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Abstract. – We study interference of the cold atoms which are released out of the quasi–
one-dimensional optical lattice, for the different initial states of the system. In particular, in
the case of the Mott-insulator initial state, the atomic-density distribution is shown to exhibit
a non-trivial interference pattern, similar to that observed for BEC in double-well potential in
the experiment by Andrews et al. (Science, 275 (1997) 637).

Recently, much attention has been paid to Bose-Einstein condensate (BEC) of cold atoms,
loaded in the optical lattices (see papers [1,2], and references therein). This interest is due to
the fact that this system can realize different multiparticle states and (what is more important)
these states can be relatively easily identified by using the so-called time-of-flight measurement
technique. In the present paper, we theoretically study an interference pattern developed by
atoms during their free flight. In the case of a coherent array of BECs (the superfluid state),
typically realized in shallow lattices, this problem was addressed earlier in refs. [3,4]. Here we
mainly focus on the opposite limit of deep lattices, where the initial state is Mott insulator.
Because the Mott-insulator state (MI-state), unlike the superfluid state (SF-state), cannot
be described by the macroscopic wave function, it is often treated as incoherent. In fact,
the MI-state is a highly correlated state of the many-body system. We demonstrate below
that these quantum correlations reveal themselves in a specific structure of the atomic-density
distribution (as recorded by “taking a snapshot” of the expanding atomic cloud), which have
not been discussed so far.

To understand how much the quantum correlations may affect the atomic-density distri-
bution, let us analyze first a simpler problem of two colliding BEC [5,6]. Following ref. [5], we
consider the state |Ψ〉 with equal number of atoms N/2 in each BEC, moving in the opposite
directions with velocities ±p/M ; i.e.,

|Ψ〉 = |(N/2)+, (N/2)−〉, (1)

and the field operator

Ψ̂(x) =
∑
±

1√
L

exp
[
±i

px

h̄

]
â± . (2)

c© EDP Sciences



A. R. Kolovsky: Interference of cold atoms released etc. 331

The measured atomic-density distribution N(x) is obviously given by

N(x) =
1
N

N∑
n=1

δ(x − xn), (3)

where the detected positions of the atoms xn randomly vary in the repeated experiments, with
the distribution function given by the square of the N -particle wave function of the system.
One of the main results of paper [5] consists in constructing an effective numerical algorithm,
which generates N random variables xn according to the specified wave function (1). When
N is increased, the atoms were found to have a tendency to clustering, and the coarse-grained
atomic density,

Ñ(x) =
1
N

∫ ∆x/2

−∆x/2

δ(x − xn)dx, (4)

converges to
Ñ(x) = 1 − cos(2px/h̄ + φ), (5)

with random phase φ.
Let us now show that the above correlations in the density Ñ(x) can be predicted by

analyzing the diagonal elements of the two-particle density matrix,

R(x1, x2) =
1

N(N − 1)
〈Ψ|Ψ̂†(x2)Ψ̂†(x1)Ψ̂(x1)Ψ̂(x2)|Ψ〉, (6)

which give joint probability to find two atoms at the positions x1 and x2,

R(x1, x2) = 〈〈N(x1)N(x2)〉〉 (7)

(here the double angular brackets denote an average over different realizations in the repeated
experiments). Indeed, substituting (2) and (1) into eq. (6), we have

R(x1, x2) =
N − 2

2(N − 1)
+

N

N − 1
cos2

(
p(x2 − x1)

h̄

)
. (8)

It directly follows from eq. (8) that the recorded density distribution is modulated with the
period πh̄/p. If the number of the atoms in the BEC is large, this modulation can already be
seen in the coarse-grained density Ñ(x), as captured by eq. (5) and observed in the experi-
ment [7]. In the opposite case of small N , one obviously needs many measurements to reveal
the modulation. Let us also note that a structured two-particle density matrix together with
a uniform one-particle density matrix R(x) = 1 implies the presence of random phase φ in
eq. (5), which is often referred to as “the spontaneous breaking of the symmetry”.

We proceed with the analysis of the two-particle density matrix for cold atoms in the
optical lattice. Using the Wannier states ψl(x) as single-particle basis wave functions, the
field operator for spinless atoms in the optical lattice reads

Ψ̂(x) =
L∑

l=1

ψl(x)âl , ψl(x) = ψ0(x − ld), (9)

where L is the lattice size and d the lattice period. For the sake of completeness, we shall
consider three different initial states of the system: the SF-state |ΨSF〉, the MI-state for
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repulsive atom-atom interactions |Ψ(−)
MI 〉, and the superposition state |Ψ(+)

MI 〉, which is the
counterpart of the MI-state for attractive atom-atom interactions(1):

|ΨSF〉 =
1√
N !

(
1√
L

L∑
l=1

a†
l

)N

|0 . . . 0〉, (10)

∣∣Ψ(+)
MI

〉
=

1√
L

L∑
l=1

1√
N !

(
a†

l

)N

|0 . . . 0〉, (11)

∣∣Ψ(−)
MI

〉
=

1√
n!

L∏
l=1

(
a†

l

)n

|0 . . . 0〉 (12)

(here n = N/L is the filling factor). We also display the wave functions (10)-(12) in the
coordinate representation for a particular case of L = 2 and n = 1 (generalization for arbitrary
L and n is straightforward):

ΨSF(x1, x2) = 2−1[ψ1(x1) + ψ2(x1)][ψ1(x2) + ψ2(x2)],

Ψ(+)
MI (x1, x2) = 2−1/2[ψ1(x1)ψ1(x2) + ψ2(x1)ψ2(x2)],

Ψ(−)
MI (x1, x2) = 2−1/2[ψ1(x1)ψ2(x2) + ψ1(x2)ψ2(x1)].

The latter equations explicitly show that the SF-state is a product state, the “attractive MI-
state” is a superposition of product states, while the repulsive MI-state is an entangled state.

Substituting (9) and (10)-(12) into eq. (6), we have the following expressions for the diag-
onal elements of the two-particle density matrix:

RSF(x1, x2) =
1
L2

∣∣∣∣∣∑
l

ψl(x1)

∣∣∣∣∣
2 ∣∣∣∣∣∑

l

ψl(x2)

∣∣∣∣∣
2

, (13)

R
(+)
MI (x1, x2) =

1
L

∑
l

|ψl(x1)|2|ψl(x2)|2, (14)

R
(−)
MI (x1, x2) =

1
L(L − 1/n)

∑
l �=l′

|ψl(x1)|2|ψl′(x2)|2 +
(

1 − 1
n

) ∑
l

|ψl(x1)|2|ψl(x2)|2 +

+
∑
l �=l′

ψ∗
l (x1)ψl′(x1)ψ∗

l′(x2)ψl(x2)

 . (15)

It is worth mentioning that by integration of the two-particle density matrix over one of the
variables one obtains the one-particle density matrix, which is RSF(x) = | 1

L

∑
l ψl(x)|2 for the

SF-state, and RMI(x) = 1
L

∑
l |ψl(x)|2 for both the superposition and MI-states.

Let us now demonstrate that the two-particle density matrix contains sufficient information
to predict the outcome of a position measurement. The first row in fig. 1 shows the gray-
scaled image of R(x1, x2), given in eqs. (13)-(15), for N = L = 7 and the depth of the
optical potential equal to 10 and 20 recoil energies for the SF- and MI-states, respectively.

(1)Note that the superposition state has never been realized in the laboratory experiments and, hence, the
analysis of this situation serves mainly the pedagogical aims.
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Fig. 1 – Gray-scaled image of the two-particle density matrix R(x1, x2) for N = 7 atoms in the
optical lattice with L = 7 wells (the axis limits are −20d ≤ x1, x2 ≤ 20d). The columns correspond
to different initial conditions: the superposition state (11), left column; the Mott-insulator state (12),
middle column; and the superfluid state (10), right column. The rows corresponds to different time-
of-flight t = 0, 1, 8, 16 of the recoil periods.
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Fig. 2 – Momentum distributions of the Bloch state φ(x) = L−1/2
∑L

l=1
ψl(x) (upper panel, L = 7)

and Wannier states ψl(x) (lower panel), pd = 2πh̄/d.

Three panels (from left to right) refer to the superposition state (11), the MI-state (12), and
the SF-state (10). It is seen in the figure that in the case of the “attractive MI-state” (11)
one has zero probability to find any two atoms in two different wells of the optical lattice.
Thus, the position measurement will detect all atoms in a single well and Ñ(x) = |ψl(x)|2,
where the random index l breaks the spatial symmetry of the system, reflected in the uniform
one-particle density matrix RMI(x). Opposite to the case of attractive interaction, for the
repulsive interaction (and n = 1), one has zero probability to find two atoms in one well.
Thus the position measurement will result in N(x) =

∑
l δ(x − xl), where xl are chosen at

random according to one-dimensional distributions Pl(x) = |ψl(x)|2. Finally, in the case of the
SF-state, one has an equal probability to find two atoms either in one well or in two different
wells. Thus the atoms are distributed among the wells according to a binominal (Poisson, in
the limit N,L → ∞) law, while the distribution within a single well is defined by the square
of the Wannier functions.

The above analysis of the outcome of a position measurement is obviously of pure aca-
demic interest, because the detection resolution in the laboratory experiments is essentially
lower than the lattice period. To overcome this problem, the atoms are released out of the
optical lattice and one waits for the atomic cloud to expand, before taking its image (which
is a destructive measurement). We simulate the expansion of the atoms and the results are
depicted in the subsequent rows of fig. 1 for t = 1, 8, 16 of the recoil periods. Note that in our
simulations we neglected the collisions of the atoms during the expansion phase. Although we
do not discuss here the formal condition for the validity of this approximation, the results of
refs. [3, 7] indicate that this is indeed the case in the laboratory experiment.

Let us discuss fig. 1 in more detail. We begin with the SF-state (right column). First of
all we note that, since the SF-state is a product state, the two-particle density matrix carries
essentially the same information as single-particle wave function φ(x) = 1√

L

∑L
l=1 ψl(x). Thus,

a free expansion of the atomic cloud simply reveals the momentum distribution |φ(p)|2 of the
Bloch state, which we depict in the upper panel of fig. 2.

The case of initial state |Ψ(+)
MI 〉 (left column) is more complicated. Here the wave function

is given by the coherent superposition of the product states and one may naively expect an
interference. However, as seen in eq. (14), the structure of the two-particle density matrix
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prohibits appearance of any interference pattern. Moreover, in the limit t → ∞, the sum over
l becomes irrelevant and R

(+)
MI (x1, x2; t) ≈ |ψl(x1, t)|2|ψl(x2, t)|2. Thus an expansion of the

atomic cloud reveals the momentum distribution |ψ(p)|2 of the Wannier states,

ψl(x) =
1

2πh̄

∫ ∞

−∞
exp

[
−i

px

h̄

]
ψ(p) exp

[
i
l dp

h̄

]
dp, (16)

depicted in the lower panel of fig. 2.
The most complicated and interesting case is the MI-state (12). It is convenient to present

the two-particle density matrix (15) as a sum of the “smooth” and “interference” parts:

R
(−)
MI (x1, x2) =

F (x1, x2) + |S(x1, x2)|2
L(L − 1/n)

, (17)

S(x1, x2) =
∑

l

ψ∗
l (x1)ψl(x2), (18)

F (x1, x2) =
∑
l �=l′

|ψl(x1)|2|ψl′(x2)|2 − 1
n

∑
l

|ψl(x1)|2|ψl(x2)|2. (19)

The time evolution of the smooth part (19) is asymptotically the same as for the superposition
state (11), i.e., in course of time it reveals the momentum distribution of the Wannier states.
The time evolution of the interference part given by |S(x1, x2)|2 is less trivial and can be
qualitatively understood by considering the limit of an infinite lattice. Indeed, using the
momentum representation (16) of the Wannier function, we obtain, in the limit L → ∞,

S(x1, x2; t) =
∑
m

exp
[
−i

m2Mv2

2h̄
t

]
Sm(x2 − x1 − mvt), (20)

where

Sm(z) =
1

2πh̄

∫
ψ∗(p + mMv)ψ(p) exp

[
−i

zp

h̄

]
dp, (21)

and v = 2πh̄/dM (M stands for atomic mass). Since the terms in eq. (19) have as their
arguments the difference z = x2−x1−mvt, they produce a characteristic interference pattern
seen in the middle column of fig. 1.

To summarize, we study the process of expansion of cold atoms, released out of an optical
lattice. As already noticed earlier in refs. [1, 2] (and can be easily proved by analyzing the
time evolution of the one-particle density matrix), the expansion reveals either the momentum
distribution of the Bloch wave (the case of the superfluid initial state) or the momentum
distribution of the Wannier function (the Mott-insulator initial state). Presented above more
detailed, based on the two-particle density matrix, analysis shows that in the case of the Mott-
insulator state one should additionally observe a specific interference pattern (i.e., modulation
of the recorded atomic density), captured by eqs. (17)-(21). We would like to note that
this interference has essentially the same nature as that observed for BEC in double-well
potential [7]. In fact, from the formal point of view the Mott-insulator state (12) is just an L-
well generalization of the two-well state (1). We believe that the discussed interference can be
observed in a laboratory experiment similar to [1], by adopting the “cross-section” detection
technique of ref. [7], designed to eliminate the smearing effect of the transverse expansion
of the atoms.
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