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Within the framework of the assumption of large azimuthal wave numbers, the equations for Alfvén
and slow magnetosonic waves are obtained using frozen-in material coordinates. These equations
are specified for the case of a nonuniform magnetic field with axial symmetry. Assuming a
meridional polarization of the magnetic field and velocity perturbations, the effects of Alfvén wave
propagation are analyzed which are related to geometric characteristics of a nonuniform magnetic
field: (a) A finite curvature radius of the magnetic field lines and(b) convergence of magnetic field
lines. The interaction between the Alfvén and magnetosonic waves is found to be strongly dependent
on the curvature radius of the magnetic tube and the local plasmab parameter. The electric field
amplitude and the length scale of a wave front are found to increase very strongly in the course of
the Alfvén wave propagation along a converging magnetic flux tube. Also studied is a temporal
decrease of the wave perturbations which is caused by dissipation at the conducting boundary.
© 2005 American Institute of Physics. [DOI: 10.1063/1.1833392]

I. INTRODUCTION

Ideal magnetohydrodynamics(MHD) is a commonly
used tool for space plasma modeling. However, in general,
the nonsteady three-dimensional MHD equations are rather
difficult to solve. A possible way is to use asymptotic expan-
sions with respect to small parameters which allows one to
simplify MHD problems and to reduce their dimensionality.
The thin magnetic flux tube approximation is an example of
such an approach which considers a normalized thickness of
a magnetic flux tube as a small parameter(see Refs. 1–5).
There exist two different kinds of models based on a thin
magnetic tube approximation. The first type of models cor-
respond to magnetic flux tubes with plasma characterized by
a relatively small plasma pressure compared to the magnetic
pressure. But outside of the tubes, the plasma pressure ex-
ceeds the magnetic pressure. Such models are relevant to the
region of the solar interior. The second type of models con-
sider magnetic flux tubes with an enhanced internal plasma
pressure and decreased magnetic pressure. Outside such a
tube, the magnetic pressure is much stronger than the plasma
pressure. These models are applicable for magnetic flux
loops in the solar corona,6 and also for disturbed magnetic
tubes in the magnetospheres of the Earth and other magne-
tized planets.

With regard to the Earth’s magnetosphere, a fruitful as-
sumption of a large azimuthal wave number was used(see
Refs. 7–9) which implies that the longitudinal wave length is
much larger than the azimuthal one. In this approach, the fast
magnetosonic mode is strongly evanescent, and only a trans-

verse Alfvén wave coupled to slow mode magnetosonic
waves can be described. In such a case, the perturbation of
the total pressure is zero and thus this assumption is relevant
to the thin magnetic tube approximation. In particular, this
approach was applied for slow magnetosonic pulses propa-
gating along a dipole magnetic tube in the Jovian magneto-
sphere(see Refs. 10 and 11).

The behavior of the plasma and the dynamics of the
magnetic tube are strongly dependent on the ratio of the
background plasma and magnetic field pressures in the tube,
which is called theb parameter of the plasma. Other impor-
tant factors are curvature and convergence of magnetic field
lines which can affect MHD wave propagations along the
magnetic tube.

In our present work we analyze the propagation of
Alfvén waves along a nonstraight magnetic tube and, in par-
ticular, we focus attention on the effects related to the plasma
b parameter, the curvature radius, and the convergence of
magnetic field lines. We also study the dissipation of Alfvén
waves which is related to their reflections from the boundary
with a finite conductivity. We consider the particular case of
the meridional polarization of the wave pulses propagating
along the magnetic flux tube. The background plasma is as-
sumed to be in equilibrium state with constant temperature
and density.

II. BASIC EQUATIONS AND BOUNDARY CONDITIONS

In the dissipationless approximation, the magnetic field
and plasma parameters are determined by the ideal MHD
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equations12 which are commonly used for space plasmas,

r
]V

]t
+ rsV · = dV + = P −

1

4p
sB · = dB = 0, s1d

P = P + B2/s8pd, s2d

]r

]t
+ divsrVd = 0,

]

]t
S P

rgD + sV · = dS P

rgD = 0, s3d

]B

]t
− rotsV 3 Bd = 0, divB = 0. s4d

Here,r, V, P, B are the mass density, velocity, plasma pres-
sure, and magnetic field, respectively. QuantityP is the total
pressure(the sum of magnetic and plasma pressures) andg is
the polytropic index. The assumption of a large azimuthal
wave number implies the transversal length scale of a wave
perturbation to be much smaller than the longitudinal length
scale with respect to the magnetic field. In this approxima-
tion the total pressure can be considered to be constant inside
the tube and equal to the total pressure outside the tube.

For computational convenience, we introduce dimen-
sionless parameters

r̃ = r /r0, t̃ = tVa/r0, P̃ = P/sr0Va
2d,

r̃ = r/r0, B̃ = B/B0, Ṽ = V/Va, s5d

where r0 is a spatial scale used for the normalization, sub-
script 0 corresponds to background parameters at some point,
Va is the Alfvén velocity,r0 is the background mass density,
andB0 is the characteristic strength of the undisturbed mag-
netic field. The background plasma pressure and density are
considered to be constant.

In dimensionless units, the momentum equation and the
total pressure are

r̃
]Ṽ

]t
+ r̃sṼ · = dṼ + = P̃ − sB̃ · = dB̃ = 0, s6d

P̃ = P̃ + B̃2/2. s7d

In these normalized units, Eqs.(3) and (4) are not
changed and thus are the same.

The magnetic field lines are assumed to be connected
with a surface which has a finite conductivity. In case of the
magnetic tubes in a planetary magnetosphere, a conducting
surface is the ionosphere of the planet. At the boundary sur-
face, we use the relationship between the electric field and
magnetic field perturbations

c

4p
n 3 dB = SsE, s8d

which is based on a local Ohm’s law. HereSs is a conduc-
tivity of the boundary surface andn is the normal unit vector.
The undisturbed magnetic vector is assumed to be parallel to
the unit vectorn. For an ideal conducting plasma, the electric
field is equal to

E = −
1

c
V 3 B, s9d

wherec is the speed of light andV is the plasma velocity.
For small perpendicular perturbations, Eqs.(8) and (9)

yield

V =
c2

4pSsB
dB. s10d

In dimensionless form, Eq.(10) is

ṽ =
Sa

Ss
dB̃, s11d

whereSa is the Alfvén conductivity

Sa =
c2

4pVas
s12d

and Vas is the local Alfvén speed. This boundary condition
determines reflections of incoming MHD waves.

In the following, for simplicity, the tilde for the dimen-
sionless quantities is left out.

III. EQUATIONS FOR A MAGNETIC TUBE IN FROZEN-
IN COORDINATES

We introduce frozen-in material coordinatessa ,f ,cd
corresponding to Lagrange fluid particles connected with the
frozen-in magnetic field lines(see details in the Appendix).
The first coordinatea describes the distribution of the mass
of plasma along a magnetic flux tube of unit flux, and thus it
is expressed by the integral

a =E
0

s

r/Bds8, s13d

where s is the distance along the magnetic tube. The two
other coordinatessf ,cd are considered to be the Euler po-
tentials for the magnetic field which are defined by the fol-
lowing vector equation:

B = = f 3 = c. s14d

From this definition it follows that the gradients of these
quantities are orthogonal to the magnetic field:

B · = f = 0, B · = c = 0. s15d

This means that the Euler potentials conserve their values
along a magnetic field line.

In the frozen-in material coordinates described above
and also in the Appendix, we have the system of equations as
follows:

]V

]t
−

]B

]a
+

1

r
= P = 0, s16d

P +
1

2
B2 = P,

]

]t
SB

r
D −

]V

]a
= 0, s17d
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]

]t
S P

rgD = 0,
Dsx,y,zd

Dsa,f,cd
=

1

r
. s18d

Here,Dsx,y,zd /Dsa ,f ,cd is the Jacobian:

Dsx,y,zd/Dsa,f,cd = xasyfzc − yczfd − xfsyazc − yczad

+ xcsyazf − yfzad,

where the subscriptssa ,f ,cd denote partial derivatives with
respect to the corresponding variables.

The components of velocity and magnetic field are pro-
portional to the corresponding derivatives of the position
vector,

V =
]r

]t
, B = r

]r

]a
. s19d

Relation(16) is the momentum equation,(17) are the expres-
sions for the total pressureP and the induction equation, and
(18) expresses the adiabatic law and the mass conservation.

IV. DESCRIPTION BY VARIABLES ADAPTED TO A
MAGNETIC FLUX TUBE

Hereafter, the magnetic field is assumed to be axisym-
metric. Perturbations of a magnetic flux tube can be de-
scribed in terms of suitable orthogonal curvilinear coordi-
natess ,l ,z related to a given magnetic tube. Here variable
s is considered to characterize the displacement of a fluid
particle along a magnetic field line and variablesl ,z corre-
spond to independent displacements perpendicular with re-
spect to the magnetic field. The total displacement squared is
determined by the quadratic form

ds2 = g1dl2 + g2ds2 + g3dz2, s20d

where g1, g1, and g3 are the metric coefficients which are
expressed through the position vector derivatives with re-
spect to the variablessl ,s ,zd,

g1 = U ]r

]l
U2

, g2 = U ]r

]s
U2

, g3 = U ]r

]z
U2

. s21d

The magnetic field strength and velocity squared are deter-
mined by the derivatives of the total displacement(20),

V2 = g1lt
2 + g2st

2 + g3zt
2, s22d

B2 = r2sg1la
2 + g2sa

2 + g3za
2d. s23d

Here subscripts “t” and “a” denote derivatives with respect
to the timet and mass coordinatea, respectively.

For simplicity, we consider only the case where the met-
ric coefficients as well as the total pressure are not dependent
on the parameterz.

Finally, transformations to the new variables yield the
equations for the parallel and perpendicular displacements,

]st

]t
−

]rsa

]a
+

1

g2

]g2

]l
sstlt − rsalad +

1

2g2

]g2

]s
sst

2 − rsa
2d

−
1

2g2

]g1

]s
slt

2 − rla
2d −

1

2g2

]g3

]s
szt

2 − rza
2d +

1

rg2

]P

]s
= 0,

s24d

]lt

]t
−

]rla

]a
+

1

g1

]g1

]s
sstlt − rsalad +

1

2g1

]g1

]l
slt

2 − rla
2d

−
1

2g1

]g2

]l
sst

2 − rsa
2d −

1

2g1

]g3

]l
szt

2 − rza
2d +

1

rg1

]P

]l

= 0, s25d

]zt

]t
−

]rza

]a
+

1

g3

]g3

]l
sztlt − rzalad

+
1

g3

]g3

]s
sztst − rzasad +

1

rg3

]P

]z
= 0. s26d

This system of coupled partial differential equations de-
scribes the propagation of transverse and field-aligned MHD
waves along a curved thin magnetic flux tube. These equa-
tions allow one to analyze the effects of interaction between
the transverse and field-aligned modes, as well as the effects
related to the convergence of the magnetic field lines.

The field-aligned equation is transformed into

]sÎg2std
]t

−
]sÎg2rsad

]a
+

1

2Îg2

]g2

]l
sstlt − rsalad

−
1

2Îg2

]g1

]s
slt

2 − rla
2d −

1

2Îg2

]g3

]s
szt

2 − rza
2d +

1

rÎg2

]P

]s

= 0. s27d

The total pressure derivative is

]P

]s
=

]P

]a

1

sa

− S ]P

]l
la +

]P

]z
zaD 1

sa

. s28d

Hereafter, we assume the total pressure to be a function of
two variablesl, s and thus we cancel the derivative]P /]z
in the further expressions. The total pressure definition leads
to the equation

1
Îg2rsa

]P

]a
−

]srÎg2sad
]a

=
]P

]a

1
Îg2rsa

+
1

Îg2rsa

]

]a
sg1r2la

2 + g3r2za
2d. s29d

Using Eqs.(28) and (29), we transform Eq.(27) to

]srÎg2std
]t

+
1

rÎg2sa

]P

]a
+

1

2Îg2

]g2

]l
sstltd −

1

2Îg2

3]g1

]s
slt

2 − rla
2d −

1

2Îg2

]g3

]s
szt

2 − rza
2d +

1
Îg2rsa

]

]a

3sg1r2la
2 + g3r2za

2d −
1

rÎg2sa

S ]P

]l
+

1

2

]g2

]l
r2sa

2Dla

= 0, s30d

where the plasma pressureP and the densityr are coupled
by the adiabatic equation

P = 1
2b0rg, s31d

and the density is determined by the algebraic equation
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1
2b0rg + 1

2g1r2la
2 + 1

2g2r2sa
2 + 1

2g3r2za
2 = Psl,s,zd. s32d

Here, quantityb0 is the plasmab parameter defined asb0

=8pP0/B0
2, whereP0 and B0 are the dimensional values of

the plasma pressure and the magnetic field strength used for
the normalization(5).

Next we transform Eq.(25) for the transverse compo-
nent l. Assuming the background plasma to be in a hydro-
static equilibrium, we have a relation between the magnetic
tension and the total pressure gradient

]P

]l
+

1

2q2

]g2

]l
B2 = 0. s33d

Here,B is the background magnetic field strength which
is assumed to be a known function ofl, s.

Using the latter equation, we substitute the expression
for the total pressure gradient into Eq.(25)

]lt

]t
−

]rla

]a
+

1

g1

]g1

]s
sstlt − rsalad +

1

2g1

]g1

]l
slt

2 − rla
2d

−
1

2g1

]g2

]l
st

2 +
1

2g1g2r

]g2

]l
sg2r2sa

2 − B2d

−
1

2g1

]g3

]l
szt

2 − rza
2d = 0. s34d

The total pressure can be expressed through the background
parameters

P = 1
2b0 + 1

2B2. s35d

From Eqs.(32) and(35) for the total pressure, it follows that

g2r2sa
2 − B2 = b0s1 − rgd − g1r2la

2 − g3r2za
2 . s36d

Taking into account Eq.(36), we finally obtain

]sÎg2std
]t

+
1

rÎg2sa

]P

]a
+

1

2Îg2

]g2

]l
sstltd −

1

2Îg2

]g1

]s
slt

2

− rla
2d −

1

2Îg2

]g3

]s
szt

2 − rza
2d +

1
Îg2rsa

]

]a
sg1r2la

2

+ g3r2za
2d −

1

rÎg2sa

1

2g2

]g2

]l
fb0s1 − rgd − g1r2la

2

− g3r2za
2gla = 0,

]lt

]t
−

]rla

]a
+

1

g1

]g1

]s
sstlt − rsalad +

1

2g1

]g1

]l
slt

2 − rla
2d

−
1

2g1

]g2

]l
st

2 +
1

2g1g2r

]g2

]l
fb0s1 − rgd − g1r2la

2

− g3r2za
2g −

1

2g1

]g3

]l
szt

2 − rza
2d = 0. s37d

This system of equations can substantially be simplified after
neglecting the second order terms with respect to the pertur-
bations. Thus, the linearized equations are

]sÎg2std
]t

+
1

B

]dP

]a
= 0, s38d

]sg1ltd
]t

−
]sg1lad

]a
−

1

g2r

]g2

]l
dP = 0, s39d

]sg3ztd
]t

−
]sg3zad

]a
= 0, s40d

where

dP =
gb0

b0sg − 2d + 4P
FS ]P

]s
−

]g2

]s

B2

2g2
Dds

+ S ]P

]l
−

]g2

]l

B2

2g2
Ddl − Îg2BdsaG . s41d

The background dimensionless density is assumed to be
constant,r=1.

One can see that Eq.(39) for the perpendicular pertur-
bation dl is coupled with the plasma pressure perturbation
by the term proportional to the plasmab parameterb0. And
the equation for the field-aligned perturbations is coupled
with the perpendicular perturbations by the term in expres-
sion (41) which is also proportional to the plasmab param-
eter.

V. EFFECTS OF A CURVATURE OF MAGNETIC FIELD
LINES

To analyze the effects related to a finite curvature of
magnetic field lines, we consider a simple magnetic field
configuration with azimuthal magnetic field. The geometrical
situation for this case is shown in Fig. 1(a).

In such a case, appropriate coordinates are the cylindri-
cal onessr ,u ,zd. In the equations above, we substitute cylin-
drical coordinates and the corresponding metric coefficients,
instead of the general ones, which are given by

l = r, s = u, z = z, g1 = 1, g2 = r2, g3 = 1. s42d

Then, the system of equations[Eqs.(38)–(41)] is reduced to

]srdutd
]t

+
1

B

]dP

]a
= 0, s43d

]drt

]t
−

]dra

]a
−

2

r
dP = 0, s44d

]dzt

]t
−

]dza

]a
= 0, s45d

where

dP =
gb0

b0sg − 2d + 4P
FS ]P

]r
−

B2

r
Ddr − rBduaG . s46d

The undisturbed magnetic field lines are circles, and thus
the background magnetic field strength and radius are con-
stant along the magnetic tube. The normalized values are

B = 1, r = 1. s47d

The total pressure is a function ofr. In our normalized units
it is P=1/s2r2d+b0/2, and thus the gradient of the total
pressure is
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]P

]r
= −

1

r3 = − 1. s48d

Substituting expression(46) for the plasma pressure pertur-
bation, we obtain the equations

]dut

]t
− e

]dua

]a
− 2edra = 0, s49d

]drt

]t
−

]dra

]a
+ 2edua + 4edr = 0, s50d

]dzt

]t
−

]dza

]a
= 0,

where

e =
gb0

2 + gb0
. s51d

One can see from Eqs.(49) and (50) that the interaction
between transverse and field-aligned wave perturbations is
controlled by the plasmab parameter.

It is useful to rewrite system[Eqs. (49) and (50)] in
dimensional form with respect to the longitudinalds=Rdu
and perpendiculardr displacements

]2ds

]t2
− eVa

2]2ds

]s2 − 2eVa
2 1

R

]dr

]s
= 0, s52d

]2dr

]t2
− Va

2]2dr

]s2 + 2eVa
2 1

R

]ds

]s
+ 4eVa

2 1

R2dr = 0, s53d

]2dz

]t2
− Va

2]2dz

]s2 = 0. s54d

Heres is the distance along the magnetic field line,Va is the
Alfvén speed, andR is the curvature radius of the magnetic
field line. The equations for the transversedr and longitudi-
nal ds modes are coupled by the terms proportional to
b0Va

2/R. The third equation for the perturbations along thez
axis is not coupled with the others.

Fourier transformations applied to Eqs.(52) and (53)
lead to the algebraic system for the amplitudes

seVa
2k2 − v2dds+ 2ikeVa

2 1

R
dr = 0, s55d

− 2ikeVa
2 1

R
ds+ SVa

2k2 − v2 + 4eVa
2 1

R2Ddr = 0. s56d

The dispersion equation is given by

v4 − v2fskVad2se + 1d + 4eVa
2/R2g + eskVad4 = 0. s57d

The dispersion equation determines two phase velocities cor-
responding to the fastsVfd and the slowsVsd modes,

Vf = Vahse + 1d/2 + 2e/skRd2

+ Îs1 − ed2/4 + 2ese + 1d/skRd2 + 4e2/skRd4j1/2,

s58d

Vs = Va
Îe/hse + 1d/2 + 2e/skRd2

+ Îs1 − ed2/4 + 2ese + 1d/skRd2 + 4e2/skRd4j1/2.

s59d

In the particular case of a straight magnetic tube the
transverse and longitudinal modes are completely decoupled.
In the limiting caseR→`, expressions(58) and (59) are
simplified to those corresponding to the fast and slow phase
velocities for a straight magnetic tube:

Vf = Va =
B0

Î4pr0

, s60d

Vs = ÎeVa =
ÎgP0B0

ÎgP04p + B0
2

=
CsVa

ÎCs
2 + Va

2
. s61d

Here Cs is the sonic speed. In our study, the background
plasma parameters inside the magnetic tube are considered to
be equal to the external ones. In this particular case the phase
speed of the fast kink mode is equal to the Alfvén speed. In
the more general case of different internal and external pa-
rameters, the phase speed of a fast kink is between the ex-
ternal and internal Alfvén speeds.6,13 In the approximation of
a large azimuthal wave number(the longitudinal wave length

FIG. 1. Sketches of a magnetic field geometry for three models:(a) Azi-
muthal magnetic field,(b) radial magnetic field, and(c) dipole magnetic
field.
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is much larger than the perpendicular one), the phase speed
of the slow magnetosonic wave(sausage mode) is deter-
mined by the internal magnetic field and plasma parameters.

For a finitekR, the phase velocity is a function of the
wave number. For large numberskR@1, the asymptotic ex-
pressions in terms of order 1/skRd are given by

Vf < VaF1 + 2
e

s1 − ed
1

skRd2G = Vaf1 + gb0/skRd2g, s62d

Vs <
VaCa

ÎVa
2 + Cs

2F1 + 2
e

s1 − ed
1

skRd2G−1

=
VaCs

ÎVa
2 + Cs

2

1

f1 + gb0/skRd2g
. s63d

Here terms of order 1/skRd4 are neglected. These formulas
show the dispersion effects to be of orderb / skRd2.

From Eqs.(55) and (56) we find a relationship between
the transverse and field-aligned perturbations. For the fast
kink mode, the field-aligned displacement and velocity in-
duced by the transverse perturbation are given by

ds= 2ikVa
2 e

R

dr

sv2 − eVa
2k2d

< 2i
e

kR

dr

s1 − ed
, s64d

dvs = ivds< − 2Va
e

R

dr

s1 − ed
. s65d

The last two equations contain only the first order terms
with respect to the curvatures,1/Rd.

The phase velocities given by formulas(58) and(59) are
shown in Fig. 2 as functions of the dimensionless parameter
kR. Curves 1, 2, and 3 are corresponding to the Alfvén wave
for e’s 0.1, 0.5, 1, and curves 4, 5, and 6 are corresponding to
the magnetosonic slow wave for the samee.

In a curved magnetic tube, the phase velocity of the
Alfvén wave is larger than that in a straight magnetic tube.
With regard to the slow mode waves propagating along a
curved magnetic tube, the curvature effect is quite opposite.
The phase velocity of a slow magnetosonic wave in a curved
magnetic tube is less than that in a straight tube.

This effect can be explained qualitatively as follows: If a
curved magnetic tube is pushed radially away or towards the
center of curvature, then the variation of the volume of the
magnetic tube leads to a decrease or increase of the plasma
density and pressure, respectively. The variation of the
plasma pressure is proportional to the displacementdl,
namely,dP~−dlb0/R. In a curved magnetic field, the mag-
netic tension leads to a force of buoyancy affecting the mag-
netic flux tube. In particular, this buoyancy is the reason for
interchange instability. Magnetic tubes with enhanced
plasma pressure are forced to move away from the center of
curvature. In the opposite case of a decreased plasma pres-
sure inside the tube, the buoyancy force is directed towards
the curvature center. Hence the magnetic field curvature
causes the additional buoyancy forcesf ~−dP/R
~dlb0/R2d which is acting opposite to the displacement of
the magnetic field line. This force is the reason for the dis-
persion effect. Because of this force, the resulting rigidity of
the curved magnetic field line is larger and the oscillation
periodT is shorter than that of a straight magnetic tube for
the same wave length. Therefore, in a curved magnetic tube,
the phase velocity of the fast kink mode is larger than that in
a straight magnetic tube for the same wave length.

In the case of a slow magnetosonic wave, the plasma
pressure perturbations are propagating along the magnetic
tube. For positive and negative plasma pressure perturba-
tions, the buoyancy force is directed outwards and towards
the curvature center, respectively. The resulting buoyancy
force acting on a small part of the magnetic tube has a non-
zero projection along the curved magnetic field line, and it
compensates partially for the force of the plasma pressure
gradient. This effect is diminishing the resulting force acting
opposite to the longitudinal displacement. Because of that
the period of the slow wave oscillation is larger, and the slow
wave speed is less than that in a straight magnetic tube for
the same wave number.

Figures 3 and 4 present the results of calculations of a
pulse propagation for the initial perpendicular displacement
and plasma velocity,

dr = dr0 exps− 20a2d, u = a,

drt = − 40dr0a exps− 20a2d. s66d

The initial field-aligned perturbations are assumed to be zero.
The calculation results correspond to a plasmab, b0

=0.1, and a polytropic index,g=2. The numerical solution is
obtained on the base of a finite difference Lax–Wendroff
scheme.

Figure 3 shows the radial displacement and the radial
components of the magnetic field and velocity as functions
of the azimuthal angle for different times.

In addition, Fig. 4 shows the azimuthal displacement and
azimuthal components of the magnetic field and velocity as

FIG. 2. Phase velocities of the Alfvén(curves 1, 2, and 3) and slow mag-
netosonic(curves 4, 5, and 6) waves corresponding toe parameters(1, 0.5,
0.1), respectively.
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functions of the azimuthal angle for different times. The per-
turbations are scaled to the initial radial displacement ampli-
tudedr0.

As can be seen in the figures, the perpendicular pertur-
bations induce the field-aligned compressible perturbations
which are of two types. The first one is a slow magnetosonic
wave propagating with sonic speed along the magnetic tube.
The second one is a compressible mode propagating together
with the perpendicular perturbations with Alfvén speed.
These results indicate that in a curved magnetic flux tube,
Alfvén waves are not incompressible. They are accompanied
by perturbations of the plasma pressure and density, as well
as a field-aligned velocity. The amplitude of the field-aligned
plasma velocity perturbation is approximately proportional
to the background plasmab parameter. The dimensional par-
allel velocity amplitude is about 2b0Vadr /R.

In addition, the curvature of magnetic field lines brings
about dispersion effects for Alfvén waves which are related
to the last term in Eq.(50).

VI. ALFVÉN WAVES IN A CONVERGING MAGNETIC
FIELD

In this section, we study an influence of convergence of
magnetic field lines on Alfvén wave propagation along a
magnetic flux tube. We first consider a simple model of the

magnetic field configuration with straight magnetic field
lines perpendicular to aZ axis, which are converging radially
towards this axis. The geometrical situation corresponding to
this model is shown in Fig. 1(b). In this case we also use
cylindrical coordinatessr ,u ,zd. In Eqs.(38)–(40) we substi-
tute the cylindrical coordinates and the specified metric co-
efficients,

l = u, s = r, z = z, g1 = r2, g2 = 1, g3 = 1. s67d

After substituting the metric coefficients, the system of equa-
tions (38), (34), and(40) yields

]sr2dutd
]t

−
]sr2duad

]a
= 0, s68d

]drt

]t
+

1

B

]dP

]a
= 0, s69d

dP = −
gb0r

2

s2 + gb0r
2d
Sdr

r3 +
dra

r
D , s70d

]dzt

]t
−

]dza

]a
= 0, s71d

wherer =Î2a

FIG. 3. Transverse displacement and perturbations of the magnetic field and
velocity corresponding to the Alfvén pulse in the azimuthal tube.

FIG. 4. Longitudinal displacement and field-aligned perturbations of the
magnetic field and velocity induced by the Alfvén pulse in the azimuthal
magnetic tube.
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The radial magnetic field lines are not curved, and thus
there is no interaction between Alfvén and compressible
waves.

Figure 5 shows the propagation of the wave front carry-
ing the electric field along the radial magnetic tube. From top
to bottom there are shown the magnetic field, the velocity,
and the electric field perturbations, respectively, as functions
of the distance for different times. The wave is produced by
the plasma acceleration at the magnetic tube boundarysr
=1,a=0.5d, where the velocity is given as an increasing
function of time with a saturation

dlt = Vstd = dV0htanhf200st − 0.3dg + 1j. s72d

The initial displacement and its derivatives are assumed to be
equal to zero. The initial plasmab is taken to beb0=0.1.

At the conducting boundarysrmind we use condition(10)
for the perpendicular perturbations

ut − mua = 0, s73d

where parameterm characterizes the dissipative properties of
the boundary. The limiting casesm=0 andm=` correspond
to ideal conducting and dielectric surfaces, respectively.

The length scale of the wave front is increasing in the
course of the wave propagation towards the strong magnetic
field region. While the wave front does not arrive at the
reflection zone, the amplitudes of velocity and magnetic field
perturbations do not change much. In the reflection zone,
these perturbations decrease substantially towards the bound-
ary. The electric field amplitude has a rather strong enhance-
ment and it reaches its maximum at the conducting boundary.

After each reflection, the wave loses part of its energy.
The loss of the wave energy is dependent on the conductivity
of the boundary surface as well as on the ratiormax/ rmin.

The next model with a strongly converging magnetic
field is that of a dipole magnetic field. In this case, the most
convenient way to study the effects of the wave propagation

is given within the frame of dipole coordinates.14 The rela-
tion between the usually used spherical coordinatessr ,ud and
the dipolar coordinatessl ,sd are given by the field line
equation and a function describing the normal to it. These
two relations are of the following form:

r = l sin2 u, r = sÎcosu. s74d

The displacementds is found to be given by

ds2 = r2du2 + dr2 + r2 sin2 udw2

=
sin6 u

1 + 3 cos2 u
dl2 +

4 cos3 u

1 + 3 cos2 u
ds2 + r2 sin2 udf2, s75d

wherew is the azimuthal angle. In accordance with Eqs.(74)
and(75), the metric coefficients can be expressed through the
u angle

g1 =
sin6 u

1 + 3 cos2 u
, s76d

g2 =
4 cos3 u

1 + 3 cos2 u
, s77d

g3 = r2 sin2 u. s78d

The spherical radius as a function ofs and l is implicitly
given by the equation

rsl,sd
l

+
rsl,sd4

s4 = 1. s79d

Substituting foru, we express the metric coefficients through
the functionrsl ,sd as follows:

g1sl,sd =
rsl,sd3

l3

1

1 + 3rsl,sd4/s4 , s80d

g2sl,sd = 4
rsl,sd6

l6

1

1 + 3rsl,sd4/s4 , s81d

g3sl,sd = rsl,sd3/l. s82d

For the normalization(5) we use the following param-
eters:

B0 = Bdsrmin/rmaxd3, r0 = rmax, Va = B0/Î4pr0. s83d

HereBd is the dipole magnetic field strength at the dissipa-
tive boundary of the magnetic tubesr =rmind.

The initial plasmab is taken to beb0=0.1. At the equa-
torial edge of the tubesrmax=1d, we use a boundary condi-
tion corresponding to a monotonic increase of the plasma
velocity with the saturation

dlt = Vstd = dV0htanhf200st − 0.009dg + 1j, a = 0.45.

s84d

The initial displacement as well as the magnetic field pertur-
bation are assumed to vanish. At the conducting surface for
rmin we assume condition(11) with the coefficient m
=Sa/Ss=0.5.

FIG. 5. Propagation of the wave front along the radially converging mag-
netic field towards the center of the field.
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Figure 6 shows the propagation of the wave front along
the dipole magnetic tube. This wave carries the electric field
from the equatorial boundary under the condition(84). From
top to bottom there are shown the magnetic field, the veloc-
ity, and the electric field perturbations, respectively, as func-
tions of the radial distance for different times in units of
rmax/Va. The ratiormax/ rmin is assumed to be equal to 10.

Until the reflection zone, the velocity amplitude in-
creases only slightly during the wave propagation. In the
reflection zone, the amplitudes of the velocity and the mag-
netic field perturbations are decreasing functions of the ra-
dius r, and they are very small in the vicinity of the conduct-
ing boundaryrmin.

The electric field amplitude is obtained by multiplication
of the plasma velocity amplitude with the dipole magnetic
field strength, and it gives evidence of a monotonic increase
until the conducting boundary.

Figure 7 indicates the influence of the magnetic field
convergence on the wave dissipation. We present the average
velocity perturbations in the different model magnetic tubes
as functions of time. The velocity is normalized to its
asymptotic values, and the time is scaled to the double time
interval of the Alfvén wave propagation from one boundary
to the other. From top to bottom we show the plots corre-
sponding to the different models: A uniform magnetic tube;
radial magnetic tubes for three ratios ofrmax/ rmin; a dipole
magnetic tube forrmax/ rmin=10. The dissipative parameter of

the conductive surface is the same for all cases, namely,m
=0.5.

In the case of the uniform magnetic tube, convergence
effects are absent. For the radial magnetic tube, convergence
effects exist and they are stronger for larger ratios of
rmax/ rmin. For the dipole tube, convergence effects are the
most pronounced. One can see from the figure that the con-
vergence of the magnetic field brings about an enhancement
of the relaxation time for Alfvén waves in the magnetic tube.
For the uniform magnetic field, perturbations practically dis-
appear after two reflections. But in the case of the dipole
field, the Alfvén waves manifest to have many reflections
without a noticeable decrease of their amplitude.

VII. CONCLUSIONS

A large azimuthal wave number approach is applied to
MHD waves propagating along nonuniform magnetic flux
tubes with a finite curvature radius. The main aspect of our
study is the influence of the curvature radius and magnetic
field convergence on MHD wave propagations along a mag-
netic tube. The results obtained are corresponding to the par-

FIG. 6. Propagation of the wave front along the dipole magnetic tube to-
wards the dipole.

FIG. 7. Average velocity perturbations in the tube as functions of time in the
cases of uniform, radial, and dipole magnetic flux tubes.
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ticular case of the meridional polarization of the wave pulses
propagating along curved axisymmetric magnetic field lines.

We obtained that a finite curvature radius of magnetic
field lines brings about the interaction between transversal
and field-aligned compressible perturbations. This interaction
is more pronounced for larger plasmab parameters. The am-
plitude of the induced field-aligned velocity perturbation is
proportional to the background plasmab parameterb0, as
well as to the ratio of the displacement of the magnetic field
line dr and the curvature radiusR, dVi ,2b0Vadr /R. The
magnetic field curvature affects also the dispersion of Alfvén
waves which is dependent on the parameterb0/ skRd2, where
k is the wave number.

The length scale of Alfvén perturbations propagating
along a narrowing magnetic tube increases proportionally to
the magnetic field strength. The amplitudes of velocity and
magnetic field perturbations do not change much while the
wave does not arrive at the reflection zone. This leads to a
strong enhancement of the electric field amplitude during the
wave propagation in the direction of the magnetic pressure
gradient.

The reflection stage starts as soon as the length scale of
the wave front becomes of the order of the distance from the
boundary. The wave is reflecting rather from a very narrow
“hole” of the magnetic tube than from the conducting bound-
ary in cases of sufficient large wave length scales as well as
large ratios ofSmax/Smin, whereSmax andSmin are the maxi-
mal and minimal cross sections of the magnetic tube. In such
cases, the wave energy flux to the conducting surface atr
=rmin is rather small, and thus the dissipation of the wave
perturbations is very weak irrespective of a finite conductiv-
ity of the boundary. The wave length scale is a crucial pa-
rameter for the wave propagation along a strongly narrowing
magnetic flux tube. As mentioned above, the wave length
scale d is increasing proportionally to the magnetic field
strength in the course of the wave propagationd
,d0Bsrd /B0. Reflection takes place whend is of order ofr,
and thus the reflection zone can be estimated from the con-
dition d0Bsr8d /B0, r8. For a dipole magnetic field,
Bsr8d /B0,srmax/ rd3, and the last condition yields the estima-
tion r8, rmaxsd0/ rmaxd1/4. A conducting boundary has a minor
influence on the wave reflection if it has a sufficiently small
size rmin with respect tor8: rmin/ srmax! sd0/ rmaxd1/4. This is
the case which is illustrated in our results of calculations.

Our results can be applied to conditions of the Earth’s
magnetosphere where the perturbations of the magnetic field
and velocity can be generated near the magnetopause and
also in the magnetotail. In particular, the Alfvén pulses can
be produced by bursty reconnection of magnetic fields occur-
ring at the dayside magnetopause in cases of a southward
interplanetary magnetic field. These magnetic reconnection
pulses are associated with so-called “flux transfer events”
(FTE) which can be seen in observations.15,16The pulses can
propagate along dipolelike magnetic flux tubes towards the
ionosphere which has a finite conductivity. In this case, the
ratio rmax/ rmin is about 10. Another possible application is
that for Alfvén oscillations in coronal loops. In principle, our
analysis can be considered to be complementary to the re-
sults of paper17 where the model of a straight magnetic flux

tube is considered, and thus the effects of a finite curvature
radius as well as of convergence of the magnetic field lines
are not studied. In the model,17 the wave damping is indi-
cated to be less for the longer periods. Our results are also
favor of this tendency: In a narrowing magnetic tube, the
dissipation is weaker for larger wave periods.
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APPENDIX: FROZEN-IN MATERIAL COORDINATES

In this section, we define frozen-in material coordinates
which are very important for our. We introduce two coordi-
nates as Euler potentialsf, c, which are determined by the
equation

B = = f 3 = c. sA1d

These potentials are constant along a magnetic field line and
satisfy the equations

B · = f = 0, B · = c = 0. sA2d

Using these equations we can determine the potentials
for all magnetic field lines. Near a planet, which is consid-
ered to be the source of magnetic field, these potentialsf
and c can be identified with the magnetic latitude and lon-
gitude, respectively.

For each magnetic field line characterized by two con-
stant parametersf and c, we define a functionass,f ,cd
depending on the distances along the magnetic field line as
follows:

a =E
0

s

r/Bds8. sA3d

For each magnetic field line, we imply the origin fora where
it is equal to zero. The gradient ofa along a magnetic field
line is determined by the following equation:

B · = a = r. sA4d

Finally, we have three variablesa, f, and c which can be
used as independent coordinates. Now we have to prove that
these quantities are material coordinates.
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For this purpose, we consider Eqs.(A2) and (A4) as a
linear algebraic system with respect to the three unknown
quantitiesBx, By, andBz. The solution of this algebraic sys-
tem is

Bx =
r

J

Dsf,cd
Dsy,zd

, By =
r

J

Dsf,cd
Dsz,xd

, Bz =
r

J

Dsf,cd
Dsx,yd

,

sA5d

andJ is defined as

J =
Dsa,f,cd
Dsx,y,zd

. sA6d

Here Ds·d /Ds·d is a standard notation for Jacobians defined
as determinants of matrices of partial derivatives, i.e.,

Dsf1, f2, . . . ,fnd/Dsj1,j2, . . . ,jnd = uAu,

Ai,j = ]f i/]j j, i = 1,2, . . . ,n, j = 1,2, . . . ,n.

In a vector form, Eq.(A5) can be written as follows:

B =
r

J
= f 3 = c. sA7d

Comparing Eqs.(A7) and (A1), we find the Jacobian to
be J=r. Using the standard technique for Jacobian transfor-
mations, we find

Bx =
r

J

Dsf,cd
Dsy,zd

=
r

J

Dsx,f,cd
Dsx,y,zd

= r
Dsx,y,zd

Dsa,f,cd
Dsx,f,cd
Dsx,y,zd

= r
Dsx,f,cd
Dsa,f,cd

= r
]x

]a
. sA8d

Using analogous transformations for other components,
we obtain

By = r
]y

]a
, Bz = r

]z

]a
. sA9d

The last three equations can also be written in a vector
form

B = r
]r

]a
. sA10d

Furthermore, we use the induction equation for the
frozen-in magnetic field, which can be written in the form

d

dt
SB

r
D = SB

r
· = DV . sA11d

Hereds·d /dt is the derivative along the trajectory of a fluid
particle,

ds·d
dt

=
]s·d

]tx,y,z
+ V · = s·d

=
]s·d

]ta,f,c
+

da

dt

]s·d
]a

+
df

dt

]s·d
]f

+
dc

dt

]s·d
]c

. sA12d

Using Eqs.(A10), (A2), (A4), and(A11), and consider-
ing B andr to be functions ofsa ,f ,c ,td, we get the equa-
tion

d

dt
S ]r

]a
D =

]V

]a
. sA13d

Taking into account the kinematic relation between velocity
and position vector in the form of Eq.(A12), we get

V =
dr

dt
=

dr

]ta,f,c
+

da

dt

]r

]a
+

df

dt

]r

]f
+

dc

dt

]r

]c
. sA14d

Substituting Eq.(A14) into Eq. (A13) and using Eq.(A12),
we finally obtain the equation

]2r

]a]t
+

da

dt

]

]a
S ]r

]a
D +

df

dt

]

]f
S ]r

]a
D +

dc

dt

]

]c
S ]r

]a
D

=
]2r

]t]a
+

]

]a
Sda

dt

]r

]a
D +

]

]a
Sdf

dt

]r

]f
D +

]

]a
Sdc

dt

]r

]c
D .

sA15d

This equation can be simplified to

]r

]a

]ȧ

]a
+

]r

]f

]ḟ

]a
+

]r

]c

]ċ

]a
= 0, sA16d

where we use

ȧ =
da

dt
, ḟ =

df

dt
, ċ =

dc

dt
.

We consider the vector equation(A16) as three scalar
homogeneous algebraic equations versus the quantities

]sȧd /]a, ]sḟd /]a, and]sċd /]a.
The determinant of this system is the JacobianJ that is

not equal to zero(see above, whereJ=r). For a nonzero
determinant, this system has only the trivial solution,

]ȧ

]a
= 0,

]ḟ

]a
= 0,

]ċ

]a
= 0. sA17d

According to our definition, for each magnetic field line,
there exists a point wherea is equal to zero. This condition
and Eq.(A17) yield that ȧ=0 everywhere.

The Euler potentials can be expressed through the lati-
tude and longitude of a magnetic field line at the planet sur-

face, whereḟ=0 and ċ=0. These boundary conditions for
Euler potentials together with Eq.(A17) lead to equations

ḟ=0 andċ=0 everywhere. Thus the proved statement is

da

dt
= 0,

df

dt
= 0,

]c

dt
= 0. sA18d

Therefore, the introduced independent variablesa, f, andc
are material coordinates, and they conserve their values
along trajectories of fluid particles.

From Eqs.(A14) and (A18) we obtain the simple rela-
tion between velocity and position vector,

V =
]r

]ta,f,c
. sA19d

Using Eqs.(A2), (A4), and (A18), the dimensionless
momentum equation can be written as follows:
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dV

dt
+

1

r
= P −

1

r
sB · = dB

=
]V

]t
+

1

r
= P −

1

r

]B

]a
sB · = ad −

1

r

]B

]f
sB · = fd

−
1

r

]B

]c
sB · = cd =

]V

]t
+

1

r
= P −

]B

]a
= 0. sA20d

Using Eqs.(A2), (A4), and(A18), we transform the in-
duction equation(A11) as well,

d

dt
SB

r
D − SB

r
· = DV =

]

]t
SB

r
D −

]V

]a
= 0. sA21d

The MHD system of equations is closed by the adiabatic
equation

d

dt
sP/rgd =

]

]t
sP/rgd = 0. sA22d

In principle, frozen-in coordinates can be introduced in
different ways. The first application of frozen-in coordinates
to space plasmas was proposed in Ref. 18.
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