

Available online at www.sciencedirect.com

Physica B 359-361 (2005) 1321-1323

www.elsevier.com/locate/physb

Studies of magnetic and optic properties of rare-earth gallo-ferroborates by Mössbauer and optical spectroscopy

O.A. Bayukov^{a,*}, A.M. Gavrilyuk^b, V.N. Zabluda^a, I.S. Lyubutin^c, S.G. Ovchinnikov^a, A.M. Potseluyko^a, M. Tomas^d, I.A. Trojan^b, S.A. Kharlamova^a

^aLV Kirensky Institute of Physics, Siberian Branch of RAS, Krasnoyarsk, Russian Federation ^bInstitute of High Pressure Physics, 142190, Troisk, Moscow region, Russian Federation ^cInstitute of Crystallograhy, 117333, Leninsky Av. 59, Moscow, Russian Federation ^dThe University of Liverpool, Liverpool L69 3BX, UK

Abstract

Magnetic and optical properties of $GdFe_{3-x}Ga_x(BO_3)_4$ single crystals are investigated by Mössbauer and optical spectroscopy. The $GdFe_3(BO_3)_4$ multielectron band structure model is derived. A high- and low-spin crossover of Fe^{3+} ion, a collapse of the magnetic moment, the suppression of Coulomb correlations, and insulator–semiconductor transition are predicted. The jump of an energy gap is measured at pressure 43 GPa. © 2005 Elsevier B.V. All rights reserved.

PACS: 61.50.Ks; 71.27.+a; 71.30.+h

Keywords: Strongly correlated electron system; Antiferromagnets; Borates

1. Among strongly correlated electron system (SCES) the borates $GdFe_3(BO_3)_4$ (GFB) and $GdFe_{3-x}Ga_x(BO_3)_4$ (GFGB) from $RFe_3(BO_3)_4$ family having 3d- and 4f-electronic configurations are interesting. These crystals are antiferromagnets with Neel temperature $T_N = 38 \text{ K}$ (GFB) and $T_N = 15 \text{ K}$ (GFGB)]. Also borates are magnetic insulators, transparent in a visible range.

2. GFB Mössbauer spectra were carried out using a spectrometer with multi-channel analyzer AI-4096-3 M in the constant accelerations regime, source Co^{57} (Cr). For measurements at low temperatures (5, 20 and 40 K), a cryostat which was pumped up by liquid helium for reception of low temperature was used. ⁵⁷Co in matrix Rh was used as a source. Optical absorption spectra single crystals GFB were taken in a range up to 62 GPa at room temperature in the chamber with diamond anvils.

^{*}Corresponding author.

^{0921-4526/\$ -} see front matter \odot 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.physb.2005.01.397

3. The ⁵⁷Fe Mössbauer spectra at $T > T_N$, (Fig. 1, at 298 and 40 K) represent an asymmetric doublet. Chemical isomeric shift relative α -Fe. $\delta =$ 0.39 mm/s, G = 0.30 mm/s is characteristic for Fe^{3+} . The quadrupled splitting $t = 0.29 \,\mathrm{mm/s}$ is also typical for valence Fe^{3+} and indicates slightly deformed coordination of oxygen octahedron. At $T < T_N$ (20 and 5 K), the ⁵⁷Fe Mössbauer spectra show the magnetic hyperfine splitting with typical six lines. The Doppler shift of second order takes place. The angles between magnetic moments Fe and C_3 -axis were estimated as 46 (at 20 K) and 22° (at 5K), respectively. The angles of the electric field gradient (V_{zz}) and the moment of Fe were $\varphi = 63^{\circ}$ at 20 K and $\varphi = 38^{\circ}$ at 5 K. There is an Fe magnetic moment rotation at low temperatures from T = 5 up to 20 K.

4. Optical absorption spectra GFB and GFGB in comparison with FeBO₃ at ambient pressure are given in Fig. 2. It was found that absorption bands in GFB and FeBO₃ are similar. Gd³⁺ ion does not have its own absorption bands up to 4 eV [1], therefore bands A, B, and C are identified as Fe³⁺ ions absorption. The local structures FeO₆ in GFB and FeBO₃ are very close. So, bands A, B, and C observed in GFB (as well as in FeBO₃, Fig. 2(c)) results from d–d transitions of Fe³⁺ ion: ⁶A_{1g} \rightarrow ⁴T_{1g}, ⁶A_{1g} \rightarrow ⁴T_{2g}, and ⁶A_{1g} \rightarrow ⁴A_{1g}, ⁴E_g. Moreover, Fe–O and B–O distances (Table 1) in GFB

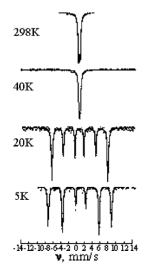


Fig. 1. Mössbauer spectra of GFB at different temperatures.

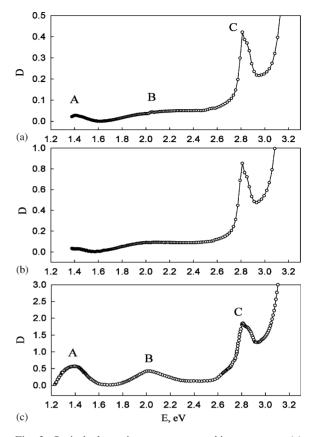


Fig. 2. Optical absorption spectra at ambient pressure: (a) $GdFe_3$ (BO₃)₄ and (b) $GdFe_{2.1}Ga_{0.9}$ (BO₃)₄ in comparison with (c) FeBO₃.

Table 1 The B–O and Fe–O distances, an energy gap (E_g) in crystals FeBO₃ and GdFe₃(BO₃)₄

	B-O (Å)	Fe–O (Å)	$E_{\rm g}~({\rm eV})$
FeBO ₃	1.3790	2.028	2.9
GdFe ₃ (BO ₃) ₄	1.3676	2.029	3.1

and FeBO₃ are practically identical, this allows to conclude a similarity of electronic structures of these two crystals in energy range up to 4 eV in a vicinity of a Fermi level. Recently the multielectron band structure model of FeBO₃ was derived in Ref. [2]. This model was applied for GFB and so the strong electronic correlations were taken into account. The sp-hybridization of B

and O ions is very strong, d- and sp-electrons hybridization are very weak. The valence (E_v) and conductivity (E_c) bands are separated by band gap, $E_c - E_v = Eg_o = 3.1 \text{ eV}$. The d-electron addition and removal states are presented by two electron levels: $\Omega_c = E({}^5\text{T}_2, d^6) - E({}^6\text{A}_1, d^5)$ and $\Omega_v = E({}^6\text{A}_1, d^5) - E({}^5\text{E}_1, d^4)$ that are equivalent to Hubbard sub-bands. The effective Hubbard parameter is $U_{\text{eff}} = \Omega_c - \Omega_v = A + 28B - \Delta = 4.2 \text{ eV}$, where A, B are the Racah parameters and Δ is the crystal field, respectively.

5. Recently [3] in FeBO₃, a magnetic moment collapse, sharp reduction of an energy gap, and insulator-semiconductor transition under high pressure have been found. Due to the similarity in FeBO₃ and GFB electronic structures we can assume the same phenomena in GFB too. On increase of pressure the main change of electronic structure is induced by growth of crystal field Δ , $\Delta(P) = \Delta(0) + \alpha P$. The high-spin ${}^{6}A_{1}(S = \frac{5}{2})$ and low-spin ${}^{2}T_{2}(S = \frac{1}{2})$ terms of Fe³⁺ crossover takes place at $P = P_c$ resulting in the magnetic moment collapse. In a high-pressure phase, the energies of upper and lower Hubbard bands vary, and the effective parameter of Hubbard correlations changes to: $U_{\text{eff}} = A + 9B - 7C \approx 1.45 \text{ eV}$. Thus, the sharp SEC reduction occurs, and we have GFB as a semiconductor (Fig. 3b). Experimentally, we have found the electronic transition in GFB at 43 GPa.

This work was supported by RFBR grants 02-02-17364, 03-02-16286, and by the Program of

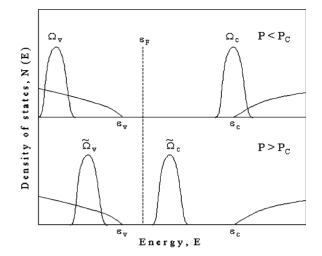


Fig. 3. Density of states of $GdFe_3$ (BO₃)₄ in phases: (a) ambient and (b) high pressure.

Physical Branch of Russian Academy of Science "Strongly correlated electron systems". A.M. Potseluyko is grateful for the support from the Russian Science Support Foundation.

References

- E.P. Chukalina, D.Yu. Kuritsin, M.N. Popova, L.N. Bezmaternykh, S.A. Kharlamova, V.L. Temerov, Phys. Lett. A 322 (2004) 239.
- [2] S.G. Ovchinnikov, JETP Lett. 77 (2003) 676.
- [3] I.A. Trojan, JETP Lett. 74 (2001) 24.