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Abstract
We discuss signatures of quantum chaos in open chaotic billiards. Solutions
for such a system are given by complex scattering wavefunctions ψ = u + iv
when a steady current flows through the billiard. For slightly opened chaotic
billiards the current distributions are simple and universal. It is remarkable that
the resonant transmission through integrable billiards also gives the universal
current distribution. Currents induced by the Rashba spin–orbit interaction
can flow even in closed billiards. Wavefunction and current distributions for a
chaotic billiard with weak and strong spin–orbit interactions have been derived
and compared with numerics. Similarities with classical waves are considered.
In particular we propose that the networks of electric resonance RLC circuits
may be used to study wave chaos. However, being different from quantum
billiards, there is a resistance from the inductors which gives rise to heat power
and decoherence.

PACS number: 05.45.Mt

1. Introduction

1.1. Closed billiards

The nature of quantum chaos in a specific system is traditionally inferred from its classical
counterpart. It is an interdisciplinary field that extends into, for example, atomic and molecular
physics, condensed matter physics, nuclear physics and subatomic physics [1]. The main
achievement of this field is the establishment of universal statistics of energy levels in chaotic
versus integrable quantum systems. The latter were shown to be faithful to Poisson statistics
of independent energy levels, whereas the former turned out to be well described by theory
of large Gaussian random matrices (RMT) introduced by Wigner [2] to explain statistical
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fluctuations of neutron resonances in a compound nucleus. Rather than trying to explain
individual eigenvalues, RMT addresses questions about their statistical behaviour. Its original
justification was our lack of knowledge of the exact Hamiltonian; RMT assumes maximal
ignorance regarding the system’s Hamiltonian except that it must be consistent with the
underlying symmetries. The theory proceeds to construct ensembles of Hamiltonians classified
by their symmetry. Wigner’s ideas were followed by those of Porter and Rosenzweig [3] and
Mehta and Gaudin [4, 5]. Dyson [6] showed that there are three classes of random-matrix
ensembles (GOE, GUE and GSE).

Two major independent developments in the early 1980s considerably broadened the
range of validity of RMT. One was the BGS conjecture (Bohigas, Giannoni and Schmit [7])
linking the quantal fluctuations in chaotic systems to RMT. The second major development was
Efetov’s supersymmetry method [8], which made possible a nonperturbative treatment of the
single-particle disorder problem by mapping it onto the supersymmetric nonlinear σ model.
The random-matrix theory has many applications in quantum physics; a comprehensive review
emphasizing common concepts was written recently by Guhr et al [9].

Today one finds an increase in experimental studies [10]. For example, one can now
fabricate well-defined ultra-small chaotic systems from semiconductor materials by means of
nanotechnology. As we will describe here, that quantum chaos is closely related to classical
wave chaos as found for irregular microwave and acoustic cavities. Recently experimental
studies of chaotical optical billiards for ultracold atoms [12, 13] and for the Bose–Einstein
condensate [14] have begun.

Next, consider statistical properties of the eigenfunctions of the chaotic two-dimensional
quantum billiards in the hard wall approximation

−∇2ψn(x, y) = εnψn(x, y), (1)

where the Dirchlet boundary condition is implied at the boundary � of the billiard: ψ|� = 0.
Here we use Cartesian coordinates x, y which are dimensionless via a characteristic size of the
billiard L, and correspondingly εn = k2

n = En/E0, E0 = h̄2/2mL2. Shapiro and Goelman [15]
first presented statistics of the eigenfunctions although their numerical histogram P(ψ) was
not compared with the Gaussian distribution. This was done by McDonnell and Kauffmann
[16] who concluded that the majority (≈90%) of the eigenfunctions of the Bunimovich billiard
are a Gaussian random field (RGF) for all x, y. Also McDonnell and Kauffmann revealed
characteristic complex patterns of disordered, curvilinear and non-crossing nodal lines. Such
features have also been observed experimentally for microwave cavities [1, 17] and acoustic
resonators [18].

These results nicely agree with the Berry conjecture [19] of quantum chaos according to
which the wavefunction in the chaotic billiard has to be expressed as a sum over an infinite
number of plane waves

ψ(x, y) =
∑

j

aj exp[i(kjr + φj )] (2)

each having a random amplitude aj , phase φj and direction kj but equal length |kj |2 = ε.
In closed chaotic billiards, we are to take the real part of (2). This leads to a Gaussian
amplitude distribution and a spatial correlation function with Bessel function dependence.
This conjecture, in fact, was raised by Rayleigh [20].

However, there exist also eigenfunctions which behave otherwise. Most of them are
localized on families of regular classical trajectories (scars [21]) or bouncing ball modes [16]).
Their number behaves as Nbb(E) = αEδ with α = 0.2, δ = 3/4 [22, 23].
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Figure 1. Schematical geometry of transmission through a billiard.

1.2. Open billiards

The typical way to open a billiard is to attach some reservoirs with continuous energy spectrum,
for example, the leads or microwave waveguides, as shown in figure 1. Most experiments on
wave transmission are performed for this geometry. Another way to open the billiard is to
include processes of inelastic scattering, i.e. to take absorption into account. This means that
the billiard is also connected to a reservoir but not locally as shown in figure 1.

Full information about the scattering properties of the billiard is given by the scattering
wavefunction which is a solution of the Schrödinger equation Hψ = Eψ with the total
Hamiltonian

H = HB + HL + HR + V, (3)

where HB is the Hamiltonian of the closed quantum system, in the present case the billiard
with a spectrum given by equation (1), HL + HR describes two leads (the left and right ones
as shown in figure 1) with continuous spectrum and V = VL + VR is the coupling between the
closed system and the leads. The mathematical tool to treat scattering processes is provided
by scattering theory [24–28] which has been successfully applied to billiards [1, 29–33].
Assume, we know the coupling matrices WC,C = L,R of rank M × N where M is the
number of channels in the leads and N is the number of bound states of closed billiard. The
finite number N is artificial and can eventually be taken to infinity. Then statistical properties
of transmission through a billiard can be related to those of the resolvent of effective non-
Hermitian Hamiltonian

Heff = HB − iπ
∑

C=L,R

W +
CWC. (4)

The complex eigenvalues of the effective Hamiltonian determine positions and widths of the
resonances. To the best of our knowledge, the concept of the effective Hamiltonian appeared
first in Feshbach’s papers [24] and, independently, in Livshits’s study of open quantum system
[34].

The idea was to adjust RMT to a description of open quantum chaotic billiards starting
from the effective Hamiltonian and following the same lines as for their closed counterparts
goes back to the pioneering work [35]; see also [30, 36] and references therein. The starting
point of this approach is the representation of the scattering matrix S in terms of an effective
non-Hermitian Hamiltonian Heff = HB − i	, where the anti-Hermitian part i	 arises due
to coupling to open scattering channels as seen from (4). It has to be chosen in the form
ensuring the unitarity of the scattering matrix. A natural way to incorporate the random-matrix
description of the quantum chaotic system is to replace HB by a large N × N random-matrix
of appropriate symmetry. Namely, chaotic systems with preserved time-reversal invariance
(TRI) should be described by matrices HB which are real symmetrics. Such matrices form
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the GOE, whereas for systems with broken TRI one uses complex Hermitian matrices from
the GUE. In general, the two matrices HB and 	 do not commmute, making the analysis of
complex eigenvalues of Heff to be a rather non-trivial problem [36, 37]. Another way is an
application to closed billiard of magnetic field that breaks the TRI [30, 38]. For intermediate
magnetic fields, a crossover occurs between the GOE and the GUE where the parameter

ε2 = 〈Im(ψ)2〉
〈Re(ψ)2〉 (5)

governs this crossover. The parameter ε in (5) is closely related to the phase rigidity of the
wavefunction, first introduced by van Langen et al [39]

r = 〈ψ2〉
〈|ψ |2〉 . (6)

The relation between these two parameters is simple

r =
(

1 − ε2

1 + ε2

)
. (7)

Quantum mechanically, the ‘openness’ may be related to decays into open channels
[31, 40–42]. It can be enlarged either by increasing the number of open channels or by
enhancing the (average) coupling strength between bound states and a given decay channel
[31]. Definition of the effective Hamiltonian (4) gives a measure of openness of the billiard
as γ = 	/E, where 	 = 1

N

∑
λ Im(zλ) is the mean width, zλ are the complex eigenvalues of

Heff , and E is the energy. The imaginary part of Heff is given by the coupling matrix. A recipe
how to calculate the matrix elements WC is given in [31–33, 43]. For the coupling with the
left lead in the Cartesian coordinates shown in figure 1, we write

W =
√

1

πk

∫ d

0
dyφm(y)

∂

∂x
ψB (x = 0, y), (8)

where φm(y) =
√

1
2d

sin
(

πmy

d

)
,m = 1, 2, 3, . . . are the eigenfunctions of the lead, ψB(x, y)

are the eigenfunctions of the billiard normalized by equation
∫
A

dx dy ψB(x, y)2 = 1. For the
right lead x = Lx . Evaluating ∂

∂x
ψB (x = 0, y) as kψB (x = 0, y), where k is the wave number

of incidenting particle and substituting these definitions into (8) one obtains first estimate of
the coupling W ∼ √

kd/A. Taking the eigenvalues of the billiard resonant to the energy of
incidenting particle k2 we obtain that the measure of openness of the billiard is given by the
ratio

γ = Md

Ak
. (9)

One finds from (9) that the openness is defined by the number of channels M and aspect ratio
d/A, i.e. ratio of the cross-section of lead to the area of the closed billiard. Results of numerical
calculation of the complex eigenvalues of (4) for the transmission through rectangular billiard
with use of lattice theory of the scattering matrix [33] are shown in figure 2. Figure clearly
shows the way 	 grows with opening of channels at points E = π2m2 marked by open circles,
as well as its growth with increasing the aspect ratio d2/A.

2. The wavefunction and current statistics

If there is a stationary current via the leads as shown in figure 1 we have the scattering
wavefunction which violates the TRI. Even if the Hamiltonian itself is invariant under the
TRI, the statistics of the scattering wavefunction will not follow the GOE [45–47].
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Figure 2. Dependence of the parameter of openness (9) on the energy E in terms of h̄2/2md2

for the transmission through rectangular billiard. The aspect ratio d2/A = 0.1 (solid line) and
d2/A = 0.2 (dashed line).

The scattering wavefunction Hψ = Eψ can be mapped onto the interior space of the
billiard by the projection operator ψB = PBψ where PB = ∑

n |n〉〈n|. Then this truncated
scattering wavefunction can be expanded in the eigenfunctions of the closed billiard ψn(x, y)

[33]. For a single-channel transmission one has

ψB(r) =
∑
nn′

∑
C=L,R

WC(n′)〈n′| 1

E + i0 − Heff
|n〉ψn(r) =

∑
n

cnψn(r). (10)

If the contribution of the localized eigenfunctions (scars or bouncing ball modes) in (10)
is negligible, then all eigenfunctions ψn(r) are RGF. The complex coefficients in the
superposition, cn, depend on the energy and the coupling between the billiard and leads
and are not random as in the Berry function (2). Nonetheless the superposition of RGFs is
also a complex RGF [48, 49]

ψB(r) = u(r) + iv(r). (11)

Even for the resonant transmission through the Sinai billiard, computations show that many
eigenfunctions contribute to the scattering wavefunction as shown in figure 3. More obvious
presentation for the scattering wavefunction was used by Pnini and Shapiro [45] in the form
of the Berry-like function

ψB(r) =
∑

n

{cos(θn + knr) + λ exp[i(φn + knr)]}, (12)

where the random standing waves are responsible for closed chaotic billiard whereas the
random travelling waves describe coupling of the billiard to the external world via the
parameter λ.
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Figure 3. The coefficients |cn| in expansion (10) for the resonant transmission through the Sinai
billiard with numerical sizes 500 × 500, R = 50 with energy E = 10.425.

An assumption of a complex RGF for the scattering function (11) means that the joint
probability density has the form

f (u, v) = 1

2π
√

〈u2〉〈v2〉 − 〈uv〉
exp

(
− u2

2〈u2〉 − v2

2〈v2〉 +
uv

2〈uv〉
)

. (13)

First of all, following [50] we perform a phase transformation

ψ(x) → eiαψ(x) = p(x) + iq(x) (14)

to new functions p(x) and q(x) with condition that the statistical average 〈pq〉 = 0. This step
eliminates phase ambiguity and ensures that RGFs p and q are statistically independent. This
phase transformation (14) corresponds to diagonalization of the quadratic form in (13) [51]:

f (p, q) = f (p)f (q), f (x) = 1√
2π〈x2〉

exp

(
− x2

2〈x2〉
)

. (15)

This step is a matter of convenience which simplifies calculations. For example, calculation of
the distribution of intensity ρ = |ψB |2 becomes elementary and gives the following probability
density distribution ρ = |ψ |2,

f (ρ) = µ exp(−µ2ρ)I0(µνρ), (16)

with the following notations

µ = 1

2

(
1

ε
+ ε

)
, ν = 1

2

(
1

ε
− ε

)
, (17)

and I0(x) is the modified Bessel function of zeroth order. Formula (16) was obtained by many
approaches [38, 45–47, 52].

The distribution (16) depends parametrically on ε (5) or r (6). In fact, these parameters
strongly fluctuate with variation of energy E [44, 51] that leads to different results for averages
taken over r = (x, y) only as compared to one over both r and E [44]. Therefore, an average
over E implies an additional average over ε or r. The distribution P(r) was first calculated by
Sommers and Iida [53]. Brouwer has shown that fluctuations of phase rigidity (6) cause long-
range correlations of intensity ρ and current density [44]. These correlations were measured
by Kim et al [54] with perfect agreement with theoretical results [44].

As for the next tutorial of a RGF we consider current distributions. The expression for
current,

j = p∇q − q∇p, (18)
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shows that the distribution for one component of the current density, say jx we need
the Gaussian probability density f (p, px, q, qx) [55]. The density and its corresponding
characteristic functions are completely determined by the covariance matrix of the field
variables

M =




〈p2〉 〈pqx〉 〈pq〉 〈ppx〉
〈pqx〉

〈
q2

x

〉 〈qqx〉 〈pxqx〉
〈pq〉 〈qqx〉 〈q2〉 〈qpx〉
〈ppx〉 〈pxqx〉 〈qpx〉

〈
p2

x

〉

 =




〈p2〉 〈pqx〉 0 0
〈pqx〉

〈
q2

x

〉
0 0

0 0 〈q2〉 〈qpx〉
0 0 〈qpx〉

〈
p2

x

〉

 . (19)

The covariance matrix may be simplified further if we assume that we deal with isotropic
fields for which ∇p and ∇q are statistically independent of p and q [50]. The Berry function
(2) is typical example of isotropic RGF. Then 〈p∇q〉 = 〈q∇p〉 = 0 and as follows from (18),
the net current 〈j〉 = 0. As shown in [51] that is the case if the transmission is near zero.
Correspondingly the Gaussian probability density factorizes as

f (p, px, q, qx) = f (p)f (q)f (px)f (qx), (20)

where

f (px) = 1√
2π

〈
p2

x

〉 exp

(
− p2

x

2
〈
p2

x

〉
)

, f (qx) = 1√
2π

〈
q2

x

〉 exp

(
− q2

x

2
〈
q2

x

〉
)

. (21)

In particular this is the case for the Berry function (2) with 〈p2〉 = 〈q2〉, 〈p2
x

〉 = 〈
q2

x

〉
.

Now it is easy to calculate the current distribution functions. For the x component we
have

P(jx) = 〈δ(jx − pqx + qpx)〉 = 1

2π

∫ ∞

−∞
�(ax) e−iaxjx dax, (22)

where

�(ax) =
∫

dp dq dpx dqxf (p)f (q)f (px)f (qx) eiax(pqx−qpx) = 1

1 + a2
xτ

2
, (23)

τ 2 = 〈p2〉〈q2
x

〉 = 〈q2〉〈p2
x

〉 = 1

2
k2〈p2〉〈q2〉 = k2ε2

2(1 + ε2)2
(24)

provided that 〈p2〉 + 〈q2〉 = 1 (normalization condition), and ε is the parameter of openness
of the billiard (5). Finally substituting equations (23) and (24) into (22) we obtain the very
simple form of the distribution of the x component of current

P(jx) = 1

2τ
exp

(
−|jx |

τ

)
. (25)

For the case nonzero net current the distribution takes the following form [55]:

P(jx) = 1

2τ
exp

{
−|jx |

τ
+

〈jx〉jx

2τ 2

}
. (26)

The distribution of the absolute value of current has also a simple form

P(j) = j

τ 2
K0(j/τ). (27)

Figure 4 demonstrates excellent agreement for the numerical statistics of the current with
formulae (25) and (27) for a slightly open Sinai billiard. The current distributions might be
applicable even for the case of the resonant transmission through integrable billiards [56]. For
this case the real eigenfunction ψn with the eigenenergy ε ≈ εn is dominant in the scattering
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Figure 4. Statistics of current for the transmission through the Sinai billiard for T ≈ 0. The
upper left panel shows the computed distribution for ρ = |ψ |2 together with the Porter–Thomas
distribution P(ρ) (solid curve). In the inset in the same panel the computed wavefunction statistics
f (p) for the real part of ψ is compared with a random Gaussian distribution (solid curve). In the
right upper panel the distribution for the current density P(j) is shown together with the theoretical
prediction for the case 〈jx〉 = 0. Lower panels show the computed distributions for the x- and
y-components of j on a logarithmic scale together with the analytic expression (25) (straight solid
lines).

wavefunction (10). However since current is the imaginary part of ψ∗∇ψ , only ψn cannot
provide the current. We are to take into account a small background of many other non-
resonant eigenfunctions ψn′ , n �= n (see figure 3 for an illustration). Therefore the probability
current flows only because of the background which may be considered as random noise.

There is a close similarity with planar electromagnetic cavities [1]. The basic equations
take the same form and, in particular, the electric field corresponds to the quantum mechanical
wavefunction and the Poynting vector is the analogue of the quantum mechanical current.
It is therefore possible to experimentally observe currents, nodal points and streamlines in
microwave billiards [57, 58]. In particular figure 5 [59] shows measurements for the electric
field Ez(x, y). Then the Poynting vector can be calculated by formula j = c

8πk
Im(E∗

z ∇Ez)

where c is the light velocity, k is the wavenumber [57]. The microwave measurements have
confirmed many of the predictions of the random Gaussian wave fields described above. For
example, wavefunction statistics, current flow and various correlation functions have been
verified. Note that recently scanning tunnelling spectroscopy was used to investigate the
single-electron states and the corresponding squared wavefunctions [60, 61].

3. Statistics of nodal points

For a closed billiard the eigenfunctions ψn are the real functions. The equation ψn(x, y) = 0
determines a set of nodal lines which separate nodal domains where ψn is of opposite signs.
Blum et al [62] (see also [63]) argued that the statistics of the number of these domains reflects
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Figure 5. The measured electric field (below) and calculated Poynting vector j (above) [59].

the fundamental difference between integrable and chaotic quantum systems. In [64] the
distribution of nodal domains was derived analytically on the basis of a simple percolation
model. In open system the wavefunction is then a scattering state with both real and imaginary
parts as in (11). Then the equation ψB(x, y) = 0 gives rise to two separate sets of non-
crossing nodal lines at which either u or v vanishes. The points at which the two sets of nodal
lines intersect are the nodal points (NP). Since at NP |ψ | = 0, a phase of the ψ-function
ψ = |ψ | exp(iθ) becomes ambiguous. Explicit descriptions of NPs as phase singularities
or topological charges associated with a complex wavefunction are given in many articles,
for example [65–68, 70]. As Dirac demonstrated already in 1931 [65] NPs give rise to a
current vortices. Moreover the vortices may be clockwise or anticlockwise, i.e. have ±1
winding numbers. It was proven [71, 72] that neighbouring NPs on the same nodal line
always have opposite winding numbers. Therefore, distribution of NPs is different from
the distribution of completely random points.

Complementary to NPs there is also a different kind of peculiarity in the current flow
which is related to saddles [67, 70] marked by stars in figure 6. A saddle is a nodal point in
the current density j =

√
j 2
x + j 2

y , i.e., the point at which the ‘current nodal lines’ jx = 0 and
jy = 0 cross each other at nonzero u and v.

Instead of nodal lines in closed systems we are interested in the statistics of NPs for
open chaotic billiards since they form vortex centres and thereby shape the entire flow pattern
[73]. Thus we will focus on nodal points and their spatial distributions and try to characterize
chaos in terms of such distributions. The question we wish to ask is simply if one can find a
distinct difference between the distributions for nominally regular and irregular billiards. The
answer to this question is clearly positive as is seen from figure 6. As shown qualitatively, NPs
and saddles are both spaced less regularly in chaotic billiard in comparison to the integrable



10796 A F Sadreev and K-F Berggren

Figure 6. The complexity of nodal lines, nodal points and saddles for the transmission through
chaotic (Sinai) (left) and regular billiard (right).

billiard. The mean density of NPs for a complex RGF (11) is equal to k2/4π [74]. This
formula is satisfied with good accuracy in both chaotic and integrable billiards.

Quantitatively the disorder among points may be expressed through the correlation
function of NPs and distribution of nearest distances between them. Let us introduce the
density of nodal points as [75, 76]

d(r) = |ω(rj )|δ(u(r))δ(v(r)) =
∑

j

δ(r − rj ), (28)

where rj specify the NPs position, and ω(r) = ∇u(r) × ∇v(r) is the vorticity. Then the
correlation function of NPs can be defined as [75, 76]

G(s) =
〈∑

i,j

δ(r − rj )δ(r − rj − s)

〉
. (29)

This was considered by Halperin [77] and Liu and Mazenko [78]. Recently two teams
[75, 76, 79] presented different complicated analytical expressions for the correlation
function (29). Numerically however they give the same results. Experimental verification was
done in microwave billiards [58]. A knowledge of the NP correlation function allows one to
find the distribution function of nearest distances between NPs [76]:

PNP(r) ≈ 4π

ρ3/2
rG(r)

(
1 − 4π

3ρ

∫ √
ρr

0
G(s)s ds

)2

. (30)

It is interesting to note that distribution (30) is close to the nearest-neighbour spacing
distribution of zeros of random polynomials [80]. These polynomials approximate the
eigenfunctions of the unitary evolution operator of the quantum kicked rotator. It prompts us
to suggest that the nearest-neighbour spacing distribution of zeros is meaningful not only for
the chaotic billiards but for other quantum chaotic systems. Figure 7 shows numerical results
for the transmission through the Sinai billiard [72] compared to the derived distributions. It
also shows that nodal points with opposite winding numbers have a tendency to attract each
other, while points with the equal winding numbers repel. Hence quantum chaos is not the
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Figure 7. Distributions for separations between the nearest NPs, saddle points, NPs with the
same (++) and opposite winding numbers (+−) in a chaotic Sinai billiard. The radial distribution
(31) of nearest distances for completely random points is shown by the dashed curve in (a).
The corresponding distribution for the Berry model function for a chaotic state (2) and random
superposition of 16 eigenfunctions for a rectangular box with the same size and energy are shown
by dots and thin curves, respectively.

same as complete randomness. This also evident from the distribution for nearest neighbours
among random points [81]

P(r) = π

2
r exp(−πr2/4). (31)

Recently Barth and Stökmann [57] have found fair agreement of distributions shown in
figure 7 with microwave experiments. Further experiments are welcome.

4. Chaotic billiards with Rashba spin–orbit interaction

Statistics of spectra and currents in the quantum systems with the spin–orbit interaction
(SOI) is interesting for a number of reasons. First, even some integrable billiards such as
rectangular become non-integrable in the presence of SOI [82] to give the semi-Poisson
distribution for nearest level separation, while circular ones remain integrable [83]. Second,
the eigenfunctions have two components as elastomechanical waves in the chaotic plates [84],
which change the probability density distribution as well as the current one [85]. Moreover,
the equivalence between quantum dots (QD) with SOI and the microwave billiards filled by
ferrite was established [86].

Using the characteristic scale R of QD we write the Schrödinger equation in dimensionless
form [82, 85]

−∇2φ + βLχ = εφ −∇2χ + βL+φ = εχ, (32)
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where L = ∂
∂x

− i ∂
∂y

, ε = 2m∗R2E/h̄2. We imply the Dirichlet boundary conditions for
both components φ(x, y) and χ(x, y) in the Robnik [87] billiard. Here β = 2m∗KR, and
h̄2K = 6 × 10−10 eV cm is the SOI coefficient in a InAs structures [88]. We consider that the
electric field is directed normal to the plane of QD. The confining potential is approximated
by hard wall potential to consider QD as a billiard. An expression for current density can be
obtained as follows [89]

j̃ = j/j0 = −c
δ〈H 〉
j0δA

= Im(�+∇�) + β�+(n × σ)�, (33)

where j0 = eh̄
m∗R3 . For small SOI constant β � √

ε we can approximate the solution of (32)
as [83]

φ = ψb + O(β) χ = −β

2
[(x + iy) − C]ψb = −β

2
[(x − x0) + i(y − y0)]ψb, (34)

where ψb are the eigenfunctions of the Schrödinger equation (1) for β = 0, C = x0 + iy0

is some arbitrary complex constant. Solution (34) demonstrates that the second component
χ(x, y) increases linearly in the billiard region. Then it follows from (34) that, if the
eigenfunctions ψb are RGF, the upper component φ is also RGF, whereas the lower component
χ is not and depends on a shape of billiard. However, since a contribution of the component
χ to the current is negligibly small, we conclude that the distributions of spin–orbit current
are described by the previous formulae (25) and (27).

Similar to the free 2D electron gas the solution may be presented as φ = aψ1 +bφ2 which
satisfies

−∇2φ1 =
[
ε +

β2

2
+

β2

2

√
1 +

4ε

β2

]
φ1, (35)

−∇2φ2 =
[
ε +

β2

2
− β2

2

√
1 +

4ε

β2

]
φ2. (36)

Although these equations formally look like Schrödinger equations for the billiard, in fact,
they are not because the Dirichlet boundary conditions are implied only on φ but not separately
on φ1 and φ2. However for strong SOI constant β 
 √

ε the solution consists of the ‘fast’ part
with k1 ≈ β and ‘slow’ part with k2 ≈ ε

β
. Therefore we can disregard the ‘slow’ part because

of the Dirichlet boundary conditions. Then equation (35) becomes the Schrödinger equation
in the chaotic billiard with real eigenfunctions as a RGF. The same takes place for the lower
component χ . Because of the Kramers degeneracy, both components are a complex RGF

� =
(

φ(r)
χ(r)

)
=

(
p(r) + iq(r)
t (r) + iw(r)

)
. (37)

In order to find the distribution of, say, x component of current we need eight RGFs
� = (p tx q wx t px w qx), px = ∂p/∂x, . . . , number of which is twice as large as
compared to a ‘pure’ chaotic billiard. We refer the reader to [85] for computational details
and mention here that the current distribution is a superposition of the previous universal
distribution (25) with two characteristic τi = ki〈p2〉. Figure 8 demonstrates very good
agreement between theory and numerics.

Concluding this section we present figure 9 which shows the evolution of statistics of
the upper and lower components in the Robnik billiard by increasing the SOI constant. The
intermediate cases (c) and (d) β ∼ √

ε show that the statistics is not universal.
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5. Electric circuit networks equivalent to chaotic quantum billiards

Electric circuit models representing a quantum particle in the one-dimensional potential were
first considered by Kron in 1945 [90]. Later large random RLC networks with random
mixture of capacitances and inductances [91] were intensively studied with application to
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Figure 10. The first model of resonance RLC circuits.

many physical phenomena (see [92] and references therein). In particular, it was shown that
fluctuations in spectra are described by usual theory of RMT [92].

There is a complete equivalence of the two-dimensional Schrödinger equation for a
particle in a hard wall box to microwave billiards [1]. On the other hand, models for the
equivalent RLC circuit of a resonant microwave cavity exist which establish the analogy near
an eigenfrequency [93]. Therefore, there is a bridge between quantum billiards and a set of
coupled RLC oscillators [94].

If to map the two-dimensional Schrödinger equation onto numerical grid (x, y) =
a0(i, j), i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny one can easily obtain an equation in the finite-
element approximation

ψi,j+1 + ψi,j−1 + ψi+1,j + ψi−1,j +
(
a2

0E − 4
)
ψi,j = 0. (38)

Let us consider the electric resonance circuit shown in figure 10. Each link of the two-
dimensional network is given by the inductor L with the impedance zL = iωL + R, and each
site of the network is grounded via the capacitor C with the impedance zC = 1

iωC
, where R is

the resistance of the inductor and ω is the frequency. The Kirchoff’s current law at each site
of the network gives

1

zL

[Vi,j+1 − Vi,j + Vi,j−1 − Vi,j + Vi+1,j − Vi,j + Vi−1,j − Vi,j ] − 1

zC

Vi,j = 0, (39)

where Vi,j are the values of voltage at the site (i, j). This equation coincides with the
discretized version of the Schrödinger equation (38) with the eigenenergies

a2
0k

2 = − zL

zC

= LCω2 − iRCω = ω2

ω2
0

− i
γω

ω2
0

, (40)

where ω0 = 1/
√

LC and γ = R/L are the eigenfrequency and the linewidth of each resonance
circuit. Voltages play the role of the wavefunction of the quantum billiard. There are many
ways to define the boundary conditions (BC). If the boundary sites are grounded, we obviously
obtain the Dirichlet BC. If they are shunted through capacitors we obtain the free BC (the
Neumann BC). Finally, if the boundary sites are shunted through resistive inductors, the BC
correspond to mixed BC.

The voltage/wavefunction and current statistics in the network modelled the microwave
billiard in [57] show that resonance circuits are indeed an analogue to a hard wall quantum
billiard [95]. However there are three features which can make a difference when comparing
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Figure 11. Left panel: quantum streamlines in a quarter of the Bunimovich billiard flowing from
the point shown as a star at which the external ac voltage is applied. Right panel: zoomed part of
the left figure. Solid lines show the streamlines, dashed and dotted lines are the nodal lines of the
real and imaginary parts of wavefunction. The points at which the nodal lines intersecting are the
centres of the vortices [72].

with quantum billiards. These are (1) a discreteness of resonance circuits, (2) tolerance of
electric elements and (3) resistance of inductors. In practice the discreteness has no effect for
λ � 10a0 where λ is a characteristic wavelength of the wavefunction, and a0 is the elementary
unit of the network. The distribution of the wavefunction for finite grid with a0 = 1/100 in
fact shows extensive fluctuations compared to the Gaussian distributions because of multiple
interference on discrete elements of the network [95, 96]. It is known that a noise can
suppress these fluctuations. In the present case the tolerance of circuit elements, capacity and
inductance play the role of noise. Therefore, the first two features of electric resonance circuits
conceal each other. In fact, even a 1% tolerance substantially smoothens the distribution of
the wavefunction [96].

The third feature of the electric network, resistance, has principal importance. (i)
The resistance of the electric network is originated from inelastic interactions of electrons
with phonons and other electrons which give rise to irreversible processes of decoherence.
Therefore, the resistance acts as a reservoir which makes the quantum billiards more
open. In fact, numerically computed statistics for ρ = |V |2 (analogue of the probability
density) shows that the statistics follow (16) with the growing parameter of openness as the
resistance is increasing. (ii) The resistance R gives rise to heat losses with a local power
P = R

2 [Re(Ix)
2 + Im(Ix)

2 + Re(Iy)
2 + Im(Iy)

2] = R
2 [|Ix |2 + |Iy |2], where Ix, Iy are the local

components of the electric current flowing between sites of the electric network. This peculiar
property of large electric networks to disperse electric power was first noted by Dykhne [97].
The distribution of the heat power can be derived by the same way as was done above for the
currents and has the following form [96] (see also general theory for vector statistics [98])

f (P ) = 2µ

ν〈P 〉 exp(−µP/〈P 〉) sinh(νP/〈P 〉), (41)

with µ and ν given in (17).
(iii) The resistance is a simple mechanism of a deterioration of quantum coherence similar

to the Büttiker one [99] and violates the equation ∇j = 0. In fact figure 11 demonstrates spiral
behaviour of quantum streamlines [72] which sink into nodal points of the wavefunction in
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system with the resistance. The characteristic localization length can easily be estimated from
equation (40)

λR ≈ 4πa0

R

√
L

C
. (42)
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[47] Ishio H, Saichev A I, Sadreev A F and Berggren K-F 2001 Phys. Rev. E 64 056208
[48] Feller W 1971 An Introduction to Probability Theory and its Applications (New York: Wiley)
[49] Tribelsky M I 2002 Phys. Rev. Lett. 89 070201
[50] Saichev A I, Ishio H, Sadreev A F and Berggren K-F 2002 J. Phys. A: Math. Gen. 35 L87
[51] Sadreev A F and Berggren K-F 2004 Phys. Rev. E 70 26201
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