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Within the framework of the assumption of large azimuthal wave numbers, the equations for Alfvén
and slow magnetosonic waves are obtained using frozen-in material coordinates. These equations
are specified for the case of a nonuniform magnetic field with axial symmetry. Assuming a
meridional polarization of the magnetic field and velocity perturbations, the effects of Alfvén wave
propagation are analyzed which are related to geometric characteristics of a nonuniform magnetic
field: (a) A finite curvature radius of the magnetic field lines gbyconvergence of magnetic field

lines. The interaction between the Alfvén and magnetosonic waves is found to be strongly dependent
on the curvature radius of the magnetic tube and the local plgparameter. The electric field
amplitude and the length scale of a wave front are found to increase very strongly in the course of
the Alfvén wave propagation along a converging magnetic flux tube. Also studied is a temporal
decrease of the wave perturbations which is caused by dissipation at the conducting boundary.

© 2005 American Institute of Physid®©OI: 10.1063/1.1833392

I. INTRODUCTION verse Alfvén wave coupled to slow mode magnetosonic
) ) waves can be described. In such a case, the perturbation of
Ideal magnetohydrodynamicHD) is a commonly e total pressure is zero and thus this assumption is relevant
used tool for space plasma modeling. However, in generaly e thin magnetic tube approximation. In particular, this
the_ nonsteady three-dlmensmnql MHD equations are rathea{pproach was applied for slow magnetosonic pulses propa-
difficult to solve. A possible way is to use asymptotic €Xpan-gating along a dipole magnetic tube in the Jovian magneto-
sions with respect to small parameters which allows one t‘%phere(see Refs. 10 and 11
simplify MHD problems and to reduce their dimensionality. The behavior of the plasma and the dynamics of the
The thin magnetic flux tube approximation is an example of,agnetic tube are strongly dependent on the ratio of the
such an approach which considers a normalized thickness @f, -\ qround plasma and magnetic field pressures in the tube,
a magnetic flux tube as a small paramete®e Refs. 16\ hich is called theg parameter of the plasma. Other impor-
There exist two different kinds of models based on a thingnt actors are curvature and convergence of magnetic field

magnetic tube approximation. The first type of models corjines which can affect MHD wave propagations along the
respond to magnetic flux tubes with plasma characterized b%agnetic tube.

a relatively small plasma pressure compared to the magnetic |, o.r present work we analyze the propagation of

pressure. But out§|de of the tubes, the plasma pressure €X,¢n waves along a nonstraight magnetic tube and, in par-
ceeds the magnetic pressure. Such models are relevant o g4y, we focus attention on the effects related to the plasma
region of the solar interior. The second type of models conz harameter, the curvature radius, and the convergence of
sider magnetic flux tubes with an enhanced internal plasmg, qneic field lines. We also study the dissipation of Alfvén

pressure and decreased magnetic pressure. Outside Suclya e which is related to their reflections from the boundary
tube, the magnetic pressure is much stronger than the plasmga, 4 finite conductivity. We consider the particular case of

pressure. These models are applicable for magnetic fluye meridional polarization of the wave pulses propagating
loops in the solar coronaand also for disturbed magnetic along the magnetic flux tube. The background plasma is as-
tubes in the magnetospheres of the Earth and other magngymed to be in equilibrium state with constant temperature

tized planets. and density.
With regard to the Earth’s magnetosphere, a fruitful as-

sumption of a large azimuthal wave number was ussst

S . Lo . 1l. BASIC EQUATIONS AND BOUNDARY NDITION
Refs. 7-9 which implies that the longitudinal wave length is SIC EQUATIONS ou co ONS
much larger than the azimuthal one. In this approach, the fast In the dissipationless approximation, the magnetic field

magnetosonic mode is strongly evanescent, and only a tranand plasma parameters are determined by the ideal MHD
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equation§2 which are commonly used for space plasmas, 1
E=--V XB, 9
N 1 c
p—+p(V-V)V+VII-—(B-V)B=0, (1)
at A wherec is the speed of light an¥ is the plasma velocity.
For small perpendicular perturbations, E¢R) and (9)
I1=P+B?(8m), (2 vyield
g g(P P ¢
P g - . ) L V= éB. (10
27 div(pV) =0, §t<p7> +(V-V )(py) =0, (3 473 B
5 In dimensionless form, Eq10) is
d
— —rot(V XB)=0, divB=0. (4) S~
a V= E—a(sB, (12)
S

Here,p, V, P, B are the mass density, velocity, plasma pres-
sure, and magnetic field, respectively. Quankitys the total ~ whereX., is the Alfvén conductivity

pressurdgthe sum of magnetic and plasma pressuaesly is 2
the polytropic index. The assumption of a large azimuthal 5 = ¢ (12)
wave number implies the transversal length scale of a wave AmVas

perturba}tion to be much smaller t.han the Iongi'tudinal Ie.ngthand V,s is the local Alfvén speed. This boundary condition
s_cale with respect to the magnetic field. In this approm_mg;?etermmes reflections of incoming MHD waves.
tion the total pressure can be considered to be constant inside In the following, for simplicity, the tilde for the dimen-

the tube and equal to the total pressure 0L_1t3|de the tu_be. sionless quantities is left out.
For computational convenience, we introduce dimen-
sionless parameters

T=rtirg, T=tVyro, P=Pl(p\V?), Ill. EQUATIONS FOR A MAGNETIC TUBE IN FROZEN-
IN COORDINATES

p=plpo, B=BIBy, V=VIV, ®) We introduce frozen-in material coordinatés, ¢, )
wherer, is a spatial scale used for the normalization, sub-~Lorresponding to Lagrange fluid particles connected with the
script 0 corresponds to background parameters at some poifozen-in magnetic field linegsee details in the Appendix
V, is the Alfvén velocity,p, is the background mass density, The first coordinater describes the distribution of the mass
andB, is the characteristic strength of the undisturbed mag®f Plasma along a magnetic flux tube of unit flux, and thus it
netic field. The background plasma pressure and density afé expressed by the integral
considered to be constant. s
In dimensionless units, the momentum equation and the a:f p/Bds, (13
total pressure are 0

N _ _ L _ where s is the distance along the magnetic tube. The two
}35 +p(V-V)V+VII-(B-V)B=0, (6) other coordinate$¢, ) are considered to be the Euler po-
tentials for the magnetic field which are defined by the fol-
~ o~ ~ lowing vector equation:
I1=P+B?2. (7)
B=V¢pX Vi (14
In these normalized units, Eq$3) and (4) are not
changed and thus are the same. From this definition it follows that the gradients of these
The magnetic field lines are assumed to be connecteguantities are orthogonal to the magnetic field:
with a s_urface w_hlch has a finite conductivity. In case of th_e B-V4=0, B-Vy=0, (15)
magnetic tubes in a planetary magnetosphere, a conducting
surface is the ionosphere of the planet. At the boundary surfhis means that the Euler potentials conserve their values
face, we use the relationship between the electric field angiong a magnetic field line.

magnetic field perturbations In the frozen-in material coordinates described above
c and also in the Appendix, we have the system of equations as
—n X B=3E, (8)  follows:
417
S . N B 1
which is based on a local Ohm’s law. HeXg is a conduc- —-—+-VII=0, (16)
tivity of the boundary surface andis the normal unit vector. a da p
The undisturbed magnetic vector is assumed to be parallel to
the unit vecton. For an ideal conducting plasma, the electric P+ }BZ: ul ﬁ(ﬁ) _ N -0 (17)
field is equal to 2 " oat\p) da
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a( P D(x,y,2 1 I &p)\a 109, 1 99,
—|—= /=0, —/—————=-. 18 — - N Mo A2 = pA?
at(,ﬂ) D(wd.d) p 18 i gy a0 TN 50 (R
Here,D(X,y,2)/D(a, ¢, ¢) is the Jacobian: 1 r?gz( —p?) - é’gg(g o) +
t t
D(%,Y,2/D(a, b,1) = XY g2y = YyZg) = XelYZy = YyZe) 201 I\ 201 I\ PG N
+ Xy (YaZgp ~ yz/)Za) , =0, (29
where the subscripigy, ¢, ) denote partial derivatives with 57, (ypé’a 1 (993
respect to the corresponding variables. ot om T (gt)\t plala)
The components of velocity and magnetic field are pro-
ortional to the corresponding derivatives of the position 149 141
D tor ponding b + =220 o) + =0. (26)
V:‘?_r B—p&—r (19) This system of coupled partial differential equations de-
o’ da scribes the propagation of transverse and field-aligned MHD

waves along a curved thin magnetic flux tube. These equa-
tions allow one to analyze the effects of interaction between
the transverse and field-aligned modes, as well as the effects
Pelated to the convergence of the magnetic field lines.

The field-aligned equation is transformed into

Relation(16) is the momentum equatio(i.7) are the expres-
sions for the total pressuié and the induction equation, and
(18) expresses the adiabatic law and the mass conservation

IV. DESCRIPTION BY VARIABLES ADAPTED TO A

MAGNETIC FLUX TUBE geo)  dgapo,) 1 ag,
- + — (o= poah,)
Hereafter, the magnetic field is assumed to be axisym- dt da 2\g, g A
metric. Perturbations of a magnetic flux tube can be de- 1 49, , 5 I 11
scribed in terms of suitable orthogonal curvilinear coordi-  ~ —,——( t=PN) — (- Z )+
. . . 2\g, do 2\g, do g2 do
nateso,\,{ related to a given magnetic tube. Here variable
o is considered to characterize the displacement of a fluid =0. (27
particle along a magnetic field line and variableg corre- The total q i
spond to independent displacements perpendicular with re € total pressure derivative is
spect to the magnetic field. The total displacement squared is gl _dll 1 aH g1\ 1
Aot L (28
determined by the quadratic form Jo  da o I\ A a o

— 2
ds’= g;d\* + gpdo” + g%, (20) Hereafter, we assume the total pressure to be a function of

whereg;, g;, and g; are the metric coefficients which are two variables\, o and thus we cancel the derivativél/d{
expressed through the position vector derivatives with rein the further expressions. The total pressure definition leads

spect to the variable@\, o, ), to the equation
ar ar ar |2 1l apVgyo,)
0= ||, =], 9B=| (21) ——— :
N Jdo (9§ \Ngopo, Jda da
The magnetic field strength and velocity squared are deter- P 1 ( 2)\2 g y 29
i ivati i = + —(Q1p"N, + Gap
mined by th2e derlvat|ves2 of the total displacemé&zn), Ja \@p% \’gng g 3
2 —
VA= 0N+ G207 + 0l (22 Using Eqs.(28) and(29), we transform Eq(27) to
B2= p2(g\2 + 0,02 + Gal2). (23) a(p\fg:at) 1 P LA
O\t
Here subscriptst” and “a” denote derivatives with respect a P\'gztf ia 2\g, O\ 2Jg,
to the trm_et a_n_d mass coo_rdlnate, respectively. P o 1 dgs 1 4
For simplicity, we consider only the case where the met- T (Nf—pNo) - (Q a) —
ric coefficients as well as the total pressure are not dependent 7 2\9 VGopo, O
on the parametef. 5 1 dal 1d% , 5
Finally, transformations to the new variables yield the X(G1p?\% + 93p°L2) - oo o +55P2% N
equations for the parallel and perpendicular displacements, P2
=0, (30
doy c?pO' 149, o N + 1
A da 92 PN T (TR PO ( ot = poy) where the plasma pressuPeand the density are coupled
by the adiabatic equation
_ i%( \2) - (9gg(§ pfd)+—-—=0 1o oy
2g, do NP ! 00 ’ P=3Bw’, (31

(24 and the density is determined by the algebraic equation
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3Bop” + 301p°\2 + 5000°0% + 5020°5 =TI\, 0,0). (32) KGN _ Giha) 1 99p o 0 (39

Here, quantityB, is the plasmg3 parameter defined g8, A Jax Gzp I\

=87TP0/B§, wherePy and B, are the dimensional values of

the plasma pressure and the magnetic field strength used for M - M =0, (40)
the normalization(s). s dex
Next we transform Eq(25) for the transverse compo- \yhere
nent\. Assuming the background plasma to be in a hydro- )
static equilibrium, we have a relation between the magnetic ~ sp - 7—'30[<ﬂ - @E)(g
tension and the total pressure gradient Boly=2)+ 41|\ do do 29,
a1 dg,_, (aH s BZ> —
= 2p2 33 +|—-—""—|\-Vg,Béo, |. (47)
N 20, N (339 IN 0N 20, ?
Here,B is the background magnetic field strength which ~ The background dimensionless density is assumed to be
is assumed to be a known function xf o. constantp=1.
Using the latter equation, we substitute the expression One can see that E@39) for the perpendicular pertur-
for the total pressure gradient into EQ5) bation 6\ is coupled with the plasma pressure perturbation
by the term proportional to the plasngaparameteis,. And
N _ 9PNa l&(ﬂﬁ\t po )+__()\2 \2) the equation for the field-aligned perturbations is coupled
ot da g d 29; O\ with the perpendicular perturbations by the term in expres-
1 dg, 2 1 , sion (41) which is also proportional to the plasngaparam-
+— -B .
" 201 T 2g100 O (92 ) eter
1 493
" 20, — (& =ptg)=0. (34 v. EFFECTS OF A CURVATURE OF MAGNETIC FIELD
LINES
The total pressure can be expressed through the background o
parameters To analyze the effects related to a finite curvature of

L - magnetic field lines, we consider a simple magnetic field
=3Bt 3B% (35  configuration with azimuthal magnetic field. The geometrical
situation for this case is shown in Fig(al

In such a case, appropriate coordinates are the cylindri-
90202 — B2 = Bo(1 - p?) — g1p?\2 — ggp?L2. (36)  cal onedr,#,2). In the equations above, we substitute cylin-
drical coordinates and the corresponding metric coefficients,
instead of the general ones, which are given by

From Eqs(32) and(35) for the total pressure, it follows that

Taking into account Eq.36), we finally obtain

I(VG201) 1 #, 15 1 @ N=r, 0=6, (=2, G;=1, G,=r% gz=1. (42
PO e N ——(o\y) 2 ( t
PNG20 Vg, VG2 7 Then, the system of equatiofi§gs.(38)—(41)] is reduced to
ag 1
- P)\i) 3(& a) — _(glpz)\z M + l@ - (43)
2y ’92 VGop0, 2 ot B da ’
242 1 g y 2,2
+03p°,) — — LBo(1=p") = 0g1p°\, aor, adr, 2
p\g,0, 2g, o\ —-—"--6P=0, (44)
.2 _ ot Jda r
—0Os3p ga])\a - 01
967, 95z,
N _dph, 10 1 4 — - —— =0, (45)
=t PR gl(o't)\t PO+ _&()\tz - P)\i) & Ja
ot Ja gl 291 )N
where
1 99 o2 2 2 2
- + — 1- A Jl B
2g1 N “t Zng 0 I\ ['BO( P =GN oP = ﬂo(’yy%{ <— - T) or — I’Bﬁﬂa} . (46)
o 2 PN (g’t pl?)=0. (37 The undisturbed magnetic field lines are circles, and thus

the background magnetic field strength and radius are con-

This system of equations can substantially be simplified afteptant along the magnetic tube. The normalized values are
neglecting the second order terms with respect to the pertur- g-41 =1 (47)

bations. Thus, the linearized equations are
— The total pressure is a function of In our normalized units
d(Ngy0r) +1@=0 (38) it is II=1/(2r%)+By/2, and thus the gradient of the total
ot B da ' pressure is
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FIG. 1. Sketches of a magnetic field geometry for three modejsAzi-
muthal magnetic field(b) radial magnetic field, andc) dipole magnetic
field.

Jal 1
—=-Z=-1

= 48
ar rs (48)

Substituting expressio6) for the plasma pressure pertur-
bation, we obtain the equations

986, 956
- — €

— —2eor,=0, (49)
ot [}
s, aor,
— - 242650, + 4edr =0, (50)
ot [}
904 90z, _ 0
A da
where
e= 2P0 (51)
2+vyBy

One can see from EQq$49) and (50) that the interaction
between transverse and field-aligned wave perturbations
controlled by the plasm@ parameter.

It is useful to rewrite systenfEgs. (49) and (50)] in
dimensional form with respect to the longitudinéd=R56
and perpendiculaér displacements

Phys. Plasmas 12, 012905 (2005)

P PSS o1 a0

? - GVa? - 2€Vaﬁg =0, (52)
PO PN ,1955 1

? - Va? + 26Vaﬁg + 45Va¥& =0, (53)
FPoz  ,Por

P Va? =0. (54)

Heres is the distance along the magnetic field livg,is the
Alfvén speed, andR is the curvature radius of the magnetic
field line. The equations for the transverdreand longitudi-
nal s modes are coupled by the terms proportional to
BoV2IR. The third equation for the perturbations along the
axis is not coupled with the others.

Fourier transformations applied to Eq&2) and (53)
lead to the algebraic system for the amplitudes

1
(VA2 - w?) 85+ 2ikeV§§bY =0, (55)
0ol 2,2 _ 2 21 -
- 2IkeVaEcSS+ Voke — o + 46Va§ or=0. (56)
The dispersion equation is given by
ot = 0[(KV,)%(e+ 1) + 4eVAR?] + e(kVp)*=0. (57

The dispersion equation determines two phase velocities cor-
responding to the fagls) and the slow(Vs) modes,

Vi = V,{(e+ 1)/2 + 2¢/(KR)?
+(1 - €4 + 2e(e + 1)I(KR)? + 4% (kKR}Y2,

(58)

Vo= VoVel{(e + 1)/2 + 2¢/(kR)?
+\(1 - €)%4 + 2e(e + 1)/(KR? + 46/ (KR} /2.

(59

In the particular case of a straight magnetic tube the
transverse and longitudinal modes are completely decoupled.
In the limiting caseR— «, expressiong58) and (59) are
simplified to those corresponding to the fast and slow phase
velocities for a straight magnetic tube:

Bo

Vi=V,= —=, (60)
VA4mpg
- [yPoB CyV,
V= VeV, = VY obo sVa (61)

© VyPodm+BE CZ+V2

Here C; is the sonic speed. In our study, the background
plasma parameters inside the magnetic tube are considered to
be equal to the external ones. In this particular case the phase
speed of the fast kink mode is equal to the Alfvén speed. In
the more general case of different internal and external pa-
rameters, the phase speed of a fast kink is between the ex-
ternal and internal Alfvén speefd® In the approximation of

a large azimuthal wave numbghe longitudinal wave length



012905-6 Erkaev et al. Phys. Plasmas 12, 012905 (2005)

T In a curved magnetic tube, the phase velocity of the

] Alfvén wave is larger than that in a straight magnetic tube.
With regard to the slow mode waves propagating along a
curved magnetic tube, the curvature effect is quite opposite.
The phase velocity of a slow magnetosonic wave in a curved
magnetic tube is less than that in a straight tube.

This effect can be explained qualitatively as follows: If a
curved magnetic tube is pushed radially away or towards the
center of curvature, then the variation of the volume of the
magnetic tube leads to a decrease or increase of the plasma
1 density and pressure, respectively. The variation of the
. plasma pressure is proportional to the displacem&nt
S —— namely, 5P = -8\ B,/ R. In a curved magnetic field, the mag-
----------------- p netic tension leads to a force of buoyancy affecting the mag-
1 netic flux tube. In particular, this buoyancy is the reason for
T L S L R interchange instability. Magnetic tubes with enhanced
0 2 4 6 8 10 plasma pressure are forced to move away from the center of

kR curvature. In the opposite case of a decreased plasma pres-
B sure inside the tube, the buoyancy force is directed towards
FIG. 2. Phase velocities of the Alfvéurves 1, 2, and)3and slow mag- o o ryature center. Hence the magnetic field curvature
netosonigcurves 4, 5, and)ewaves corresponding teparametersgl, 0.5, .
0.1), respectively. causes the additional buoyancy forcdfx-5P/R
= &\ B/ R?) which is acting opposite to the displacement of
the magnetic field line. This force is the reason for the dis-
persion effect. Because of this force, the resulting rigidity of
is much larger than the perpendicular pribe phase speed the curved magnetic field line is larger and the oscillation
of the slow magnetosonic wav@ausage modeis deter-  period T is shorter than that of a straight magnetic tube for
mined by the internal magnetic field and plasma parameterghe same wave length. Therefore, in a curved magnetic tube,

For a finitekR the phase velocity is a function of the the phase velocity of the fast kink mode is larger than that in
wave number. For large numbetR> 1, the asymptotic ex- g straight magnetic tube for the same wave length.
pressions in terms of order &R) are given by In the case of a slow magnetosonic wave, the plasma

pressure perturbations are propagating along the magnetic

]:Va[1+y,30/(kR)2], (62)  tube. For positive and negative plasma pressure perturba-
tions, the buoyancy force is directed outwards and towards

. the curvature center, respectively. The resulting buoyancy

V. ~ VaCa [ P 1 ] force acting on a small part of the magnetic tube has a non-

0.1
= 0.5

-

-~

<< <=2 <=
m M oMm M m M
|
-
o
1

=10

J R R RN

€
T

VWV2+C2 “(1-¢ (kR? zero projection along the curved magnetic field line, and it
V.C 1 compensates patrtially for the force of the plasma pressure
a—s (63) gradient. This effect is diminishing the resulting force acting

= 2y ) > .
V/V621+C§[1 + 7Bl (kR)’] opposite to the longitudinal displacement. Because of that
the period of the slow wave oscillation is larger, and the slow

4
Here terms of order AkR)" are neglected. These formulas wave speed is less than that in a straight magnetic tube for

show the dispersion effects to be of orggf(kR)2.
X : . the same wave number.
From Egs.(55) and(56) we find a relationship between . .
. . : Figures 3 and 4 present the results of calculations of a

the transverse and field-aligned perturbations. For the fast . L : .

. . . ; ..~ . pulse propagation for the initial perpendicular displacement
kink mode, the field-aligned displacement and velocity in- .

) . and plasma velocity,
duced by the transverse perturbation are given by
- _ 2 —

e S e & o = drgexp- 20a°), 0= a,
05=2KV o5 = 2=, (64)

R(w®-eVek)  kR(1-¢) 8= = 400 g exp(- 20a?). (66)

S5 The initial field-aligned perturbations are assumed to be zero.
(65) The calculation results correspond to a plaspas,

Ovg=iwds=~ —2V, £

A .
R1-9 =0.1, and a polytropic indexy=2. The numerical solution is
The last two equations contain only the first order termsobtained on the base of a finite difference Lax—Wendroff
with respect to the curvature-1/R). scheme.
The phase velocities given by formulgs3) and(59) are Figure 3 shows the radial displacement and the radial

shown in Fig. 2 as functions of the dimensionless parametetomponents of the magnetic field and velocity as functions
kR Curves 1, 2, and 3 are corresponding to the Alfvén waveof the azimuthal angle for different times.

for €s 0.1, 0.5, 1, and curves 4, 5, and 6 are corresponding to  In addition, Fig. 4 shows the azimuthal displacement and
the magnetosonic slow wave for the same azimuthal components of the magnetic field and velocity as
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FIG. 4. Longitudinal displacement and field-aligned perturbations of the

FIG. 3. Transverse displacement and perturbations of the magnetic field arfagnetic field and velocity induced by the Alfvén pulse in the azimuthal
velocity corresponding to the Alfvén pulse in the azimuthal tube. magnetic tube.

functions of the azimuthal angle for different times. The per‘magnetic field configuration with straight magnetic field

turbations are scaled to the initial radial displacement ampli:. : : . . .
tude or lines perpendicular to 2 axis, which are converging radially

o . ' . towards this axis. The geometrical situation corresponding to

As can be seen in the figures, the perpendicular pertur; . : g .

bations induce the field-aligned compressible perturbationtshIS model is shown in Fig. (b). In this case we also use

. cylindrical coordinategr, #,z). In Egs.(38)—(40) we substi-

which are of two types. The first one is a slow magnetosom% o . . .
) . i . ute the cylindrical coordinates and the specified metric co-
wave propagating with sonic speed along the magnetic tube

; ) ; efficients,
The second one is a compressible mode propagating togethéer
with the perpendicular perturbations with Alfvén speed. N=6, o=r, (=z, g;=r% g,=1, gz=1. (67)
These results indicate that in a curved magnetic flux tube o ) -

Alfvén waves are not incompressible. They are accompanie _fter substituting the met_rlc coefficients, the system of equa-
by perturbations of the plasma pressure and density, as welPns (38). (34), and(40) yields

as a field-aligned velocity. The amplitude of the field-aligned  4(r2s¢,) ~ ar286,)

plasma velocity perturbation is approximately proportional

= 0' (68)

. . %
to the background plasm@parameter. The dimensional par- «
allel velocity amplitude is about@V,ér/R. gor. 1asP
In addition, the curvature of magnetic field lines brings ~ —!+=—=0, (69)

about dispersion effects for Alfvén waves which are related A B da

to the last term in Eq(50).

YBOrZ or éTa
VI. ALFVEN WAVES IN A CONVERGING MAGNETIC 0
FIELD
98z, 99z,
In this section, we study an influence of convergence of =~ ", =0, (79)

magnetic field lines on Alfvén wave propagation along a o
magnetic flux tube. We first consider a simple model of thewherer =2«



012905-8 Erkaev et al. Phys. Plasmas 12, 012905 (2005)

2F ——71=0.0 — -7=0.2875 - is given within the frame of dipole coordinat¥sThe rela-
L 7=0.0575 ——7=0.345 | ) . i
- —7=0115_ - 7=0.4025 | tion between the usually used spherical coordinates) and
& == 7=01725 - - 7=0146__ ] . . . i :
g —7=0.23" ---7=05175 the dipolar coordinate$\,o) are given by the field line
N 1 - = - . . s .
o equation and a function describing the normal to it. These
I two relations are of the following form:
ok : :
2k u r=\sirf 6, r=o\cosé. (74)
g i The displacemends is found to be given by
~'r
2 ds’ =r2dé + dr? + r? sir? 0d¢?
ind
ok sin® ¢ , 4cose .
= —————d\?+ —————dd?+r?sir? 6d¢?, (75
5t PN E 1+3cod g 1+3cod 6 . (19
- 4F A 3 ) ] )
Wb ,' S k whereg is the azimuthal angle. In accordance with E@9l)
E 2k J / = 3 and(75), the metric coefficients can be expressed through the
B/ ! 6 angle
FEosl /
ok : - .5
sin® 6
0.0 0.2 0.4 0.6 0.8 1.0 = 76
r 9= 143020 (76
FIG. 5. Propagation of the wave front along the radially converging mag- 4coS 0
netic field towards the center of the field. =", (77
1+3cogd
The radial magnetic field lines are not curved, and thus g, =2 5j? g. (79)
there is no interaction between Alfvén and compressible
waves. The spherical radius as a function efand A is implicitly

Figure 5 shows the propagation of the wave front carry-given by the equation
ing the electric field along the radial magnetic tube. From top fno) r(h, o)
to bottom there are shown the magnetic field, the velocity, — + '4 =1. (79
and the electric field perturbations, respectively, as functions o
of the distance for different times. The wave is produced bysypstituting for6, we express the metric coefficients through
the plasma acceleration at the magnetic tube boundary the functionr(x,o) as follows:
=1,0=0.5, where the velocity is given as an increasing

function of time with a saturation r(n,0)° 1
gl(}\a 0’) = )\3 1+ Sr()\ )4/ ’ (80)
S\ = V(1) = 8Vp{tanH 200t — 0.3)] + 1}. (72) o) 1o
The initial displacement and its derivatives are assumed to be r(n,o)® 1
equal to zero. The initial plasm@ is taken to be3,=0.1. &\, 0)=4 NETETW S (81)

At the conducting boundarfr i) we use conditiori10)
for the perpendicular perturbations

6, — u6,=0, (73

gs(\,0) =r(\,0)3/\. (82

For the normalization(5) we use the following param-
where parametewn characterizes the dissipative properties ofeters:

the boundary. The limiting casgs=0 andu=c correspond N

to ideal conducting and dielectric surfaces, respectively. Bo=Bu(Tmi maxs To=Tmax Va=Bo/V4mpy. (83

The length scale of the wave front is increasing in theHere By is the dipole magnetic field strength at the dissipa-
course of the wave propagation towards the strong magnetic boundary of the magnetic tutfe=r,,)
—imin/-

field region. While the wave front does not arrive at the 1 - iiial plasmag is taken to beB,=0.1. At the equa-
reflection zone, the amplitudes of velocity and magnetic ﬁeldtorial edge of the tubér,,,=1), we usg a béundary condi-
max™— '

|toherturbat|tonz (t:i.o no(; change mtl;cth' :n ”th? reflt(ajcntohn Eon n corresponding to a monotonic increase of the plasma
ese perturbations decrease substantially towards the bou SJocity with the saturation

ary. The electric field amplitude has a rather strong enhance-
ment and it reaches its maximum at the conducting boundary. 6\, =V(t) = 6V{tanf200t - 0.009] + 1}, «=0.45.

After each reflection, the wave loses part of its energy. (84)
The loss of the wave energy is dependent on the conductivity
of the boundary surface as well as on the ratig/r min- The initial displacement as well as the magnetic field pertur-

The next model with a strongly converging magneticbation are assumed to vanish. At the conducting surface for
field is that of a dipole magnetic field. In this case, the most,, we assume condition1l) with the coefficient u
convenient way to study the effects of the wave propagatior3.,/>=0.5.
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FIG. 6. Propagation of the wave front along the dipole magnetic tube to- >
wards the dipole.

Figure 6 shows the propagation of the wave front along
the dipole magnetic tube. This wave carries the electric fieldFIG. 7. Average velocity perturbations in the tube as functions of time in the
from the equatorial boundary under the condit{8d). From cases of uniform, radial, and dipole magnetic flux tubes.
top to bottom there are shown the magnetic field, the veloc-
ity, and the electric field perturbations, respectively, as func-
tions of the radial distance for different times in units of the conductive surface is the same for all cases, nampely,
Fmax! Va: The ratior e/ 'min is @assumed to be equal to 10.  =0.5.

Until the reflection zone, the velocity amplitude in-  In the case of the uniform magnetic tube, convergence
creases only slightly during the wave propagation. In theeffects are absent. For the radial magnetic tube, convergence
reflection zone, the amplitudes of the velocity and the mageffects exist and they are stronger for larger ratios of
netic field perturbations are decreasing functions of the ratmax/min- FOr the dipole tube, convergence effects are the

diusr, and they are very small in the vicinity of the conduct- most pronounced. One can see from the figure that the con-
ing boundaryr . vergence of the magnetic field brings about an enhancement

The e|ectric f|e|d amp”tude iS obtained by mu'tip”cation Of the I’elaxation t|me fOI’ AIfVén waves in the magnetiC tube.
of the plasma velocity amplitude with the dipole magneticFor the uniform magnetic field, perturbations practically dis-
field strength, and it gives evidence of a monotonic increas@ppear after two reflections. But in the case of the dipole
until the conducting boundary. field, the Alfvén waves manifest to have many reflections

Figure 7 indicates the influence of the magnetic fieldwithout a noticeable decrease of their amplitude.
convergence on the wave dissipation. We present the average
velocity perturbatipns in the differgnt model magnetic tupes\/”_ CONCLUSIONS
as functions of time. The velocity is normalized to its
asymptotic values, and the time is scaled to the double time A large azimuthal wave number approach is applied to
interval of the Alfvén wave propagation from one boundaryMHD waves propagating along nonuniform magnetic flux
to the other. From top to bottom we show the plots corretubes with a finite curvature radius. The main aspect of our
sponding to the different models: A uniform magnetic tube;study is the influence of the curvature radius and magnetic
radial magnetic tubes for three ratios Qf,/rmin; @ dipole  field convergence on MHD wave propagations along a mag-
magnetic tube for .,/ rmin=210. The dissipative parameter of netic tube. The results obtained are corresponding to the par-
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ticular case of the meridional polarization of the wave pulsesube is considered, and thus the effects of a finite curvature

propagating along curved axisymmetric magnetic field linesradius as well as of convergence of the magnetic field lines
We obtained that a finite curvature radius of magneticare not studied. In the mod¥l,the wave damping is indi-

field lines brings about the interaction between transversatated to be less for the longer periods. Our results are also

and field-aligned compressible perturbations. This interactiofiavor of this tendency: In a narrowing magnetic tube, the

is more pronounced for larger plasp8gparameters. The am- dissipation is weaker for larger wave periods.

plitude of the induced field-aligned velocity perturbation is
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ary in cases of sufficient large wave length scales as well as

large ratios 0fS, .,/ Snin» Where S, ax and Sy, are the maxi-

mal and minimal cross sections of the magnetic tube. In sucAPPENDIX: FROZEN-IN MATERIAL COORDINATES

cases, the wave energy flux to the conducting surface at ) , i i . ]
=r.., is rather small, and thus the dissipation of the wave In this section, we define frozen-in material coordinates

perturbations is very weak irrespective of a finite conductiv-hich are very import_ant for our. We introduce_ two coordi-
nates as Euler potentials, i, which are determined by the

ity of the boundary. The wave length scale is a crucial pa- .
rameter for the wave propagation along a strongly narrowin&quaﬂOn

magnetic flux tube. As mentioned above, the wave length B=V ¢ X V ¢. (A1)
scale § is increasing proportionally to the magnetic field

strength in the course of the wave propagatiah These potentials are constant along a magnetic field line and
~ 5,B(r)/By. Reflection takes place whefis of order ofr, ~ Salisfy the equations
and thus the reflection zone can be estimated from the con- B-V ¢$=0, B-V#=0. (A2)

dition &B(r')/By~r’. For a dipole magnetic field,
B(r')/Bo~ (rmar)%, and the last condition yields the estima-
tioN 1" ~ I mal 8o/ Tma Y% A conducting boundary has a minor
influence on the wave reflection if it has a sufficiently smal
Size rpin With respect tar’: 1 pin/ (N max< (8o/ Tmad Y% This is
the case which is illustrated in our results of calculation
Our results can be applied to conditions of the Earth’s
magnetosphere where the perturbations of the magnetic fie
and velocity can be generated near the magnetopause a
also in the magnetotail. In particular, the Alfvén pulses ca
be produced by bursty reconnection of magnetic fields occur- s
ring at the dayside magnetopause in cases of a southward %~ p/Bds'. (A3)
interplanetary magnetic field. These magnetic reconnection
pulses are associated with so-called “flux transfer eventsFor each magnetic field line, we imply the origin f@ewhere
(FTE) which can be seen in observatiois® The pulses can it is equal to zero. The gradient of along a magnetic field
propagate along dipolelike magnetic flux tubes towards théine is determined by the following equation:
ionosphere which has a finite conductivity. In this case, the B-Va=p (Ad)
ratio rma/'min 1S about 10. Another possible application is '
that for Alfvén oscillations in coronal loops. In principle, our Finally, we have three variables, ¢, and s which can be
analysis can be considered to be complementary to the retsed as independent coordinates. Now we have to prove that
sults of paper’ where the model of a straight magnetic flux these quantities are material coordinates.

Using these equations we can determine the potentials
for all magnetic field lines. Near a planet, which is consid-
Iered to be the source of magnetic field, these potenttals
and ¢y can be identified with the magnetic latitude and lon-
s gitude, respectively.

) For each magnetic field line characterized by two con-
ant parametergh and ¢, we define a functioru(s, ¢, )
pending on the distansealong the magnetic field line as

ollows:
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For this purpose, we consider Eq#2) and (A4) as a d ( or ) Vv (A13)

linear algebraic system with respect to the three unknown i\ 5, ) ~ g0
quantitiesB,, By, andB,. The solution of this algebraic sys-
tem is Taking into account the kinematic relation between velocity

and position vector in the form of EgA12), we get
o _eD@6) o _pD) o _pD(b) P s

X~ ’ y — ’ z— ’
(A5) dt .4, dtda dtagp dtaoy
andJ is defined as Substituting Eq(A14) into Eq. (A13) and using Eq(A12),
we finally obtain the equation
3= D(e, ¢, ) A6
= Dxyd - (A0) ﬁ+d_ai(i>+d_¢i(ﬁ_f)+d_¢i<0_r)
) ) )  Jdadt  dt da\ da dt 9o\ da dt 9\ da
HereD(:)/D(:) is a standard notation for Jacobians defined
as determinants of matrices of partial derivatives, i.e., _ N i(d_a&_t‘) +i(d_¢&_r) N i(d_l//(?_r)
Mo da\ dt 9 da\ dt 9 da\ dt ayr)
D(fy.fo .. fol/D(Er e . £ = A, @ et didal el diogl dad diay
(A15)
Ajj=dfilog, 1=12,...n, j=12,...n. This equation can be simplified to
In a vector form, Eq(A5) can be written as follows: . . .
o da I dp I I
p ——+——+—-—=0, (A16)
B:3V¢>< V . (A7) dada dpda  Ipda
) ) ) where we use
Comparing Eqs(A7) and(Al), we find the Jacobian to
be J=p. Using the standard technique for Jacobian transfor- . _da . _d¢ - dy
mations, we find “Tat ¢= dt’ = dt’
_pD(@.¥) _pDxd¢) _ D(xy.2) DX ¢,¢) We consider the vector equatigAl6) as three scalar
¥ JD(y,2 JD(xy,2) pD(a, &, ) D(X,Y,2) homogeneous algebraic equations versus the quantities
D(x, b, 1) X Na)lda, d(P)! da, and ()] da.
— = (A8) The determinant of this system is the Jacohiahat is

=p =p__.
Dla.¢,4h) " oa not equal to zerqsee above, wherd=p). For a nonzero
Using analogous transformations for other componentsjeterminant, this system has only the trivial solution,
we obtain ) ) .
J J J
ay iz 2o, oo, Yo, (A17)
By = P, BZ: p—. (Ag) Jdar Jar Jar
Ja Jda
_ _ ) According to our definition, for each magnetic field line,
The last three equations can also be written in a Vectofere exists a point where is equal to zero. This condition

form and Eq.(A17) yield thata=0 everywhere.
or The Euler potentials can be expressed through the lati-
B :Pa- (A10) tude and longitude of a magnetic field line at the planet sur-

) ) ) face, Whereéz):O and ¢=0. These boundary conditions for
Furthermore, we use the induction equation for thegyjer potentials together with EGA17) lead to equations

frozen-in magnetic field, which can be written in the form éb:O andip:O everywhere. Thus the proved statement is

2)=(2v)

—| ===V V. (Al11) da _ de _ I _

dt\ p p at =0, at =0, at =0. (A18)
Hered(:)/dt is the derivative along the trajectory of a fluid . ) .
particle, Therefore, the introduced independent varialteg, and ¢

are material coordinates, and they conserve their values
ac) _ ac) VOV along trajectories of fluid particles.
dt Myyz From Eqgs.(A14) and (A18) we obtain the simple rela-
- tion between velocity and position vector,
__00) , dad() dei() dyal)

= . (A12)
Hogy dt da  dt 9 dt gy V= mar ' (AL9)
Using Eqgs.(A10), (A2), (A4), and(All), and consider- by
ing B andp to be functions of «, ¢, ,t), we get the equa- Using Egs.(A2), (A4), and (Al18), the dimensionless

tion momentum equation can be written as follows:
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