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This paper is the first approach for analyzing the influence of �-distributed particles on the modified
two-stream instability �MTSI�. It is assumed that the plasma consists of a magnetized Maxwellian
electron contribution and unmagnetized �-distributed ions drifting across the electrons. Within an
electrostatic approximation, the influence of the � parameter on the maximum growth rate of the
MTSI is evaluated for the special case of parallel drift velocity and wave propagation. © 2005
American Institute of Physics. �DOI: 10.1063/1.2065370�

I. INTRODUCTION

There are many occasions in space plasmas where ion
and electron contributions have a relative velocity to each
other. Such a situation in a plasma leads to the excitation of
various instabilities. A complete and systematic picture based
on an asymptotic study of the general dispersion relation is
presented in Ref. 1. Among the many instabilities that can be
driven by a current flowing in a plasma, this paper is devoted
to the so-called modified two-stream instability �MTSI�. The
stability of a plasma with respect to the MTSI is determined
by various parameters, including the amount and direction of
the relative velocity, the ratio of the temperatures of the dif-
ferent plasma populations, the temperature anisotropy of the
respective particle species, as well as the plasma �, i.e., the
ratio of magnetic to thermal pressures in the ambient plasma.

Considerable theoretical effort has been given to analyz-
ing the particular features of the MTSI. A complete treatise
of the electrostatic approximation in the linear regime can be
found in Ref. 2, where all main features appearing due to a
relative motion between electrons and ions are given in a
very comprehensive way. The first full electromagnetic ap-
proach is presented in Refs. 3 and 4, where the relevant
dispersion relation has been derived and solved numerically.
The authors show that, in general, the electromagnetic effects
reduce the growth rate of the MTSI. Nonlinear investigations
revealed that the MTSI is responsible for considerable
plasma heating.5–7 Recently, performing shock simulations
with a one-dimensional full particle code, the appearance of
a MTSI at the foot of a quasiperpendicular supercritical
shock has been shown in Refs. 8 and 9. An important limit-
ing case associated with the MTSI is the so-called ion-
Weibel instability �see Refs. 10–12�. This instability belongs
to the same dispersion curve as the MTSI and occurs due to
the electromagnetic response of the ion contribution.

We note that the studies mentioned above mainly focus
on the MTSI as an application to the terrestrial bow shock
and/or the current sheet in the geomagnetic tail. However,
there are more interesting application fields of the MTSI,
e.g., the flow of the solar wind around unmagnetized bodies.
Examples of such studies are given in Refs. 13 and 14 where
the MTSI in application to Mars and Venus has been consid-

ered, providing theoretical explanation for the observed elec-
tromagnetic activity in the vicinity of an unmagnetized
planet.

All of the studies mentioned above considered the case
when the particle contributions are distributed according to a
Maxwellian distribution function. In general, however, mea-
sured distribution functions may deviate considerably from a
Maxwellian one. First examples of such distribution func-
tions were given in Ref. 15, where a family of power law
distribution was introduced in order to model the suprather-
mal particles as observed by the Orbiting Geophysical Ob-
servatory 1 and 2. From then on, numerous in situ observa-
tions revealed the presence of nonthermal plasma
contributions in a variety of astrophysical plasma environ-
ments �see Ref. 16 and references therein�. Motivated by the
experimental suggestion of the validity of the family of �
distributions, considerable theoretical effort has been made
to adapt the existing kinetic theory of plasma waves to this
particular distribution function. In analogy to the well-known
plasma dispersion function for a Maxwellian plasma, which
proved to be a useful tool in the analysis of wave propaga-
tion and microinstabilities, Summers and Thorne17 were the
first to introduce the so-called modified plasma dispersion
function �MPDF� based on a �-distribution function for inte-
ger �. This result was generalized to a real � in Ref. 18,
where the proportionality of the MPDF to Gauss’ hypergeo-
metric function was also revealed. The dispersion equation
for electrostatic waves involving the MPDF has been suc-
cessfully solved in a magnetized plasma with a � distribution
in Ref. 19 for calculating the electrostatic Bernstein modes.
The � distribution has also been applied to the theoretical
analysis of the mirror instability,20–22 where it has been
shown that such a distribution effectively lowers the instabil-
ity threshold. In addition to the adoption of the � distribution
to the existing theory of plasma waves and instabilities, there
exist several approaches providing a theoretical explanation
of the occurrence of power law distributions itself �see Refs.
23–26�.

In our study, we apply a classical approach for the de-
scription of the MTSI within the framework of linear theory.
Within this approach, a coordinate system is employed in
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which the electrons are assumed to be at rest and the ions
have a relative motion u. Since the unstable waves consid-
ered have frequencies well above the ion gyrofrequency, the
ions are assumed to be unmagnetized, in contrast to the elec-
trons that are strongly magnetized. In order to keep the
analysis as transparent as possible, we impose three addi-
tional assumptions. We restrict ourselves to the consideration
of the electrostatic problem. This assumption simplifies the
analysis considerably as in the case of a potential electric
field it is sufficient to consider the dielectric response func-
tion instead of the whole susceptibility tensor. In addition,
we assume the electrons to be Maxwellian, whereas the ions
are taken to obey a �-distribution function. Finally, we as-
sume the wave vector k to be parallel to the flow velocity of
the ions.

The organization of the paper is as follows. In Sec. II we
focus on the applied coordinate system and examine the ex-
plicit expression for the susceptibility of the electron contri-
bution. Section III discusses a short derivation of the suscep-
tibility for the unmagnetized �-distributed ions. In Sec. IV
we present the numerical solution of the dispersion relation.
The paper ends with a discussion of the obtained results as
well as the outlook for future studies.

II. DIELECTRIC RESPONSE FUNCTION OF THE
ELECTRONS

A coordinate system as sketched in Fig. 1 is adopted in
the current study. We assume the wave vector k as well as
the flow direction of the ions to lie along the z axis. The
magnetic field, B0, lies in the xz plane, inclined towards the
z axis under the angle �. Thus, we have

k = � 0

0

kz,
�, u = � 0

0

uz,
�, B0 = �B0 sin �

0

B0 cos �
� . �2.1�

The choice of this particular coordinate system is due to the
fact that it keeps the analysis for the ion dielectric response
function as simple as possible since there is just one compo-
nent of the wave vector present. This simplification goes
along with a more complex form of the electron susceptibil-
ity.

As a next step, we turn our attention towards the deriva-
tion of the susceptibility for the electron contribution. For
convenience, we neglect subscript e in this section as all
physical quantities refer to the electrons only. We follow the
analysis performed in Refs. 27 and 28 and adopted to our
particularly chosen coordinate system. As we consider elec-
trostatic perturbations only, the following solution for the
disturbed distribution function, f1, can be related to the zero-
order distribution function, f0, via the Vlasov equation:27

f1�r,v,t� =
q

m
�

−�

t

E1�r�,t�� · �v�f0�v��dt�, �2.2�

where q and m refer to charge and mass of the particle,
respectively, and E refers to the electric field. The integration
is meant to be performed along the particle trajectories. The
wave electric field is assumed to be

E1 = Eei�k·r�−�t�, �2.3�

where � is the frequency. The trajectory that reaches v�=v at
t�= t is governed by the equation

dv�

dt
=

q

m
v� � B0. �2.4�

Solving this equation allows us to get for the particle veloci-
ties

vx� = vx�cos2 � cos �� + sin2 �� − vy cos � sin ��

+ vz cos � sin ��1 − cos ��� , �2.5�

vy� = vy cos �� + �vx cos � − vz sin ��sin �� , �2.6�

vz� = v1x cos � sin ��1 − cos ��� + vy sin � sin ��

+ vz�cos2 � + sin2 � cos ��� , �2.7�

with � being the electron cyclotron frequency and �= t− t�.
For the spatial coordinates we get

x� = x +
vy

�
cos ��1 − cos ��� − � sin ��vz cos �

+ vx sin �� −
sin ��

�
cos ��vx cos � − vz sin �� ,

�2.8�

y� = y −
vy

�
sin �� +

vx cos � − vz sin �

�
�cos �� − 1� ,

�2.9�

z� = z −
vy

�
sin ��1 − cos ��� −

1

2
��vz + vz cos 2�

+ vx sin 2�� +
sin �

�
sin ���vx cos � + vz sin �� .

�2.10�

Applying the traditional analysis for obtaining the suscepti-
bility, as is described in many textbooks �e.g., Refs. 27 and

FIG. 1. Sketch of the applied coordinate system.
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28�, we arrive at the following expression for the electron
susceptibility

	 =
2�p

2

kz
2vt

2 �
n=−�

�

e−
In�
�	�1 + �Z���� −
n

cos �

�

kzvt
Z���
 ,

�2.11�

where In denotes the Bessel function of the first kind, and vt

and �p refer to thermal velocity and plasma frequency, re-
spectively. Quantities 
 and � are given as


 =
kz

2vt
2

4�2 �1 − cos 2�� , �2.12�

� = �� + n��	 kz
2vt

2

2
�1 + cos 2��
−1/2

. �2.13�

In the cold limit, i.e., vt→0, the susceptibility leads to the
following asymptotic expression:

	 = −
�p

2

�2 − �2 +
�p

2

�2

�2

�2 − �2cos2 � . �2.14�

III. DIELECTRIC RESPONSE FUNCTION OF THE
IONS

As in the previous section, for convenience, here we
drop subscript i, which denotes the particle species. For the
detailed derivation of the dielectric response function, we
refer to Refs. 17–19. Here, we briefly outline the main for-
malism of how the ion susceptibility is obtained. In general,
the susceptibility in an unmagnetized plasma is given as2

	 =
4�e2

mk2 � 1

� − k · v
k ·

�f0

�v
dv . �3.1�

For our study, the zero-order distribution function is assumed
to be of the following form:19

f0�v� = A�	1 +
1

�v�
2 �vx

2 + vy
2 + �vz − uz�2�
−�−1

, �3.2�

where � is the spectral index, and

A� = 	 1

��v�
2
3/2 �� + 1�

�� − 1/2�
, � �

3

2
, �3.3�

v�
2 = 2

� −
3

2

�

T

m
. �3.4�

Here,  denotes the gamma function. Important features as-
sociated with the � distribution are that it tends to a Max-
wellian distribution for the limit �→�. A second important
property of the distribution function as defined in Eq. �3.2� is
that it reflects an inverse power for high velocities and thus
allows one to model superthermal particle contributions
within the plasma.

The main reason why we apply the distribution function
in its current form is that it is consistent with those of Refs.
17–19, and thus allows a simple comparison of the resulting

dielectric response function. However, there is a problem
with this particular form of distribution function, which will
be outlined in the following. Since 2T /m denotes the thermal
spread of the Maxwellian, the expression v�

2 denotes the cor-
responding modified quantity for the � distribution. For �
�� the thermal spread of the � function appears to be less
than the one of the corresponding Maxwellian �see Eq. �3.4��
and thus is inconsistent in view of the suprathermal wings of
the distribution generated for finite values of �. In other
words, the modified �effective� temperature decreases for de-
creasing � values as compared to the Maxwellian tempera-
ture. In principle, this should be just the opposite. A distri-
bution function resembling the described feature as well as a
theoretical explanation for its occurrence is given in Refs.
16, 26, and 29. The application of such a form of distribution
function is beyond the scope of the current paper, however, it
will be addressed in a forthcoming work.

Substitution of Eq. �3.2� into �3.1� leads to the following
expression determining the susceptibility for the considered
ion contribution:

	 = −
4�e2

mkz
� 1

� − kzvz

2A�

v�
2

� + 1

�
�vz − uz�

�	1 +
1

�v�
2 �vx

2 + vy
2 + �vz − uz�2�
−�−2

d3v . �3.5�

Thus, there are three integrals that need to be performed. The
integrals over vx and vy can be solved in analogy to30

�
−�

� 1

�ax2 + 2bx + c�n

=
�n − 1/2�

�1/2�
�an−1

�n − 1�!�ac − b2�n−1/2 ,

a � 0, ac � b2. �3.6�

Adapting the above expression to our requirements leaves
the following integral:

	 = −
4�e2

mkz
2A��

� + 1

��v�
2�−�−1

�� + 1�
�� + 2��−�

� 1

� − kzvz

��vz − uz���v�
2 + �vz − uz�2�−�−1dvz. �3.7�

The above integral can be solved via application of2

�� − kzvz�−1 = − i�
0

�

exp�i��� − kzvz��d� , �3.8�

and30

�
0

�

x�x2 + �2��−1/2 sin�ax�dx

= ���	2�

a

� 1

�1/2 − ��
K�+1�a�� , �3.9�

where

a � 0, Re��� � 0, Re��� � 0, �3.10�

and K denotes the modified Bessel function according to
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K� =
�

2

I−� − I�

sin����
. �3.11�

With the help of the previously introduced relation, one can
finally obtain the following expression for the susceptibility:

	 = 2
�p

2

kz
2v�

2	� − 1/2

�
+ w�Z��w��
 . �3.12�

Here

w� =
� − kzuz

kzv�

, �3.13�

and Z� denotes the plasma dispersion for a Lorentzian dis-
tributed plasma, given as

Z��w�� =
i

2�−1/2�3/2�� − 1/2�

��
0

�

exp�i
w�s

�1/2s�+1/2K�+1/2�s�ds , �3.14�

which has been obtained by Refs. 17–19, except that here the
bulk flow of the ions is included. One convenient property of
the above representation is, as already pointed out in Ref. 19,
that it allows a simple comparison with the well-known re-
sults obtained by applying a Maxwell distribution.

As in the case of the electron susceptibility, our next step
consists of considering the limiting case of vanishing tem-
perature. For large arguments, the following Taylor series is
valid for the MPDF �Ref. 18�:

Z��w�� = − i
��

�3/2

�� + 1�
cos������ − 1/2�	 w�

i��
− 1
−��+1�

�	 w�

i��
+ 1
−��+1�

−
2� − 1

2�

1

w�

��
n=0

�

�n
��

�− n + 1/2�
�− � + 1/2�

�− � + 1/2 + n�
�−2n.

�3.15�

Applying the above expansion and taking the limit for v�

→0 allows us to obtain the following familiar expression:

	 = −
�p

2

�� − kzuz�2 . �3.16�

IV. NUMERICAL SOLUTION

In the following, we assume the parameter 
 to be much
smaller than unity, which allows us to truncate the infinite
sum occurring in the electron response function. In other
words, we consider the effects due to the electron cyclotron
harmonics n=0 and n= ±1. The contribution from the higher
harmonics are neglected, allowing us to find for the disper-
sion equation

1 +
2�pe

2

kz
2vt

2 �
n=−1

1

e−
In�
�	�1 + �Z���� −
n

cos �

�e

kzvt
Z���


+ 2
�pi

2

kz
2v�

2	� − 1/2

�
+ w�Z��w��
 = 0. �4.1�

The occurring modified Bessel functions are approximated
by using the following Taylor series:

e−
I−1�
� �



2
, e−
I0�
� � 1 − 
, e−
I1�
� �




2
.

�4.2�

For computional convenience, we introduce dimensionless
quantities according to

� = �i�̃, k =
�i

vA
k̃, � =

�pe
2

�e
2 , u = vAũ, � =

mi

me
.

�4.3�

Applying the above normalization leaves the dispersion
equation as a function of several input parameters for which
we take values9

ũ = 2, � = 1836, � = 2 � 104, � = 85°. �4.4�

These values correspond to the terrestrial bow shock and
remain fixed throughout the whole numerical analysis. In
addition, the dispersion equation is a function of the electron
plasma beta and the spectral index, which are the two key
parameters of the present study.

As a first step in presenting numerical solutions to the
dispersion equation, we refer to Fig. 2, where the growth rate
for the MTSI is shown for a Maxwellian �left panel� and a �
distribution �right panel�. Here, the growth rate is shown as a
function of k and for various values of the plasma �, which
is assumed to be equal for electrons and ions, and � remains
fixed at �=3. The dotted line in this figure corresponds to the
cold case, where the usual applied asymptotic expansion for
small arguments has been used. In this figure, one can clearly
see how the thermal effects within the plasma effectively
reduce the growth rate of the MTSI, as has already been
obtained by others �e.g., Ref. 3�, for both applied distribution
functions. However, from this figure we also find that the
larger the plasma �, the more important the impact of the �
parameter. The latter becomes more transparent with regard
to Fig. 3. Here the maximum growth rate, Im��M�, is shown

FIG. 2. Growth rate as a function of k for Maxwellian �left� and
�-distributed �right� ions in normalized units. The plasma � varies from 0.02
to 0.15 with a step size of 0.01. The dotted profiles correspond to the case of
vanishing temperatures.
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as a function of � for various values of the plasma �. As a
side note, we want to explain that what we call maximum
growth rate refers to our particular assumed one-dimensional
problem. In general, the maximum growth rate of the MTSI
occurs at oblique angles and does not have to coincide with
the direction of the bulk flow of the ions. The thick black
horizontal lines in Fig. 3 indicate the solutions obtained by
applying a Maxwell distribution. As a test of the numerical
calculations we see that the solutions, obtained by applying
the � distribution function, tend toward the solutions ob-
tained via a Maxwellian one for large values of �. In addi-
tion, we note that for a rather cold plasma, even for smaller
values of �, there is virtually no difference in the maximum
growth obtained from the two different distribution func-
tions. However, the larger the value of the plasma �, the
more significant becomes the influence of the assumption of
�-distributed ions. For instance, for �=0.15 and �=2, the
obtained maximum growth rate is more than twice as large as
in the case of a Maxwellian distribution function. This fea-
ture can also be seen in Fig. 4, where the growth rate is
shown as a function of k and � for �=0.15. The thick black
profile corresponding to the Maxwellian solution is put into
this figure at �=50 for comparison.

V. DISCUSSION AND OUTLOOK

In this paper we have presented our first approach in
identifying the effects related to �-distributed ions on the

growth rate of the MTSI. For this, we basically applied a
traditional approach, assuming the electrons were strongly
magnetized whereas the ions were taken to be unmagnetized.
A frame of reference was adopted in which the electrons
were assumed at rest and the ions moved across them. A
particular feature of the applied coordinate system was that
the wave vector was assumed to be aligned along a coordi-
nate axis whereas the zero-order magnetic field is inclined
toward it. This assumption keeps the analysis for the ion
dielectric response function as simple as possible as there is
only one component of the wave vector present. After deriv-
ing the dispersion relation for the case of a potential electric
field and parallel bulk flow and wave propagation, we
present numerical solutions for the growth rate for various
input parameters.

We find that the effects associated with � distributed ions
are directly related to the plasma beta. For a rather cold
plasma, the influence of the spectral index on the growth rate
is weak, and the obtained maximum growth rates are com-
parable over a relatively wide range of � values. However,
for a larger value of the plasma �, i.e., ��0.1, the impact of
� distributed ions can be quite significant. We find that the
maximum growth rate increases for decreasing �. The solu-
tion obtained via a Maxwellian distribution function acts as a
lower limit. It is shown that the maximum growth rate can
even be doubled for sufficiently large � and small �.

As this work presents the first approach in analyzing the
effects of the � distribution function on the MTSI, several
simplifying assumptions are made. These assumptions in-
clude the consideration of the electrostatic problem, the elec-
trons are still taken to be Maxwellian, and the wave vector is
assumed to be parallel to the bulk flow. Future studies are
devoted to the consideration of the more general problems by
dropping the respective assumptions step by step.

ACKNOWLEDGMENTS

Part of this work was done while N. V. Erkaev was at the
Space Research Institute of the Austrian Academy of Sci-
ences in Graz. This work is supported by the Austrian Fonds
zur Förderung der wissenschaftlichen Forschung under
project P17100-N08. We acknowledge support from project
I.2/04 from “Österreichischer Austauschdienst,” by the Aus-
trian Academy of Sciences, “Verwaltungsstelle für Auslands-
beziehungen,” and from the Russian Academy of Sciences.
Additional support is due to Grants Nos. 04-05-64088 and
03-05-20014 from the Russian Foundation of Basic Re-
search, by the Programs 30 and DPhS-15 of the Russian
Academy of Sciences.

1V. Lapuerta and E. Ahedo, Phys. Plasmas 9, 1513 �2002�.
2A. B. Mikhailovskii, Theory of Plasma Instabilities, Volume 1: Instabili-
ties of A Homogeneous Plasma �Consultant Bureau, New York, 1974�.

3D. S. Lemons and S. P. Gary, J. Geophys. Res. 82, 2337 �1977�.
4C. S. Wu, Y. M. Zhou, S. T. Tsai, S. C. Guo, D. Winske, and K. Papa-
dopoulos, Phys. Fluids 26, 1259 �1983�.

5D. Winske, M. Tanaka, C. S. Wu, and K. B. Quest, J. Geophys. Res. 90,
123 �1985�.

6D. Winske, J. Giacalione, M. F. Thomsen, and M. M. Mellott, J. Geophys.
Res. 92, 4411 �1987�.

7P. H. Yoon and A. T. Y. Lui, Phys. Fluids B 5, 836 �1993�.

FIG. 3. Maximum growth rate as a function of � for various values of the
plasma �.

FIG. 4. Growth rate as a function of k and � in normalized units for a fixed
value of the plasma �, i.e., �=0.15. The thick black profile corresponds to
the solution for Maxwellian ions.

102103-5 Influence of kappa-distributed ions… Phys. Plasmas 12, 102103 �2005�



8M. Scholer, I. Shinohara, and S. Matsukiyo, J. Geophys. Res. 108, 1014
�2003�.

9S. Matsukiyo and M. Scholer, J. Geophys. Res. 108, 1459 �2003�.
10C. L. Chen, H. K. Wong, and C. S. Wu, Phys. Rev. Lett. 65, 1104 �1990�.
11P. H. Yoon, A. T. Y. Lui, and M. I. Sitnov, Phys. Plasmas 9, 1526 �2002�.
12P. H. Yoon and A. T. Y. Lui, J. Geophys. Res. 109 �2004�.
13R. Z. Sagdeev, V. D. Shapiro, V. I. Shevchenko, A. Zacharov, P. Kiraly, K.

Szegö, A. F. Nagy, and R. J. L. Grard, Geophys. Res. Lett. 17, 893
�1990�.

14V. D. Shapiro, K. Szegö, S. K. Ride, A. F. Nagy, and V. I. Shevchenko, J.
Geophys. Res. 100, 21289 �1995�.

15V. M. Vasyliunas, J. Geophys. Res. 82, 1921 �1968�.
16M. P. Leubner, Phys. Plasmas 11, 1308 �2004�.
17D. Summers and R. M. Thorne, Phys. Fluids B 3, 1835 �1991�.
18R. L. Mace and M. A. Hellberg, Phys. Plasmas 2, 2098 �1995�.
19R. L. Mace, Phys. Plasmas 10, 2181 �2003�.
20M. P. Leubner and N. Schupfer, J. Geophys. Res. 105, 27187 �2000�.

21M. P. Leubner and N. Schupfer, J. Geophys. Res. 106, 12993 �2001�.
22O. A. Pokhotelov, R. A. Treumann, R. Z. Sagdeev, M. A. Balikhin, O. G.

Onishchenko, V. P. Pavlenko, and I. Sandberg, J. Geophys. Res. 107, 1312
�2002�.

23R. A. Treumann, Phys. Scr. 59, 19 �1999�.
24R. A. Treumann, Phys. Scr. 59, 204 �1999�.
25A. V. Milovanov and L. M. Zelenyi, Nonlinear Processes Geophys. 7, 211

�2000�.
26M. P. Leubner, Astrophys. J. 604, 469 �2004�.
27D. G. Swanson, Plasma Waves �Academic, New York, 1989�.
28T. H. Stix, Waves in Plasmas �American Institute of Physics, New York,

1992�.
29A. Hasegawa, K. Mima, and M. Doung-van, Phys. Rev. Lett. 54, 2608

�1985�.
30I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products

�Academic, New York, 2000�, p. 436.

102103-6 Langmayr, Erkaev, and Biernat Phys. Plasmas 12, 102103 �2005�


