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Exchange narrowing of magnetic resonance linewidths in inhomogeneous ferromagnets
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The theory of exchange narrowing of ferromagnetic and spin-wave resonance linewidths in ferromagnets
with the randomly inhomogeneous magnetic anisotropy is developed. The calculation is carried out by the
method of averaged Green functions in the framework of the coherent potential approxit@®i&n One-
and three-dimensional inhomogeneities with an arbitrary correlation wave nikyder considerecrczk;l is
the correlation radius of the inhomogeneijiebhe method of the approximate solution of the CPA equation is
proposed which has the quick convergence. Effects of exchange narrowing of the magnetic resonance lines and
shifts of these lines are calculated in the whole region of the values of the correlation wave rinmier
approximate analytical expressions for the linewidth of the FMR in the limiting cases of the small anklarge
are obtained. Large narrowing of the FMR and spin-wave linewidths with the decrease of the correlation radius
of inhomogeneities is the substantiation of the main advantage of nanocrystalline and amorphous materials
over usual polycrystals when they are used at high frequency devices.
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I. INTRODUCTION magnetic resonance line from the initially widest line corre-

sponding to the independent inhomogeneities. The theory of

It is well known that inhomogeneities of the internal mag- such exchange narrowing of the electron paramagnetic reso-
netic field in a matter caused by different physical reasongance(EPR) and nuclear magnetic resonar®#R) lines is
lead to broadening of the magnetic resonance line. For exwell developed for the paramagnetic systénfsFor the

ample, it can be magnetodipole fields of impurity ions inmagneto-ordered media the consistent theory of exchange

paramagnets. Fields of the magnetic anisotropy, the directiof@rrowing of the resonance line is absent. Meanwhile the

of which is different in the different grains, leads to this MOSt perspective magnetic materials, nanocrystalline, and

effect in ferromagnetic polycrystals. The linewidtH re- ~ amorphous alloys, belong to the media with the exchange-

sulting from this phenomenon has an order of value of th&?0Und inhomogeneities. Approximate approaches which

rms fluctuations of the internal fields for the noninteracting@ve been developed earlier for taking into account exchange

inhomogeneities. In the case of the polycrystal this simples®S Well as magnetoldzip;cgle narrowing of the ferromagnetic
et=°5do not describe experimental re-

picture corresponds to the situation when the value of grain&SOnanc&FMR) lin _
D, much more then the length of exchange correlations thagUlts at these types of media. _ _

have the order of thickness of a domain walj=(A/K)¥2, Because of th|s_, Rubm;tem, Harris, and Lubitar th_e
whereA andK are the exchange and anisotropy parametersexPla”at'on of their experiments, extended to the region of

respectively. In this case oscillations of the magnetic momerﬁhe FMR the scaling arguments that were initially developed

in different grains can be considered as indepen¢éetin- In Refs. 10—12(see.alsq a revietd) for' de;crlblng the pro-

dependent grains approximatioand their resonance fre- cesses of the qL_JaS|stat|caI remagnetizations and for caICL_llat-
guenciegor resonance fieldsre determined by the value of ing the hysteres!s loops and coercive fields of nanocrystalline
the anisotropy and the direction of the axis in each crystal-magnet'c materials. We recollect first how these arguments

line. This situation has been considered in the classic pape}gc’k for the hysteresis loop. If,<Do and the independent

by Schlomanh? (see, also Ref.)3A shape of the resonance grains approximation is valid the hysteresis loop of a poly-

line for a polycrystal in this case can be found by the Simplecrystal can be calculated accordingly to the classic paper by

averaging of the expression for the shape of the line in theSt(_)ner and WOh'_fé?ﬂf‘ by the_ dire_ct averaging of the_ hys;er-_
one grain with the corresponding distribution function of di- €IS 100Ps of individual grains with the corresponding distri-

rection of the anisotropy axes. Under the condition of thePution function of the anisotropy axes of these grains. When

uniform distribution of the anisotropy axes the rms fluctua-tne opposlltebcongltlon,o> Do, |shval!d tc?e WhOIE yo:‘ume Ofd
tion of the anisotropy field and, correspondingly, the resoN€ Sample breaks up on stochastic domains with a random

nance linewidth is of the order of a value of the anisotropyorlentat|on of the magnetization; the average dimension of

field, AHy= (5/3)H,, whereH,=2K/M, M is the magneti- the domainL must be calculated self-consistently. A large
) ar a '

. — d . . . _
zation. It must be emphasized that this linewidth has no repumber of the grainsy=(L/Do)°, whered is the dimension

lation to any relaxation processes in the system. The Iattef?IIty of the |nhomogeneltles, are throyvn Into the volume of
determine the linewidth in each crystalline which can beeach stochastic domain. The magnetization of each such do-

much less thathH,. The situation is sharply complicated for Main MOVes as a single whole in the field of the effective
the media where oscillations of the spins, situated in differenfinisotropyK which has the order of a value of the rms fluc-
internal fields, are bound by the exchange interaction. Effecti/ation of the crystalline magnetic anisotropy in the volume
of this interaction develop themselves in narrowing of theof the each domairk=K/NY2=K(L/Dg)¥2. The magnetiza-
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tions of different domains weakly interact with each otherH=H, which are characteristic for the FMR regi&hSec-

and, in the first approximation, these stochastic domains caond, and this is the main factor, this approach does not take
be considered as independent. Thus, we can again use th@o account the contribution of the processes of spin-wave

Stoner and Wohlfart method of direct averaging for calculat-scattering from the inhomogeneities of the anisotropy in the

ing of the hysteresis loop, however apply it now to the sto-lin(_ewidth. These processes are especially. essential for the
chastic domains with the effective anisotrodyzK and di- Zpln—vyave ;esogarr]]cgs. (Ijt ha? b?ﬁn shown in Ref. 15 that the
mension L>D, but not for the grains. As a result the amping w’, WhICh 15 du€ 10 INESEe Processes, INCreases

. . . . (w"xk) at k<k, and decrease@”«k™1) at k>k; with the
hystere3|s ltoo? i?; tgfcﬂzgogrﬁztﬁlomlrll b?nogga:;ne;i;\gtr? ﬁrﬁincrease of the wave numblel(herekc:rgl is the correlation
Ing account o 9 9 P wave number of the inhomogeneitiegn Ref. 15 as well as
the maximum broad loop corresponding to the usual poly

. . Yin following paper$f-18the calculation of eigenfrequencies
crystal. The following scaling arguments are used for obtains 4 dampings of spin waves carried out in the first approxi-

ing the equation folK. The average dimension of the sto- mation of the perturbation theory over the rms fluctuations of
chastic domain equal to the length of the exchangehe inhomogeneities parameter. That approximation did not
correlations not in the medium with the anisotrdgybut in  take into account the effects of inhomogeneous fields leading
the medium with the unknown anisotropK that is o the nonrelaxation contributions into the linewidth, the de-
L=(A/K)Y2 Substituting thisL in th ion folK. pendence of which on the exchange correlations were dis-
=(A/K)™. Substituting thisL in the expression folK, ¢ sed ahove in the framework of the scaling arguments. On
which is shown above, one can obtain the equationkfor the other hand, the scaling arguments do not take into con-

The next formula follows from this equation: sideration the contribution of the relaxation processes to the
_ bD., | 2d(4-d) magnetic resonance linewidth. To take into account both
K/IK = a<L—O) , (1) these effects and develop the consequent theory of exchange
0

narrowing of magnetic resonance lines in magneto-ordered

wherea and b are unknown constants of the order of the media, the taking account of the multiple scattering of the

unit. waves from inhomogeneities described by the corresponding
As the coercitive forceH, is proportional to the aniso- Green function is required. .

tropy field of the stochastic domainga:ZE/A the next Thg objective of this paper IS the calculation of th.e shap_es

relationship follows for the three-dimensional inhomogene-anq w@ths of the FMR and spin-wave resonance lines with

ities from Eq. (1), HcocDS. This dependency was observed taking into consideration the multiple scattering processes of

repeatedl{-2 at the some interval of the grains dimension P Waves on the one-dimensionglD) and three-
Do. dimensional inhomogeneities of the magnetic anisotropy by

The authors of Ref. 9 made their proposal that anangou@oeteT;;rllgd c;t);?ri;;/oerﬁrg%eA()j iSrtiianﬁglcglg?algstgﬁ g?:‘ﬁéem
arguments can be used also for the estimation of exchan PP P

e . . -
narrowing of the FMR line in nanocrystals. If for calculating telationship betweew, and D, from Dyl (the limit of

the FMR linewidth in the casé,<D, the Schlomann’s independent graingo Lo> D (the limit of strongly coupled
method of the direct averaging over the independent grain@ramg' . I

is valid, that in the opposite cags D, one can again apply leferent phys,lcal effects make a contribution to the local
this method but to the independent stochastic domains. If thglagnetic amsotrgpy in the mod'ern n_anocrystallme and
FMR linewidth AH, is proportional to the anisotrop in amorphous alloys: the local crystalline anisotropy, anisotropy

the first case, it will be narrowed by the exchange interactior%)f internal random elas_t|c strains, anlsotrop_y .Of grain shapes,
in the second case and so on. Such effective local anisotropy is inhomogeneous

for both the value of the anisotropy and direction of its axis.

AH/AHO=E/K, (2)  However, the theoretical description of the spin wave spec-
_ trum modification, which is caused by these two types of
whereK is determined by Eq(1). inhomogeneities of the anisotropy, leads to the problems of

The experiments were carried out in Ref. 9 in which thethe essentially different difficulties. The matter is that when
dimension of the grainB, as well as the FMR linewidtAH only the value of the magnetic anisotropy fluctuates, the only
increase simultaneously in several times in the process d&fpin waves become random functions but the ground mag-
annealing the sample. It confirms that the scaling argumentsetic state remains uniform. But when the direction of the
play one of the main roles in the physical mechanism leadingnagnetic anisotropy axis fluctuates the ground state becomes
not only to exchange narrowing of the hysteresis loops buinhomogeneous, the statical stochastic magnetic structure
also to exchange narrowing of the FMR linewidth in nanoc-(SMS) appears to also interact with the spin wave¥
rystals(and also, in amorphous alloys where the correlatioriTherefore, in the latter case there are two canals of the acting
length of fluctuations of the local magnetic anisotropy axisof the anisotropy inhomogeneities on the spin waves, direct
2r; plays the role of the grain dimensid@y, in the nanocrys- and through the SMS. This leads to the sharp complication of
tals). the mathematical problem. However, the second canal can be

However, the transfer of the scaling arguments to the resuppressed in the magnetic fieltls>H, because the rms
gion of the FMR does not take into account, at least, twdfluctuations of the SMS decrease with the increasd.ofhe
essential factors. First, the length of the exchange correlssituation wherH>H, is characteristic in many cases for the
tionsL becomes a function of the magnetic field in the fieldsFMR and spin-wave resonance experiments. That is why we
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neglect the effect associated with the SMS. This permits ughe resonance projectian* we have the equation
to consider the model which under the correspondent redefi- - .

nitions of the parameters describes the influence of the inho- Vem® + [y = gp(x)Jm" =0, (10)
mogeneities of the magnetic anisotropy valgerrectly as  \where the notations are introduced

well as the inhomogeneities of the magnetic anisotropy axis

direction(in the approximatiorH>H,). W~ W ¥B (11)

Y= agM' 77—;-

Il. MODEL AND METHOD Here wy is the uniform FMR frequency

We describe the dynamics of ferromagnetic medium by

the classic Landau-Lifshitz equation o= g[H = (N, = Ney)M = He], (12
) whereN, andN,, are the demagnetization factors along the
M=-g-[M X Hegl, (3)  axis and in thexy plane, respectively, andl,=AM is the

average value of the anisotropy field.

Note, that the wave equation for electromagnetic or elas-
tic waves in the scalar approximation also has the form of
Eg. (10) with corresponding redefinitions of the parameters.
JgH 9 JH So simple a form of the equation for the spin waves is a

whereM is the magnetizationg is the gyromagnetic ratio,
andHq is the effective magnetic field which is determined
by the expression

Hefr= - eV X AN (4) consequence of the cylindrical symmetry of the problem
with respect to the axis. For the problem with the inhomo-
We choose the energy density in the form geneous direction of the anisotropy akisl(x) this symme-
1 M2 1 1 try disappears and the equations for the projectiohsand
H== a<_> - = BOIMI(X)2=MH == -MH m~ become coupled. Besides that, the inhomogeneity of the
2 X 2 2 anisotropy direction leads to the inhomogeneity of the mag-

(5) netization ground state, the SMS structure with the compo-
5 nentsM,(x) and M,(x) appears. This in turn leads to the
where «=2A/M* is the exchange paramet@ix) andl(x)  gppearance of new terms in the equations for the spin waves
are the value of the magnetic anisotropy and direction of it§yhich describe the interaction of the projections with the
axis, respectivelyH is the external magnetic fielth, is the  components of the SMS. As a result, the mathematical prob-
magnetodipole field, and=(x,y,2). lem dramatically complicat€.If we neglect the coupling of
At first we consider the model in which the only value of m* with the nonresonance projectiom and with SMS com-
the magnetic anisotropy is inhomogeneous, while the direcponents, the only terms will be saved which describe the
tion of the anisotropy axisis uniform and coincides with the irect interaction ofn* with the random functiont, 12, and
direction of the magnetic fieltH which is parallel to thez 12, wherel; are the projections of the vectbon the coordi-
axis. We represent the value of the anisotropy in the form pate axes. It is easy to show that the equatiomibiin this
_ case has the form of E10) in which the parameterg and
B = BLL+ 90 (0], © wg for the case of the uniform distribution of the anisotropy
where g is the average value of the anisotropyis its rela-  axis in all directions have the forms
tive rms fluctuations, ang(x) is a centered(p)=0) and

normalized ({p?)=1) random function of coordinates. The :ﬁ:i_ﬁ,

angle brackets here and farther denote averaging over the VSa  y5aM

ensemble of random realizations. Stochastic properties of the

function p(x) are characterized by a correlation function de- wo=0g[H — (N, N, )M]. (13

pending on the difference of the coordinatesx—x’, In distinction to Eqg.(12) the termH, is absent now in the

K(r) =(p(x)p(x +r)), (7) equation forw, because the averaged anisotropy field is
) o ] equal to zero in this case. So, solving the equati®) we
or by the spectral densit(k) which is connected witlK(r)  gpg| simultaneously investigate the correct model of the

by a Fourier transformation value of the magnetic anisotropy fluctuations and the ap-
. proximate model of the anisotropy axis direction fluctua-
Sk = 3JK(r)e"krdr. (8) tions. _ _ .
(2m) Introducing the Green functiof(x,Xx,) we rewrite Eq.

We perform the usual linearization of Eq1) (M, (10 inthe form
~M; My, My<M), take My, My =€, and introduce the cir- V2G(%,X0) + [ - 7p(x)1G(X,X0) = (2m)38(X - Xg).
cular projections

(14
The numerical coefficient27)® is introduced on the right-
We assume that the sample has symmetrical shape ixythe hand side of this equation for the simplification of the fol-
plane. In this case the equations fof get uncoupled and for lowing equations. In the uniformly random media, where all

m* =M, % iM,,. (9)
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variables depend only on the difference of the coordinates — 1
r=x-x’, the Dyson equation for the averaged Green func- Gl = v—l<2——l\/l(l<) (18
tion has the forn{see, for example, Ref. 20

Here M(k) is the infinite power series in the Fourier trans-

o _ B B formations of the Green function§y(k) and the spectral
Gx=x0) = Golx =x0) + f f Golx =x1)Qx1 = Xz) densitiesS(k). The modern methods of summation of this
_ serie$'23are based on the developing and approximate so-
X G(Xy = Xg)dXx;dX5, (15 Iution of the self-consistent equation fif(k).

_ A much used method of obtaining the self-consistent
whereG(r) is the averaged Green functioBg(r) is the ini-  equation for the mass operatbt(k) is the method of the
tial Green function for the uniform medig(r) is the mass CPA. After the first derives of the CPA equation in Refs. 24
operator which depends on the correlation functiqn) as  and 25 a number of other variants of the derives, extensions,
well as onGy(r). Representing these functions in the form of and development were suggested in original papéfsas
the Fourier integrals well as in review® and book23

We present here one more simple derive. Changirixy
k, in Eq. (18), multiplying this equation by?S(k -k;), and

ary = | afl)ak
G(r) _f G(k)e" dk, integrating it overk,; we obtain

ﬂzfa(kl)S(k—kl)dkl: nzf w
vk

. (19
—M(ky) 19

Go(r):JGo(k)e““dk, Q(r):fM(k)e”“dk, (16)

For obtaining the self-consistent equation fdrk) we re-
we obtain the Dyson equation for the Fourier transformationgluire that the left-hand side of EG19) is approximately
G(K), Gy(k), andM(k) and findG(k) from equal toM (k):

1 M(K) = 72 J G(k)S(k — ky)dk;. (20)

GK)=————. (17)

Gy (k) = M(k) . : . : :
Carrying out the inverse Fourier transformation we obtain

For the case of the infinitive mediuG,'=»-k?> and Eq. that this requirement corresponds to the fulfilment of the

(17) takes the form following approximate equality:

QX = Xo) = 7°G(X = Xg)K(X = Xo)

= 7°Go(X = Xg)K(X = X) + 7l4f f Go(X = X1)Gg(X1 = X2) Go(X2 = Xo) K(X1 = X2) K(X = Xg)dx 10X,

+7° f f f f Go(X = X1)Gg(X1 = X2) Go(X = X3) Go(X3 = X4) Go(X4 = Xg) [K(X1 = X2) K(X3 = X4)

+ K(X1 = X3) K(X5 = X4) + K(Xq = X4)K(X5 = X3) JK(X = Xg)dX;0dXo0X 30X 4 + « -+ . (22)

It follows from Eq. (21) that the left-hand side of the exact method permeating to make the analytical summattbat
equation(19) takes into account only those diagrams thatis, to reduce to an integral equatjoaf considering in its
have correlations between the initial poigtand final point  framework diagrams all orders for the mass operator of the
x. Comparing Eq(21) with the rigorous representation of the Green function. It is convenient to introduce the mass term
mass operato®(r) in the form of series in the correlatdfs Mx=M(k) and to rewrite the basic system of the CPA equa-
one can see that the formulal) is exact in the first order of tions(18) and(19) in the form

K(r), takes into account one diagram from two in the second

order, three diagrams from 10 in the third order, and so on. Ek: + (22)
This is a drawback of the CPA method. However, a large v =k =My

body of comparisons of the results obtained by the CPA

method with the direct numerical modelirifpr the density Sk —kq)dk,

of states see, for example, Ref.)2Zhow that this drawback M= | —5——. (23
is essentially overcome by the main advantage of this v=ki- M,
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IIl. ANALYSIS OF SOLUTIONS OF THE CPA EQUATIONS

We model the correlation properties of inhomogeneities
by the exponential functioK(r) and the corresponding spec- 204
tral densityS(k). For the 1D and 3D inhomogeneities these
functions have the form, respectively,

1oy
1D, K(r)=e*d gk)= %kz'f:kz, (24) &
1 \ , 0.5
3D’ K(r) = e_kcr, gk) = 7—T2(chkck2)2 (25) & . 0.3
1/2

' . _ vin 0.1 kyn
Herek, is the correlation wave number of the inhomogene- 12

ities (rC:kg1 is the correlation radius; for the case of poly- or

. . FIG. 1. The dependence of the imaginary part of the Green
nanocrystal 2. is equal to the size of the graldy). P gnary p

functionG” on the normalized frequenay # for different values of
the normalized correlation wave number of the 1D inhomogeneities
A. Method of chain fractions k./ V7 in the approximation of the only one link of the chain frac-

] ) tion Eqg. (26) (Bourret approximation The minimum value of
The integral equatiori23) cannot be solved exactly for /7 corresponds to 0% 102

even such simple functions as E¢24) and (25). One way
of an approximate analysis of this equation is representing
in the form of the infinite chain fractions of the integral ex-
pressions which are proportional ig,

'gghysical sense and is a result of using the Bourret approxi-
mation. The widths of these peaks are proportional to the
damping that is due to the scattering of the spin waves by the

f 72S(k = kq)dk, inhomogeneities. They are determined by the expression
My = . -
‘ V- K2 nzf Sky —kp)dk Av=2k\v. (30
1
v=I2= 7 S(ka ~ kg)dks The distance between these peaks, as it will be shown below,
2 > from taking into account the following approximations, is
vokg=nt [ approximately equal of the resonance linewidth that is due

not to the damping but to the stochastic spread in values of
(26) the frequencies. With the increaselqgfthe distance between
Restricting in this formula to the first link of the chain frac- them decreases, and two peaks merge all together under the
tions which is proportional taj2 we obtainM, in the Bourret ~ condition

approximatioR®2° Ky = 17, (31)
M, = sz Sk —kq)dk; (27) The Bourret approximation is valid at least qualitatively only
“ v-ki in the region of the existence of the one resonance maximum

in the functionG”(v).
SubstitutingS(k) in the form of Eqs(24) or (25) in Eq. (27) I uncti (v)

. . ) i . Taking into account in Eq(26) two integral terms and
and performlng_ the integration Wlth_ the help of_t_he res'd“eperforming integration with respect o we obtain the next
theory we obtain for the 1D and 3D inhomogeneities, respe

Capproximation forMl, for the 1D inhomogeneities,

tively,
k= kq)dk
7 ike Mk:ﬂzf S 21) L (32
1D, MKZW 1-=1 (28) 12— 7 <1_'k_0>
(Vv —iky)— Vv 1 (V—ikc)z—ki \’/;/
7 The integral in Eq(32) was performed with the help of the

3D, My= —(\g_ k)2 K2 (29 residue theory exactly because a biquadratic forrk;ican

v C

be obtain in its denominator. A cumbrous expression has
Substituting these expressions in EB2) we obtain that in  been obtained that we do not present here. The dependence
this approximation the imaginary part of the Green functionof G”(v), calculated with the help of this expression fdg,
G” as a function of the frequency and correlation wave is shown in Fig. 2 by circles. In this approximation the func-
numberk. for the 1D inhomogeneities has the shape that igion G”(r) has three resonance peaks at the small values of
shown in Fig. 1. The Green function is normalized on thek_; the region of the existence of the single-mode solution
valueG, =1/7in this figure. The form of the Green function spreads in the direction of small& compared with those
for the 3D inhomogeneities under the conditikgfVv<1  which are determined by E¢31) for the Bourret approxi-
differs little from Fig. 1. The appearance of two resonancemation. The next approximations which take into account
peaks in the curv&s”(v) at the small values ok, has no greater numbers of the links of the chain fraction &) are
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12

T ' FMR frequencies is inapplicable if we take into account any
finite number of links of the chain fraction. That is why we
propose here the another method of the analysis of the inte-
gral equation23)—the method of algebraic equations. Con-
trary to the considered above method of chain fractions, the
accuracy of the proposing method grows not with the in-
crease but with the decrease lof The main advantage of
this method is that it permits us to investigate the whole
frequency bond including the FMR.

B. Method of algebraic equations

Let us consider EQg.(23) at k,=0. Then S(k-k,)
=8k -ky), the integral in Eq(23) can be performed exactly,
and this equation transforms into an algebraic equation of the
second power itM, identical for 1D as well as 3D inhomo-
FIG. 2. The dependence &' on the normalized frequenay » geneities. Retaining the only solution corresponding to

atk/ 7=0.7x 1072 for different numbers of the links of the chain ~ G”>0 we obtainM, from this equation in the form
fraction Eqg.(26): n=1, dashed, two-modes curvaz=2, circles, 1 1 12
three-modes curven=9, dots, 10-modes curver=40, solid 41- =Z(p- kz) +i { 7]2 ~ (- kz)z] '

modes curve; the solid single-mode curve with the amplitude (33)

G"/Gp=1 corresponds to the limiting case— . ) i ) .
The main assumption of the proposing method is that for

obtained by the numerical integration. In Fig. 2 the depenobtaining the first approximation ak,#0 we can set
denciesG"(v) are depicted for different numbers of the My, ~My saving in the same time the spectral density
links of the fraction Eq(26). It is seen that the curve with S(k k,) in the exact form. Under this assumption the inte-
n+1 peaks corresponds to thth approximation. The square gral in Eq.(23) is performed exactly and we obtain for the
under each curve remains constant, that is why the ampliirst approximation oM, the following transcendental equa-

tudes of the peaks decrease with the increase of the numbgéns for the cases of the 1D and 3D inhomogeneities, re-
of the peaks. The convergence of the approximate solutionspectively,

to the limiting single-mode curve with the increase of the ) )
number of approximatiom for small values ofk, goes on 1D. M.= 7 (1 ke ) (34)
very slowly and becomes worse with the decreade.dis is K (Vv =My —ik)? - k? wa

seen from Fig. 2 akcl\n~102 that even taking into ac-

count the 40 links of the fraction and, correspondingly, per- 7
forming the 40 successive numerical integrations does not 3D, My=— —.
lead to the single-mode functid®”(v). The limiting single- (Vv =My —iko)* -k
mode functionG”(v) corresponding ta— < is depicted in  pay attention thavl, depends only on a module of the vector
Fig. 2 by the solid curve with the amplitud&’/G =1. Itis  k in both 1D and 3D cases.

seen from Fig. 2 how far the several tenth of the first suc- |ntroducting the new variable=(r—M,)*2 we reduce
cessive approximations is from this limiting curve. So, thethese equations to the algebraic equations of the fifth and
analysis of the apprOX|mate solutions of the integral equatiofgyrth power, respectively,

(23) for the region ofk./ 7;<1 by the method of the suc-

Vv—

(35

cessive integration of the links of the infinite fraction Eq. 1D, z(Z-v)[(z-ik)? - K]+ 74 (z-ik) =0, (36)
(26) entails the cumbrous numerical calculations; the limit-
ing transition to the case of the independent gr&ins 0 is 3D, (Z-v)[(z-iky)?- K+ 7°=0. (37)

impossible by this method. At the same time, the region o
small values ok, is intensively investigated experimentally
now? because it corresponds to the long correlations which _ 1

appear in the real amorphous and nanocrystalline alloys for G= v (38)
various physical reasons, inhomogeneities of the chemical

composition, elastic stresses, and so on. But the main disa&olutions of Eqs(36) and (37) were found numerically. It
vantage of the method of the chain fraction is that permittingurns out that not all roots of these equations satisfy the
to investigate the region of the spin-wave resonanceitial transcendental equatiori84) and (35). That is why
(k= 0) this method does not permit to study the most impor-the following criterias are applied for the separation of the
tant region of the magnetic susceptibility, the uniform ferro-physical solution. First, the imaginary part of the mass term
magnetic resonance. Equati¢®8) diverges and the imagi- M, must be positive from the physical reasons. Second, the
nation vanishes in Eq29) when the frequency approaches solution of Eq.(36) or (37) must satisfy corresponding Eq.
the FMR frequencyy, (and, correspondingly, the normalized (34) or (35). These two criterias permit us uniquely to sepa-
frequencyr—0). As a result, Eq(26) in the region of the rate the physical resonance cui@&(v,k).

tI'he Green function has the form
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The determined by this way continuous functiz(,k), 3
corresponding mass teri,(v), and Green functior,(v)
are the first approximation to the solution of the CPA equa-
tion (23). For obtaining the second approximation the mass 2
term of the first approximation is substituted to E2@) as a . g
function of k;. Performing the numerical integration in Eg. g »n
(23) we obtainM, in the second approximation which can be [l RIS
substituted in the same equation again and so on, accordingly
to the recurrent formula

0.5

k —kydk

MY = S(z—l)m} (39 S 2 1 o0 1 2z s
V= kl - Mkl v

The method of approximate solution of the integral CPA k|G, 3. The dependence &' atk=0 (FMR) on the normalized
equation(23) that is proposed here, based on the reduction ofrequency v/ 5 for different values of the normalized correlation
this equation in the first approximation to the algebraic equanumber of the 3D inhomogeneitiés/\'7=0.0, 0.3, and 0.5 which
tion (36) or (37), has several advantages over the method ofre shown near the corresponding curves.
the numerical integration of the chain fracti(®26). First, the
function G"(v,k) has no singularities d&=0 and it permits . 1
us for the first time to use the CPA method for investigating 3D, G= 5 - T (43
the FMR frequency band. Second, in the region of the large =k =P =i(7-P?)
values ofk, where both these methods are applicable, thgynere
method of the algebraic equations gives single-mode shape
for the Green function even in the first approximation,
whereas in the method of the chain fraction at srkalthe
first approximation as well as a number of the following
approximations leads to the physically senseless many-mode
dependencies o&”(v). Third, the method of the algebraic
equations has a very quick convergence. Our studies show V- SHAPE AND WIDTH OF RESONANCE LINES
that even the first approximation is very good approximation A. Ferromagnetic resonance
of the exact result in the wide region &f and k. In the o )
region of k, and k where the first approximation is inad- . 1N shape of the resonance line is determined by the
equate, the second or third approximation is usually goodmaginary part of the averaged Green functiBi(»,k). At
enough. Contrary to that, using the method of the chain frack=0 it describes the uniform resonance. The depend€ice
tion for the smalk, one must perform several tenths or even©n » atk=0 for the 3D inhomogeneities is shown in Fig. 3
hundredths of successive integrations for obtaining the satidor three values of the normalized correlation wave number
factory result. And finally, the method of the algebraic equaXc/ V7 Which are depicted near the corresponding curves. The
tions permits us to obtain the approximate analytical expresdotted curve corresponds to the limiting case of the infinite
sion for the Green function in some region of the parameter§orrelation radius of the inhomogeneitigg=0, the indepen-
of the problem. At the conditions thal,|<v,k? the term dent grains limit. In this only case the integral equation of
M, can be saved only in the resonance denominators of th&e CPA forM, has the exact solution E¢33). Substituting

P= 1= ik~ K?], (44)

and (35) take the form, respectively, for the real and imaginary parts of the Green function:
~- 1 x, X2 < 477,
2 / H ’—
7 Vv —ike G'= _2{ 2 212 2 . (49
1D, My= = =, (40 2 X=sgrx)(x*—4xn°)"', x> 4y,
“ v=My - 2ikg\v-K-K v 49 7 9 7 7
1 4 2_X21/2’ <4 2’
7 ¢'= z,f{é T 2> 477772 (46)
3D, M= (41) ’ X ,

M= 2ik Ny — K= K2 . .
V=M= 2kevr - ke -k wherex=v-k?. These expressions do not depend on the di-

mensionality of the inhomogeneities. The approximate ana-
lytical equations(42) and (43) at k,=0 also transform into
exact ones and coincide between each other as well as with
Egs.(45) and (46). As is seen from Eq(46) and Fig. 3 the
function G"(v) atk.=0 vanishes for the values 7 outside

Substituting solutions of these quadratichfy equations in
Eqg. (22) we obtain the explicit expressions for the Green
function in the form

— 1

1D, G= — 75 (42)  theinterval(-2, +2) and reaches the maximu@f/Gy,=1 at
K= P—i Vv —ike p2 v=0. The width of the resonance line in the half of its maxi-
T mum is determined by the formula
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Av_yotHo o, (47) " @
7 Ha v
This value is close to the result that has been obtained 0.8F Ty
earlie?® by the method of direct averaging for the model of -
independent graing\Hy= (5/3)H,. < 06 \ =
When k. becomes not equal zefourves, corresponding T
to k.=0.3 and 0.5 in Fig. Bthe physical mechanism of ex- <
change narrowing of the FMR line switches on associated
with averaging the local magnetic anisotropy over the vol- °
umes of the stochastic magnetic domains, the value of the : °
resonance peak increases and its width decreases with the °
increase ok.. In the same time dt.# 0 the mechanism of Y
broadening of the FMR line switches on associated with the
damping induced by the scattering of the spin waves from c
the inhomogeneities. For the case of the FMR the latter . .
mechanism leads to the asymmetry of the resonance line: the 1 (b)
left edge of the line as before is characterized by the sharp
rise, the decrease of the line becomes smooth. It is due to that P
the left part of the FMR ling»<0) is situated out of the ‘ -7 x ¥
limits of the spin-wave dispersion law=k?, while in the o S
regionv>0 atk,+# 0 the processes of the uniform precession
decay into spin waves witk+ 0 taking place which lead to
broadening of the right part of the FMR line. However, the 0.4 » !
effects of exchange narrowing prevails in the total linewidth. ¥ !
The dependence of the FMR linewidttw on the value of 02l » K o
the correlation numbek; is shown in Fig. 4 for the 1D % ’ o
(crossep and 3D (circles inhomogeneities. For broadening ,’( o—°°/° o °
the diapason of values & the dependenciedv on k./ N 8——00.5 1 2
[Fig. 4@)] as well as on the inverse valuep/k; [Fig. 4(b)] n”z/kc
are shown in this figure. This is one of the main results of our
work because it illustrates the effect of the FMR line ex- FIG. 4. The linewidth of the FMRAH as a function of the
change narrowing in the whole diapason of the correlatiomormalized correlation wave numbky/\7 (a) and of the inverse
wave numbers,. value ' n/k (b) for the 1D (crossesand 3D(circles inhomogene-
At k,=0 the linewidth is maximum and determined by Eq. ities. Dashed lines correspond to the approximate equa@<a)
(47) when the anisotropy axis fluctuates and by the formulaand(51) (b).
AHy=2y3yH, when the anisotropy value fluctuates. Narrow-

ing of the FMR line occurs with the increase kfand this  the formula for the FMR linewidth in this region in the form
effect develops itself for 3D inhomogeneities much stronger

than for 1D inhomogeneities. Fg/\7<1 the line narrows AH _ 1Dy |9 "
linear ink.. It follows from Fig. 4a) that the dependencies AHo +2\4L, ' (50)
AH on k; in this region ofk; can be approximated by the
formulas for 1D and 3D inhomogeneities, respectively, or in our designations
AH | 1-0.4%/V7, 1D, [\ 2d(4-d)
a z{ TOAs (48) AH _ %(3_77) 53
Ho 1-1.%kJ/vn, 3D. AHy 2\ 4k,

For the case of the anisotropy axis fluctuations we hav

— %he dependencies corresponding to are shown in
7=(\V5Lg)*?, k.=2/D, and Eq.(48) can be written in the P ! ponding to Esf) o

Fig. 4b) by dashed curves for both dimensionalitiés 1

form and 3. So, it follows from the developed here theory as well
AH 1-1.33 /Dy, 1D, as from the 52(;’?””9 argumefthat atD60< Lo the FMR line-
LIS 49 wi i .
AHg  |1-3.34D, 3D. (49) \évéitgitiAegoc D3 for the 1D andAH =« D§ for the 3D inhomo

In the opposite case of large valueskpfit appears that our At k.# 0 the shift of the resonance maximum takes place
numerical results are qualitatively described by HEds.and in the direction of the small frequencies, that are the negative
(2) which follow from the scaling argumentsComparing values ofv (Fig. 5. This shift initially increases and then
Egs. (1) and (2) for d=1 andd=3 with the corresponding decreases with thk; increase, going to zero with different
curves of Fig. 4b) in the region of\5/k.<1 permits us to rate for the 1D and 3D inhomogeneities. The maximum shift
find the unknown constant andb in Eq. (1) and to write  is in the vicinity ofk./\»=~0.7 for the 1D and 0.25 for the
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0o ———o
« k=0 P o
3Dg 3
x 7
[+ og/ 1D %
/ x
o5t x &/ , =
o, Lux" o2
) Q
s | o
]
-1to 8 /I 1
o [/
[
I
o
[ % 3
-1.5 : .
0 2 4
12
kc/n FIG. 6. The dependenc&” on the normalized frequency

(v=k?)/ 5 of the spin waves alt./\»=0.5 (3D casg for different
FIG. 5. The shift of the resonance maximum in dependence owalues of the normalized waves numden'=0.0, 1.5, and 3.0
the normalized correlation wave numbery » for 1D (crossesand which are shown near the corresponding curves.
3D (circles inhomogeneities. The dashed curve shows the shift of

the spin-wave eigenfrequency fk=0 calculated for the 3D inho- 2,2k
mogeneities earliefRef. 15 in the framework of the perturbation " — L_ (53)
theory. kc(ki + 42

3D inhomogeneities. The dependence of the FMR shifton we note, that t.he same formula fOHOWSf fof in the first
for the 3D inhomogeneities can be compared with the deper{;_\pprox!matlon inx? also frpm the equality tq zero of the
dence of the spin-wave eigenfrequencykpmvhich has been denominator of the _apprOX|me_1te Green _functlon ELp).
found earliet® by the perturbation theory methods, It fOIIOWS_ from Fig. _7 that n th,g region of the larde
corresponding to the inequality/V%>1, there is a good
agreement between these valueg,22 Av. However, there is
2 a sharp difference between the functiam(k) and 2”(k),
=K? > 7 5 (52 both quantitative and qualitative, in the regionldf\f7;< 1,
ke + 4k the functionv’(k) decreases proportionally towhenk— 0,
the functionAv(k) goes in this case to the finite FMR line-
width corresponding to the give.
The latter dependence, that for the FMR has the form The |atter illustrates the fact that the linewidth at small
v==(nlky)? is shown in Fig. 5 by the dashed curve. It is yajyes ofk is mainly determined by the stochastic distribu-
seen that fok./ V7> 1 we have good agreement between thetion of the frequencies but not by the relaxation processes. It
results of the perturbation theory and the CPA whereas fojs also seen from Fig. 7 that the difference between the reso-
the smallk; the cardinal difference in the results takes place nance linewidths for the cases of the 1D and 3D inhomoge-
neities is large at smak and decreases with the increase of

k. At k/\s“7;>1 the linewidths for the 1D and 3D cases coin-

B. Spin waves

We consider oscillations witk# 0 now. The shape of the af -
spin-wave resonance cur@ (v) for the case of_3D inhomo- \‘
geneities is shown in Fig. 6 &t/ 7%=0.5 fork/y#%=0.0, 1.5, 3 “‘

and 3.0. One can see that with the increask thfe function
G"(v) becomes more and more symmetric. It relates to that

the spin-wave resonance, contrary to the FMR, takes place at 0o\ 4
. . . . . o =

the frequencies which lay inside the spin-wave band but not | TYin_,

at the end of this band. Because of this the processes of the ) Bt |

resonance precession decay into spin waves with another val- 0

ues ofk go now in both the right and left edges of the 1 2 2 3

resonance line. In Fig. 7 the dependencied pfon k for the

1D (crosses and 3D (circleg inhomogeneities are shown. g 7. The normalized linewidth of the spin wavas/ 7 as a
For the comparison the dependence of the doubled value finction of the normalized wave numbet for 1D (crossesand

the damping 2’ onk for the 3D case is shown in this figure 3p (circleg inhomogeneities with the correlation wave number
by the dashed curve. The dampink) has been calculated _/\7»=0.5. The dependence of the doubled value of the damping
earliet® by the perturbation theory and is determined by the2,” calculated for the 3D case earli@ef. 15 in the framework of
formula the perturbation theory is shown by the dashed curve.
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V. CONCLUSION

o The shape and linewidth of the FMR and spin-wave reso-
o nances in a ferromagnet with the randomly inhomogeneous
¢ ¢ 03 | magnetic anisotropy is studied in this paper. The investiga-
tion is carried out by the method of Green functions in the
framework of the coherent potential approximation. The
method of the approximate solution of the CPA equation is
proposed in which the first approximation is obtained as a
° o result of the solution of the corresponding algebraic equa-
tion, the fifth and fourth powers for the 1D and 3D inhomo-
geneities, respectively. This method has several advantages
over the usual, using for this aim the method of numerical
integrating the corresponding chain fraction. The main ad-
vantage is that this method is applicable in the vicinity of the
FMR resonance frequency=0 where the method of the
chain fraction leads to divergence of the corresponding inte-
grals. It permits us to apply the CPA for investigation of
exchange narrowing of the FMR line for the first time. This
) _ method has a very quick convergence, even first or second
cide betwgen each other as well as with the doubled value quproximaﬂon is satisfactory in the wide region of the pa-
the damping 2'(k). rameters of the system. The method has particular advan-
In Fig. 8 the dependence of the spin-wave resonance lingages for the small correlation wave numbkgsthat is, for
width onk is shown for the 3D inhomogeneities for different the |arge correlation radii of the inhomogenei)imcause
values ofk.. It is seen that the character of the functionalthe first approximation turns to the exact solution of the CPA
dependencé (k) changes with the increase kf. For the  equation wherk,— 0. Using this method we also manage to
smallk the linewidth decreases monotone with the increaseptain approximate analytical expression for the Green func-
of k. The maximum in the curvA (k) appears in the vicinity  tion which is applicable in the wide region of the parameters
of k/\n=1 with the increase ok.. For k/\7>1 the each excluding the vicinity of the FMR frequency=0.
curve in Fig. 8 goes to the curve/Zk), corresponding to the The dependencies of the width and shape of the resonance
given value ofk.. In Fig. 9 the dependence of the shift of the line as well as the shift of the resonance maximum on both
frequency of the resonance maximuwonk is shown for the  the correlation wave numbég and rms fluctuations of the
1D (crossesand 3D(circles cases. The dependence of theinhomogeneities are investigated for the FMR as well as the
eigenfrequency of the spin waves &rfor the 3D case de- spin waves in a ferromagnet. The effects of exchange nar-
scribed by Eq(52) is also showndashed curve It is seen  rowing of the resonance line are obtained for the first time
that all these three dependencies coincidé/aty>1 and for the whole region of values of the correlation wave num-
diverge sharply ak/\7n<1. berk.. For the FMR atk.=0 the linewidth is maximum and
corresponds to the limiting case of independent grains in the
polycrystalline that have been considered eatlfeiWhen
x % . l k.>0 the effect of exchange narrowing of the FMR line

k/Tl1 2

FIG. 8. The normalized linewidths of the spin waues/ 7 for
the 3D case as a function of the normalized wave nurkber, for
different values ok./\#=0.1, 0.3, and 0.5 which are shown near
the corresponding curves.

switches on associated with averaging the magnetic aniso-
% --"o tropy as a consequence of the exchange coupling between
D, - © the grains. Simultaneously the mechanism of broadening of
£ / the FMR line switches on associated with the scattering of
S0 / spin waves from the inhomogeneities. The latter mechanism
é,—o.s / 3D leads to the asymmetry of the resonance line. It is due to that
* ‘o the left part of the FMR lingv<0) is situated out of the
limits of the spin-wave dispersion law=k? while in the
| region v>0 the processes of the uniform precession decay
o into spin waves withk # 0 take place which lead to broaden-
-1 ’ ing of the right part of the FMR line. However, the effect of
0 1 2 3 . o : . .
12 exchange narrowing prevails in the total linewidth. This ef-
kim fect develops itself for 3D inhomogga_r1eities much stronger
FIG. 9. The shift of the resonance maximum in the dependencéhen for lD_Ones'_ For the S_mdu (kevy<1) the .“neW'dth
on the normalized wave numbé\ for 1D (crossesand 3D  decreases linear ik; according to the asymptotic formulas
(circles inhomogeneities ak,/\7=0.5. The dashed curve shows (48) and(49) which have been obtained by approximation of
the dependence of the shift of the spin-wave eigenfrequency on tH&€ corresponding parts of the curves in Figa)4 The
wave numbek/ 7 for the 3D case calculated in the framework of change of the character of the dependetkik;) occures in
the perturbation theorfRef. 15. the vicinity of k./\»=1. In the limiting casek./\5>1 the
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dependencAH/AH, onk; is described qualitatively by Eqs. precession decay take place at the both edges of the reso-
(1) and(2) which follow from the scaling arguments for the nance line. The qualitative character of the dependencies
case of the strongly bounded grafhk.permits us to deter- Aw(k.) is the same for ank, but quantitative differences can
mine the unknown constantsandb in Eq. (1) (which ap-  be quite considerable. For the spin-wave resonance the de-
pear to be independent on the dimensionality of inhomogependencies the linewidth dnare of great interest which are
neitieg and to write asymptotic formula&0) and (51) for depict in Fig. 8 for differenkc. Itis shown that the qharacter
this limiting case. It follows from the experimental restits Of these dependencies can be considerably different, the
that AH changes approximately proportional to the change opurvesév(k) can be monotonic or can have a maximum
the grain dimensiorD, in the process of annealing the depending on the value d¢. In the region ofk/\»>1 the
sample. Such character of this dependency does not corrdépendencedr(k) coincides with the dependence of the
spond to the expression either for the limiting cagg’k, ~ doubled value of the damping’(k) which has been calcu-
<1 or for the limiting case\7/k.> 1. However, it is seen lated earlier by the perturbation theory methods; in tt1e same
from Fig. 4b) that in the vicinity ofy5/k.~1, where the time therg is the sﬁarp difference betwel‘e?(k) ar?d 2/'(Kk)
character of the dependenad(D,) changes, the approxi- N the region ofk/y7»<1. The analogous picture is observed

mate proportionality betweeaH andDy, can take place. The also when comparing the dependencies of the resonance

! : maximum shifts and eigenfrequencies lan
shift of the resonance maximum must oceur also v_vhg!n . The effects of exchange narrowing of the FMR as well as
changes. The absolute value of this shift has a maximum i

— , Ynin-wave resonance lines connect between each other the
the vicinity of k./\7=0.25 for the 3D case. Fd¢./\v7n>1 pin-wav ! W

: . - ; ; main structural characteristics of the inhomogeneitiesnd
the shift of the FMR maximum coincides with the shift of the 7) with the main applied characteristics of the matter, that

FMR eigenfrequency which has been calculated earlier byre the magnetic resonance linewidths. Large narrowing of

the perturbation theory. S the FMR and spin-wave linewidths with the decrease of the
The dependencies of the imaginary part of the Greerorrelation radius of inhomogeneities obtained in this paper

function G” on the frequencyv for the casek#0 which s the substantiation of the main advantage of the nanocrys-

describe the susceptibilities of spin-wave resonances are alsglline and amorphous materials over usual polycrystals

investigated in this paper. The effect of exchange narrowingvhen they are used at high frequency devices.

of the resonance line with increase loftakes place in this

case too. The asymmetry of the resonance line, which is ACKNOWLEDGMENTS
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