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Abstract—The transmittance D(ω), reflectance R(ω), and dispersion ω(k) are investigated for waves of various
nature propagating through a one-dimensional superlattice (multilayer structure) with arbitrary thickness of the
interlayer boundary. The dependences of the band gap widths ∆ωm and their positions in the wave spectrum of
the superlattice on the interlayer boundary thickness d and the band number m are calculated. Calculations are
performed in terms of the modified coupled-mode theory (MCMT) using the frequency dependence of R(ω),
as well as in the framework of perturbation theory using the function ω(k), which made it possible to estimate
the accuracy of the MCMT method; the MCMT method is found to have a high accuracy in calculating the band
gap widths and a much lower accuracy in determining the gap positions. It is shown that the m dependence of
∆ωm for electromagnetic (or elastic) waves is different from that for spin waves. Furthermore, the widths of the
band gaps with m = 1 and 2 are practically independent of d, whereas the widths of all gaps for m > 2 depend
strongly on d. Experimental measurements of these dependences allow one to determine the superlattice inter-
face thicknesses by using spectral methods. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Propagation of waves of various nature (electromag-
netic, elastic, spin, etc.) and their spectra in media with
one-dimensional periodic modulation of the material
parameters—multilayer structures or superlattices
(SLs)—has been investigated theoretically in numerous
studies. This problem is discussed in monographs [1–5]
and reviews [6, 7]. The dispersion laws and wave prop-
agation factors in SLs are determined to a large degree
by the geometry of the modulation profile of the mate-
rial parameters of the SLs. As a rule, rectangular and
sinusoidal spatial modulations of parameters have been
considered in the literature. Rectangular modulation
corresponds to the case of maximally sharp boundaries
between the SL layers (zero boundary thickness), and
sinusoidal modulation corresponds to the limiting case
of maximally smooth boundaries (the “boundary”
thickness is equal to the “layer” thickness). A model
with a rectangular modulation profile has been widely
used when studying electromagnetic [8–11], elastic
[12–16], and spin [17–22] waves. Waves of various
physical nature for the model with a sinusoidal modu-
lation profile of the material parameters were investi-
gated in [23, 24]. In [25], spin waves were considered
for both cases.

However, in real SLs, the modulation profile of the
material parameters can be intermediate between these
two limiting cases. For this reason, a model of an SL
1063-7834/04/4612- $26.00 © 22292
was proposed in [26] in which modulation is propor-
tional to the Jacobian elliptic sine:

(1)

where d = πl/8K is the SL interlayer boundary thick-
ness; l is the SL period (l/2 – d is the layer thickness);
K and E are the complete elliptic integrals of the first
and second kind, respectively; and κ is the modulus of
these elliptic integrals. The factor before the elliptic
sine corresponds to the normalization 〈ρ2(z)〉  = 1 (angle
brackets mean averaging over the period l). The general
form of function (1) is shown in Fig. 1. Depending on
the modulus κ, this function describes the limiting
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Fig. 1. Function given by Eq. (1) for κ = 0.994 (d/l = 0.218).
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cases of a rectangular profile (d/l = 0, κ = 1, K = ∞), a
sinusoidal profile (d/l = 1/4, κ = 0, K = π/2), and all
intermediate values d/l. In Eq. (1), the boundary thick-
ness d is determined such that the main variation in the
material parameter occurs over the distance d for all
values of d/l (Fig. 1). The basic feasibility of spectral
methods of studying the boundary structure in SLs was
demonstrated in [26]. In order to realize such methods,
the theory needs to be extended in several directions.
The present study deals with two of these directions.
One of them is related to the fact that in [26] the spec-
trum of standing waves was calculated, while, in exper-
iments with standing waves, only the wave dispersion
law is studied directly. The other parameters (the reflec-
tance and transmittance) are measured in experiments
with traveling waves. Therefore, it is necessary to ana-
lyze the case of propagating waves for the model pro-
posed in [26]. In the second direction of study, one
should develop a more exact theory in order to find the
dispersion law of waves for such a model. Both direc-
tions require the application and development of appro-
priate approximate methods of calculation, since the
second-order equation with a coefficient whose coordi-
nate dependence is described by an elliptic sine belongs
to the general class of Hill equations and cannot be
reduced to any well-known equations of this class. In
particular, this equation cannot be reduced to the Lamé
equation, which contains an elliptic sine squared.

2. WAVE PROPAGATION IN SUPERLATTICES

By way of example, we consider the propagation of
electromagnetic waves in an SL with permittivity peri-
odically modulated along the z axis:

(2)

Here, e' and e" are the static components of the real and
imaginary parts of the permittivity, respectively; γ is the
relative root-mean-square modulation of the real part of
the permittivity; and ρ(z) is a periodic function with
period l satisfying the conditions 〈ρ(z)〉  = 0 and
〈ρ2(z)〉  = 1. We restrict ourselves to weakly perturbed
media; i.e., we set γ ! 1. We also assume that the order
of magnitude of the e''/e' ratio does not exceed γ. We are
interested in the solutions to the system of Maxwell
equations near the frequencies of the Bragg resonances
corresponding to the boundaries of the mth Brillouin
zones. We consider waves propagating along the z axis.
To find an approximate solution, we use the modified
coupled-mode theory (MCMT) (see [27] and review
[7]; the development of the application of the MCMT to
optical waveguides is reviewed in [28]; originally, the
coupled-mode theory was suggested in [29]). In this
theory, a system of equations for the amplitudes of two

e z( ) e ' 1 γρ z( )–[ ] ie ''.–=
PHYSICS OF THE SOLID STATE      Vol. 46      No. 12      20
waves propagating in opposite directions is written out.

The coupling parameters  in this system can be writ-
ten as

(3)

where ψ(z) = ,  = cψ(l)/ωl, q = 2π/l, the

principal value of the integral is implied, and the sum
takes into account the contribution of the permittivity
jumps at discontinuity points zj. Relation (3) is the main
result of the MCMT, since all measured physical quan-
tities, in particular, the reflectance R(ω) and transmit-
tance D(ω), can be expressed in terms of the coupling

parameters  (see, for example, [7]).

Figure 2 shows the frequency dependence of the
reflectivity R calculated for a semi-infinite medium
(L  ∞) in the absence of absorption (e'' = 0) for two
well-known cases of limiting values of the boundary
thickness: d/l = 0 (the case of a rectangular SL profile,
represented by the solid curve in Fig. 2) and d/l = 1/4
(the case of a sinusoidal SL profile, represented by the
dashed curve). The R(ω) dependence is plotted in the
vicinity of three Brillouin zones, m = 1, 2, and 3. We see
that the band gap widths are practically equal in the two
limiting cases for both m = 1 and 2. However, for m = 3,
these widths differ substantially. We intend to use this
difference to construct the theoretical foundation for
experimental determination of the boundary thickness
d from spectral measurements. To this end, we must,
first of all, obtain the dependence of the coupling

parameters  on the SL parameters. Assuming that
the function ρ(z) in Eq. (2) has no discontinuities, we
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Fig. 2. R(ω) dependence for a semi-infinite SL near the first
three Brillouin zones for rectangular (solid curve) and sinu-
soidal (dashed curve) modulations of the SL.
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retain in Eq. (3) only the integral, into which we substi-
tute the Fourier expansion of this function. If the gap
number m is such that mγ/2 ! 1, then the integrand in
Eq. (3) can be expanded in powers of the small param-
eter γ. Keeping terms of up to the order of γ3 and inte-
grating, we obtain

(4)

where

(5)

After substituting Eq. (4) into the corresponding
expressions for the transmittance D and reflectance R,
their ω dependences can generally be constructed for
any modulation profile and any thickness L of the SL.
Using the D(ω) or R(ω) dependences, we can find, in
particular, the gap widths at the boundaries of the Bril-
louin zones as functions of the interface thickness.

Let us obtain the explicit dependences of the gap
widths on d for a simpler model of a semi-infinite SL in
a nonabsorbing medium. In this case, in the region of
band gaps, the function R(ω) has flat tops with R = 1.
Using this condition, we obtain equations for the fre-

quencies  bounding the mth band gap:

(6)
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In these equations, the coefficients  depend on .
By solving these equations, we can find the width of the

mth band gap ∆ωm =  – . We set e'' = 0 in Eq. (4)

and substitute  defined by these expressions into

Eqs. (6). By solving the obtained equations for  to

within the terms of the order of γ3, we obtain

(7)

where

(8)

From these expressions, the gap widths can be found to
be (to within terms of the order of γ2)

(9)

Expressions (7)–(9) are valid for any shape of the SL
profile ρ(z) represented by the Fourier harmonics ρn

in them.

Let us consider the functions having the so-called
symmetry of the third kind [30],

(10)

For all functions of this class, the Fourier harmonics ρn

vanish for even n. Using this property, we can simplify
Eqs. (7):
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(11)

The gap widths at the boundaries of odd and even Bril-
louin zones are found to be

(12)

Using these expressions, the gaps ∆ωm for the model of
an SL with arbitrary boundary thickness described by
Eq. (1) are plotted as functions of d/l in Fig. 3a for odd
gaps and in Fig. 3b for even gaps. In both figures, the
gap widths are normalized to the width of the first band
gap for an SL with a sinusoidal profile, ∆ω1sine. The
expressions for the widths of odd gaps obtained previ-
ously in [26] correspond to the term proportional to γ in
Eq. (12) for odd m. In [26], expressions and plots are
obtained for gap widths in the spectrum of spin waves;
the corresponding dependences for electromagnetic
waves can be obtained from them with the following
substitution: ν = (ω/c)2ee and e = γ(ω/c)2ee [in the nota-
tion of [26], ee is the permittivity and e is the coefficient
(having the dimension of the wave number) of the func-
tion ρ(z) in the wave equation]. For the odd Brillouin
zones, the dependences of ∆ωm on d/l obtained in [26]
(see also [31]) and in this study are qualitatively simi-
lar; namely, ∆ωm is virtually independent of d/l for m =
1 and rapidly decreases with increasing d/l for m > 1. A
quantitative difference, related to the inclusion of the
terms of third order in γ for odd gaps, is manifested as
d/l approaches 1/4; in this case, the term proportional to
γ in Eq. (12) tends to zero and for d/l = 1/4 the terms that
remain in Eq. (12) for odd m describe ∆ωm for odd gaps
of a sinusoidal SL. Another difference is related to the
appearance of a dip on the ∆ωm(d) plots for odd gaps
(for m = 3, the dip is close to d/l = 1/4; for m = 5 and 7,
the dip is not seen in the scale chosen).

The dependences of ∆ωm on d/l for even gaps (the
lower line in Eq. (12)) are obtained in this study for the
first time. In Fig. 3b, we see that the gap ∆ωm is virtu-
ally independent of d/l for m = 2 and decreases rapidly
with increasing d/l for m > 2. For an SL with a rectan-
gular profile, ∆ωm for even gaps increases linearly with
m. We recall that the expressions obtained remain valid
only for those m for which the condition mγ/2 ! 1 is
satisfied. Therefore, for SLs with d/l = 0, the theory
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developed here is valid only for the values of m for
which the widths of even gaps remain smaller than the
widths of odd gaps.

3. WAVE DISPERSION LAW

We study the wave dispersion laws in an SL with an
arbitrary boundary thickness in the general form for
electromagnetic, elastic, and spin waves simulta-
neously. Such an approach is possible, since the form of
the dispersion laws is determined above all by the struc-
ture of the SL and its boundary. In this approach, the SL
is characterized by a periodic z dependence of a mate-
rial parameter A(z), which is different for waves of dif-
ferent nature. For example, this parameter can be the
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Fig. 3. Dependences of the gap widths ∆ωm at the edge of
the mth Brillouin zone on d/l for (a) odd and (b) even gaps
for γ = 0.15. The values of m are indicated on the corre-
sponding curves. The dashed line in panel (b) shows the gap
width for the first zone.
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permittivity for electromagnetic waves, the density of
the material or a force constant for elastic waves, or the
magnetization, anisotropy, or exchange constant for
spin waves. By analogy with Eq. (2), we write A(z) as

(13)

where A and γ are the static component and the relative
root-mean-square modulation of this parameter (the
imaginary part of A(z) is disregarded).

We write the wave equation in the form

(14)

where the function µ and the parameters ν and η are
expressed differently for electromagnetic, elastic, and
spin waves. Thus, for spin waves, ν = (ω – ω0)/αgM,
where ω0 is the ferromagnetic resonance frequency,
α is the exchange parameter, g is the gyromagnetic ratio,
and M is an external magnetic field; for electromagnetic
and elastic waves, we have ν ∝ ω 2, etc. (see [26]).

According to the Floquet theorem, the solution to
Eq. (14) for waves propagating along the z axis can be
represented in the form

(15)

Substituting this expression and the Fourier expansion of
the function ρ(z) into Eq. (14), we obtain an infinite sys-
tem of equations for the Fourier transforms µn and ρn:

(16)

where ν = (k – nq)2. The dispersion law ν = ν(k) can be
obtained by equating to zero the determinant of system
(16), which contains an infinite number of rows and
columns. Numerical analysis of N × N determinants
with finite numbers of rows and columns N allows us to
study the wave dispersion law approximately.

However, in many cases, it is more convenient to
derive an equation for ν(k) by expanding into a series in
η. This series can be obtained in different ways. We
suggest yet another way, where the presence of certain
terms in the sums is explicitly forbidden. This approach
will be used below when analyzing the effect of such
exclusion on the form of the dispersion equation. For
generality, we provisionally omit the restriction 〈ρ(z)〉  =
0 used in this study. The quantity , which appears
on the right-hand side of Eq. (16), can be written in the
form

(17)
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After substituting Eq. (17) into Eq. (16), we obtain

(18)

where  = νn + ηρ0. Increasing the index of ni in

Eq. (18) by 1, we express  from the obtained equa-

tion and substitute the result into the right-hand side of
Eq. (18). Thus, we obtain

(19)

We represent the product  in a form similar

to that of Eq. (17),

(20)

and substitute it into Eq. (19), which assumes the form

(21)

Next, we increase the index of ni in Eq. (18) by 2,
express  from the obtained equation, substitute the

result into the right-hand side of Eq. (21), and represent
the product of the three functions ρi in a form analogous
to Eq. (20). Continuing this process and using the con-
dition µn ≠ 0, we obtain the equation

(22)

In [32], this equation was derived using a different
method. However, that derivation was somewhat inac-
curate, since the exclusion of the terms ni ≠ ni – 1 in the
sums was disregarded.

Next, we apply the original idea of the authors of
[32], who represented a series similar to Eq. (22) in a
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weak-coupling approximation. In our notation, this rep-
resentation for the main branch has the form

(23)

where T (m), T (–m), T (0), and  are series containing no
resonant factors. By taking into account all the exclu-
sions ni ≠ ni – 1, these series can be written as

(24)

Equations for the boundaries of the band gaps are
obtained by setting k = mq/2 in Eq. (23) and have the
form

(25)

Expressions (23)–(25) differ from the corresponding
expressions in [32] (in particular, in this study, we have
T (–m) ≠ T (m)*). However, for the case 〈ρ(z)〉  = 0, where
exclusions of the form ni ≠ ni – 1 become unnecessary,
the expressions in [32] and our equations (22)–(25)
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assume the same form. In this case, Eq. (25) takes the
form

(26)

By solving Eq. (26) to within terms of the order of η2,
we obtain expressions for the gap boundaries,

(27)

and for the gap widths,

(28)

Just as in Section 2, we consider functions ρ(z) with
symmetry of the third kind. With such a function, we
seek a solution to Eq. (26) to within terms of the order

of η3 and obtain expressions for ,

(29)

and for ∆νm,

(30)

These expressions describe the gaps in the spectrum of
spin waves. For electromagnetic waves, using Eq. (2)
for the permittivity (e ≡ e', e'' = 0), from Eq. (29) we

obtain an expression for  to within terms of the
order of γ3:
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(32)

Generally, it is not easy to determine the widths of odd
gaps from Eq. (31), since in the uppermost line of this
equation the modulus is taken from an expression that
has a variable sign. Therefore, we write out expressions
for the gap widths with an accuracy of γ2;

(33)

Let us compare formula (11) for the boundaries of

the band gaps  obtained by the MCMT method with
an analogous formula (31) obtained from the exact dis-
persion equation. We see that the coefficients of the cor-
responding powers of γ in these formulas are described
by substantially different expressions (except for the
coefficients of the first power of γ, which coincide). It
should be emphasized that the expressions for these
coefficients in Eq. (31) are exact, since they were
obtained, using perturbation theory, from the exact dis-
persion equation (22) (or from Eq. (26), which is equiv-
alent to it). Therefore, the difference in the correspond-
ing coefficients between Eq. (31) and Eq. (11) charac-
terizes the accuracy of the MCMT method. In order to
get a clear idea about this accuracy, we consider
Eqs. (31) and (11) for two limiting cases of boundary
thickness: d/l = 0 (a rectangular profile) and d/l = 1/4 (a
sinusoidal profile). For a rectangular profile, the expres-

sions for  obtained by the MCMT method coincide
with the corresponding expressions from perturbation
theory, at least up to terms of the order of γ2, and have
the form
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For a sinusoidal profile, the expressions for 
obtained by the MCMT method differ from the corre-
sponding results of perturbation theory. It appears that
the difference between the results obtained by the
MCMT method and the results of perturbation theory
are greater for the positions of the band gaps than for
their widths. Thus, for the boundary frequencies of the
first Brillouin zone, we have

(35)

where the lower line corresponds to the MCMT method
and the upper line to perturbation theory.

To plot the band gap width as a function of the inter-
face thickness d, we used Eqs. (30) and (31), into which
we substituted ρm corresponding to the Fourier harmon-
ics of the elliptic sine in Eq. (1). For γ = 0.15, the
∆ωm(d/l) curves for both odd and even gaps differ only
slightly from the corresponding curves in Fig. 3, which
were obtained by the MCMT method in the previous
section (in the chosen scale, the corresponding curves
coincide). The d dependences of ∆νm for spin waves are
plotted in Fig. 4a for odd gaps and in Fig. 4b for even
gaps. In both figures, the gap widths are normalized to
the width of the first band gap of the SL with a sinuso-
idal profile, ∆ν1sine. The ∆νm(d) and ∆ωm(d) depen-
dences are qualitatively similar; namely, the gap widths
are virtually independent of d for m = 1 and 2 and rap-
idly decrease with increasing d for m > 2. For odd gaps,
both the ∆νm(d) and ∆ωm(d) curves exhibit dips, which
are not seen in the scale of Fig. 4a. By comparing
Figs. 3 and 4, we see that, for electromagnetic and spin
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waves, the dependences of the gap width on the gap
number m are qualitatively different; the difference is
most clearly seen for a rectangular modulation profile.
For d/l = 0, the width of odd gaps for electromagnetic
(and, accordingly, elastic) waves depends only weakly
on m (Fig. 3a). The width of odd gaps for spin waves
decreases rapidly with increasing m (in proportion to
1/m if we neglect the effects of the order of η3; see
Fig. 4a). The differences between the m dependences
for even gaps are even more substantial. While ∆νm for
spin waves decreases as 1/m with increasing m
(Fig. 4b), ∆ωm for electromagnetic waves grows in pro-
portion to m (Fig. 3b).

4. CONCLUSIONS

Thus, we have considered wave propagation in one-
dimensional superlattices (multilayer structures) with
arbitrary thickness of the interlayer boundaries in the
structures. To describe the superlattice (SL), we have
used a model suggested earlier in [26], in which the
modulation profile of a material parameter along the SL
axis is described by a Jacobian elliptic sine. The
MCMT method was used to study the frequency depen-
dences of the transmittance D(ω) and reflectance R(ω)
for electromagnetic waves in such an SL. Perturbation
theory was used to study the ω(k) dispersion relations
for electromagnetic, elastic, and spin waves in SLs with
modulation of the corresponding material parameter
(dielectric constant, density of the material, or mag-
netic anisotropy). The experimental situation where
traveling waves are studied corresponds to measure-
ment of the reflectance R(ω) (or the transmittance
D(ω)). With standing waves in any resonator (for exam-
ple, in the case of spin-wave resonance in a thin mag-
netic film), the ω(k) dispersion relation is studied. In
both cases, the measured R(ω) and ω(k) dependences
reveal common features (namely, the frequencies of the

gap boundary positions ). In the ω(k) dispersion
law, these frequencies are observed directly, whereas
the R(ω) dependence reveals them as the boundary fre-
quencies of the Bragg mirrors. The analytical expres-

sions obtained for  by different methods from the
R(ω) and ω(k) dependences turned out to be substan-
tially different. Since the coefficients of the powers of
η found from the ω(k) dispersion relation are exact,
their comparison with the corresponding coefficients of
the series in η obtained from the R(ω) dependence
using the MCMT method allowed us to estimate the
accuracy of the method. The gap widths were deter-
mined by this method with a substantially higher accu-
racy than the gap positions. The high accuracy of the
MCMT method was also noted in [33], where the
results obtained by using this method were compared
with the results of numerical solution of the wave equa-
tion.

ωm
±

ωm
±
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The dependences of the band gap widths ∆ωm and
the gap positions in the spectrum on the boundary
thickness d have been calculated using both the fre-
quency dependence of the reflectance R(ω) and the dis-
persion law. The calculations were performed for both
odd and even Brillouin zones of the SL (in a first
approximation of perturbation theory, an analogous
calculation for odd gaps was performed for the first
time in [26]). The dependences of the band gap widths
on the gap number for electromagnetic (or elastic)
waves (∆ωm) and for spin waves (∆νm) are different in
character. In the case of d = 0, for odd gaps, ∆ωm

depends only weakly on m, whereas ∆νm ∝  1/m; for
even gaps, we have ∆ωm ∝  m, whereas ∆νm ∝  1/m. The
d dependences of the band gap widths are similar in
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character; namely, the band gap widths for the first and
second Brillouin zones are virtually independent of d
and the widths of all gaps with m > 2 have a strong d
dependence. We found a dip in the dependences of ∆ωm

and ∆νm on d/l for m = 3, 5, and 7, when higher order
terms of perturbation theory were taken into account.
The obtained results theoretically substantiate possible
experimental methods of measuring the boundary
thickness in SLs by using spectral methods. In these
methods, it is necessary to measure the widths of two
band gaps: ∆ω1 and, for example, ∆ω3. Then, using the
plots in Fig. 3 for electromagnetic or elastic waves and
the plots in Fig. 4 for spin waves, one can find d/l from
the ratio ∆ω3/∆ω1.
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