC
[37, 38,

39]
[40] [41] [33] [42] [43] [43]

t, eV 0.587 0.486 0.416 0.35 0.35 0.35 0.40 0.40 0.349 0.43 – –

t'/t –0.085 –0.18 –0.350 –0.20 –0.12 –0.34 –0.42 –0.35 –0.028 –0.17 – –

t''/t 0.154 0.012 – 0.15 0.08 0.23 –0.25 0.25 0.178 – – –

J, eV 0.115 0.109 0.125 0.14 0.14 0.14 0.17 0.12 – – 0.126 0.125, 
0.150

J/|t| 0.196 0.224 0.300 0.40 0.40 0.40 0.43 0.30 – – – –

* GTB method parameters.
** Ab initio parameters obtained in the present paper.

*** Parameters obtained by fitting to experimental data.
**** Ab initio parameters.

***** Parameters obtained from two-magnon Raman scattering.
SICS      Vol. 99      No. 3      2004



564 KORSHUNOV et al.
appears due to the same reason (in [40], the YBa2Cu3O6
insulating compound was investigated).

In the last two columns of Table 3, the antiferromag-
netic exchange parameters J obtained from the two-
magnon Raman scattering analysis by momentum
expansion (LSCO, column IX) and spin-wave theory
(YBCO, column X) are presented (for details, see
review [43] and references therein). Our values of J
(column 0) are in good agreement with the values
extracted from experiments and similar to those listed
in columns I–VI.

In [44], the Heisenberg Hamiltonian on the square
lattice with plaquette ring exchange was investigated.
The fitted exchange interactions J = 0.151 eV, J ' = J '' =
0.025J give the values for the spin stiffness and the
Néel temperature in excellent agreement with experi-
mental data for insulating compound La2CuO4. In the
GTB calculations, J = 0.115 eV, J ' = 0.0009J, and J '' =
0.034J. The values of J are close to each other but dif-
ferent. This difference could be explained by the fact
that authors of [44] used the Heisenberg Hamiltonian
and inclusion of the hopping term should renormalize
the presented exchange interaction values. Agreement
between J '' in the GTB calculations and in [44] is good
but the values of J ' are completely different. The latter
could be attributed to oversimplification of calculations
in [44], where the authors set J ' = J '' by hand to restrict
the number of fitting parameters.

We now discuss the difference between our parame-
ters and the parameters in columns I, II, VI, and column
IV (SCOC). The hoppings in the papers cited above
were obtained by fitting the t–t '–t ''–J model dispersion
to the experimental ARPES spectra [22, 39] for insulat-
ing Sr2CuO2Cl2. We claim that the discrepancy

0
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Fig. 3. Dispersion curves on top of the valence band for the
effective singlet–triplet model (singlet subband is shown
with solid line, triplet subbands with dotted lines) and the t–
t '–J model (dash-dotted line) at the optimal doping x = 0.15;
the dashed line represents the self-consistently obtained
chemical potential µ.
JOURNAL OF EXPERIMENTAL 
between the GTB method results and the t–t '–t ''–J
model results stems from the absence of singlet–triplet
hybridization in the latter model. This statement can be
proved by comparing the dispersion in the “bare” t–t '–J
model (4) and in the singlet–triplet t–t '–J model (5).
The paramagnetic nonsuperconducting phase was
investigated in the Hubbard-I approximation in both the
singlet–triplet and t–t '–J models. The results for opti-
mal doping (with the concentration of holes x = 0.15)
are presented in Fig. 3.

There is a strong mixing of singlet and triplet bands
along the (0, 0)–(π, π) and (π, 0)–(0, 0) directions due
to the tST matrix element (see (6)) in both paramagnetic
(Fig. 3) and antiferromagnetic phases (Fig. 1). It is
exactly the admixture of the triplet states that deter-
mines coincidence of the dispersion in our approach
and the ARPES data in the undoped SCOC at the ener-
gies 0.3–0.4 eV below the top of the valence band,
where the t–t '–J model [34] fails and the t–t '–t ''–J
model involves the additional parameter t '' [35, 37]. In
our approach, this parameter is not as necessary as in
the “bare” t–t '–J model, because the singlet–triplet
hybridization is included explicitly.

In [45], the t–t '–t ''–J model was also used to
describe the dispersion of insulating Sr2CuO2Cl2, with
the same set of parameters as in [37, 38]. However, the
authors of [45] used a totally different definition of hop-
ping parameters: in their paper, the t ' stands for hopping
between two nearest neighbor oxygens and the t ''
stands for the hopping between two oxygens on the two
sides of Cu. Such a definition is completely different
from that used in other papers cited, where t, t ', t '' stand
for hoppings between plaquettes centered on copper
sides, and we cannot therefore compare our results with
theirs.

The analysis of the data in Table 3 gives the follow-
ing ranges for parameters: 0.350–0.587 for t, (−0.420)–
(–0.028) for t '/t, 0.012–0.250 for t ''/t with the exception
of the value in [40], and 0.115–0.150 eV for J. In gen-
eral, we see a close similarity in the first-neighbor hop-
ping t and the interaction J for the different methods
and materials, and greater discrepancy in subtle param-
eters such as t ' and t ''.

5. CONCLUSIONS

One of the significant results in this paper is the rela-
tion (6) between microscopic parameters and parame-
ters of the effective singlet–triplet model. The effective
model parameters are therefore no longer free and have
a direct physical meaning coming from the dependence
on microscopic parameters. The parameters of the
effective singlet–triplet model were obtained from both
ab initio and model calculations. Model calculations
were performed in the framework of the GTB method
for insulating single-layer copper oxide superconduc-
tor. The ab initio calculations for La2CuO4 were per-
formed by the conventional LDA TB-LMTO method.
AND THEORETICAL PHYSICS      Vol. 99      No. 3      2004
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The agreement between the parameters is remarkably
good. The parameters obtained also agree well with
widely used parameters of the t–t '–t ''–J model,
although a certain difference exists. This difference is
attributed to disregard of triplet excitations in the sim-
ple t–t '–t ''–J model. After careful analysis, we proposed
the set of parameters for effective models (e.g., the t–t '–
t ''–J model or the effective singlet–triplet model) for
proper quantitative description of physics of hole-
doped high-Tc cuprates.
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