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The theory of exchange narrowing of ferromagnetic and spin-wave resonance linewidths in ferromagnets
with the randomly inhomogeneous magnetic anisotropy is developed. The calculation is carried out by the
method of averaged Green functions in the framework of the coherent potential approximationsCPAd. One-
and three-dimensional inhomogeneities with an arbitrary correlation wave numberkc are consideredsrc=kc

−1 is
the correlation radius of the inhomogeneitiesd. The method of the approximate solution of the CPA equation is
proposed which has the quick convergence. Effects of exchange narrowing of the magnetic resonance lines and
shifts of these lines are calculated in the whole region of the values of the correlation wave numberkc. The
approximate analytical expressions for the linewidth of the FMR in the limiting cases of the small and largekc

are obtained. Large narrowing of the FMR and spin-wave linewidths with the decrease of the correlation radius
of inhomogeneities is the substantiation of the main advantage of nanocrystalline and amorphous materials
over usual polycrystals when they are used at high frequency devices.
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I. INTRODUCTION

It is well known that inhomogeneities of the internal mag-
netic field in a matter caused by different physical reasons
lead to broadening of the magnetic resonance line. For ex-
ample, it can be magnetodipole fields of impurity ions in
paramagnets. Fields of the magnetic anisotropy, the direction
of which is different in the different grains, leads to this
effect in ferromagnetic polycrystals. The linewidthDH re-
sulting from this phenomenon has an order of value of the
rms fluctuations of the internal fields for the noninteracting
inhomogeneities. In the case of the polycrystal this simplest
picture corresponds to the situation when the value of grains
D0 much more then the length of exchange correlations that
have the order of thickness of a domain wall,L0=sA/Kd1/2,
whereA andK are the exchange and anisotropy parameters,
respectively. In this case oscillations of the magnetic moment
in different grains can be considered as independentsthe in-
dependent grains approximationd and their resonance fre-
quenciessor resonance fieldsd are determined by the value of
the anisotropy and the direction of the axis in each crystal-
line. This situation has been considered in the classic papers
by Schlomann1,2 ssee, also Ref. 3d. A shape of the resonance
line for a polycrystal in this case can be found by the simple
averaging of the expression for the shape of the line in the
one grain with the corresponding distribution function of di-
rection of the anisotropy axes. Under the condition of the
uniform distribution of the anisotropy axes the rms fluctua-
tion of the anisotropy field and, correspondingly, the reso-
nance linewidth is of the order of a value of the anisotropy
field, DH0<s5/3dHa, whereHa=2K /M, M is the magneti-
zation. It must be emphasized that this linewidth has no re-
lation to any relaxation processes in the system. The latter
determine the linewidth in each crystalline which can be
much less thanDH0. The situation is sharply complicated for
the media where oscillations of the spins, situated in different
internal fields, are bound by the exchange interaction. Effects
of this interaction develop themselves in narrowing of the

magnetic resonance line from the initially widest line corre-
sponding to the independent inhomogeneities. The theory of
such exchange narrowing of the electron paramagnetic reso-
nancesEPRd and nuclear magnetic resonancesNMRd lines is
well developed for the paramagnetic systems.4–6 For the
magneto-ordered media the consistent theory of exchange
narrowing of the resonance line is absent. Meanwhile the
most perspective magnetic materials, nanocrystalline, and
amorphous alloys, belong to the media with the exchange-
bound inhomogeneities. Approximate approaches which
have been developed earlier for taking into account exchange
as well as magnetodipole narrowing of the ferromagnetic
resonancesFMRd line1,2,7,8 do not describe experimental re-
sults at these types of media.

Because of this, Rubinstein, Harris, and Lubitz9 for the
explanation of their experiments, extended to the region of
the FMR the scaling arguments that were initially developed
in Refs. 10–12ssee also a review13d for describing the pro-
cesses of the quasistatical remagnetizations and for calculat-
ing the hysteresis loops and coercive fields of nanocrystalline
magnetic materials. We recollect first how these arguments
look for the hysteresis loop. IfL0!D0 and the independent
grains approximation is valid the hysteresis loop of a poly-
crystal can be calculated accordingly to the classic paper by
Stoner and Wohlfart,14 by the direct averaging of the hyster-
esis loops of individual grains with the corresponding distri-
bution function of the anisotropy axes of these grains. When
the opposite condition,L0@D0, is valid the whole volume of
the sample breaks up on stochastic domains with a random
orientation of the magnetization; the average dimension of
the domainL must be calculated self-consistently. A large
number of the grains,N=sL /D0dd, whered is the dimension-
ality of the inhomogeneities, are thrown into the volume of
each stochastic domain. The magnetization of each such do-
main moves as a single whole in the field of the effective

anisotropyK̄ which has the order of a value of the rms fluc-
tuation of the crystalline magnetic anisotropy in the volume

of the each domain,K̄=K /N1/2=KsL /D0dd/2. The magnetiza-
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tions of different domains weakly interact with each other
and, in the first approximation, these stochastic domains can
be considered as independent. Thus, we can again use the
Stoner and Wohlfart method of direct averaging for calculat-
ing of the hysteresis loop, however apply it now to the sto-

chastic domains with the effective anisotropyK̄!K and di-
mension L@D0 but not for the grains. As a result the
hysteresis loop of the nanocrystal will be obtained with tak-
ing account of its exchange narrowing in comparison with
the maximum broad loop corresponding to the usual poly-
crystal. The following scaling arguments are used for obtain-

ing the equation forK̄. The average dimension of the sto-
chastic domain equal to the length of the exchange
correlations not in the medium with the anisotropyK but in

the medium with the unknown anisotropyK̄, that is

L=sA/ K̄d1/2. Substituting thisL in the expression forK̄,

which is shown above, one can obtain the equation forK̄.
The next formula follows from this equation:

K̄/K = aSbD0

L0
D2ds4−dd

, s1d

where a and b are unknown constants of the order of the
unit.

As the coercitive forceHc is proportional to the aniso-

tropy field of the stochastic domainsH̄a=2K̄ /A, the next
relationship follows for the three-dimensional inhomogene-
ities from Eq.s1d, Hc~D0

6. This dependency was observed
repeatedly11,13 at the some interval of the grains dimension
D0.

The authors of Ref. 9 made their proposal that analogous
arguments can be used also for the estimation of exchange
narrowing of the FMR line in nanocrystals. If for calculating
the FMR linewidth in the caseL0!D0 the Schlomann’s
method1 of the direct averaging over the independent grains
is valid, that in the opposite caseL0@D0 one can again apply
this method but to the independent stochastic domains. If the
FMR linewidth DH0 is proportional to the anisotropyK in
the first case, it will be narrowed by the exchange interaction
in the second case,

DH/DH0 = K̄/K, s2d

whereK̄ is determined by Eq.s1d.
The experiments were carried out in Ref. 9 in which the

dimension of the grainsD0 as well as the FMR linewidthDH
increase simultaneously in several times in the process of
annealing the sample. It confirms that the scaling arguments
play one of the main roles in the physical mechanism leading
not only to exchange narrowing of the hysteresis loops but
also to exchange narrowing of the FMR linewidth in nanoc-
rystalssand also, in amorphous alloys where the correlation
length of fluctuations of the local magnetic anisotropy axis
2rc plays the role of the grain dimensionD0 in the nanocrys-
talsd.

However, the transfer of the scaling arguments to the re-
gion of the FMR does not take into account, at least, two
essential factors. First, the length of the exchange correla-
tionsL becomes a function of the magnetic field in the fields

H*Ha which are characteristic for the FMR region.15 Sec-
ond, and this is the main factor, this approach does not take
into account the contribution of the processes of spin-wave
scattering from the inhomogeneities of the anisotropy in the
linewidth. These processes are especially essential for the
spin-wave resonances. It has been shown in Ref. 15 that the
damping v9, which is due to these processes, increases
sv9~kd at k!kc and decreasessv9~k−1d at k@kc with the
increase of the wave numberk sherekc=rc

−1 is the correlation
wave number of the inhomogeneitiesd. In Ref. 15 as well as
in following papers16–18 the calculation of eigenfrequencies
and dampings of spin waves carried out in the first approxi-
mation of the perturbation theory over the rms fluctuations of
the inhomogeneities parameter. That approximation did not
take into account the effects of inhomogeneous fields leading
to the nonrelaxation contributions into the linewidth, the de-
pendence of which on the exchange correlations were dis-
cussed above in the framework of the scaling arguments. On
the other hand, the scaling arguments do not take into con-
sideration the contribution of the relaxation processes to the
magnetic resonance linewidth. To take into account both
these effects and develop the consequent theory of exchange
narrowing of magnetic resonance lines in magneto-ordered
media, the taking account of the multiple scattering of the
waves from inhomogeneities described by the corresponding
Green function is required.

The objective of this paper is the calculation of the shapes
and widths of the FMR and spin-wave resonance lines with
taking into consideration the multiple scattering processes of
spin waves on the one-dimensionals1Dd and three-
dimensional inhomogeneities of the magnetic anisotropy by
the method of the averaged Green function in the coherent
potential approximationsCPAd in the whole diapason of the
relationship betweenL0 and D0 from D0!L0 sthe limit of
independent grainsd to L0@D0 sthe limit of strongly coupled
grainsd.

Different physical effects make a contribution to the local
magnetic anisotropy in the modern nanocrystalline and
amorphous alloys: the local crystalline anisotropy, anisotropy
of internal random elastic strains, anisotropy of grain shapes,
and so on. Such effective local anisotropy is inhomogeneous
for both the value of the anisotropy and direction of its axis.
However, the theoretical description of the spin wave spec-
trum modification, which is caused by these two types of
inhomogeneities of the anisotropy, leads to the problems of
the essentially different difficulties. The matter is that when
only the value of the magnetic anisotropy fluctuates, the only
spin waves become random functions but the ground mag-
netic state remains uniform. But when the direction of the
magnetic anisotropy axis fluctuates the ground state becomes
inhomogeneous, the statical stochastic magnetic structure
sSMSd appears to also interact with the spin waves.15,19

Therefore, in the latter case there are two canals of the acting
of the anisotropy inhomogeneities on the spin waves, direct
and through the SMS. This leads to the sharp complication of
the mathematical problem. However, the second canal can be
suppressed in the magnetic fieldsH@Ha because the rms
fluctuations of the SMS decrease with the increase ofH. The
situation whenH@Ha is characteristic in many cases for the
FMR and spin-wave resonance experiments. That is why we
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neglect the effect associated with the SMS. This permits us
to consider the model which under the correspondent redefi-
nitions of the parameters describes the influence of the inho-
mogeneities of the magnetic anisotropy valuescorrectlyd as
well as the inhomogeneities of the magnetic anisotropy axis
direction sin the approximationH@Had.

II. MODEL AND METHOD

We describe the dynamics of ferromagnetic medium by
the classic Landau-Lifshitz equation

Ṁ = − g · fM 3 Heffg, s3d

whereM is the magnetization,g is the gyromagnetic ratio,
andHeff is the effective magnetic field which is determined
by the expression

Heff = −
]H
]M

+
]

]x

]H
]s]M /]xd

. s4d

We choose the energy densityH in the form

H =
1

2
· aS ]M

]x
D2

−
1

2
· bsxdfMl sxdg2 − MH −

1

2
·MH m,

s5d

wherea=2A/M2 is the exchange parameter,bsxd and lsxd
are the value of the magnetic anisotropy and direction of its
axis, respectively,H is the external magnetic field,Hm is the
magnetodipole field, andx=sx,y,zd.

At first we consider the model in which the only value of
the magnetic anisotropy is inhomogeneous, while the direc-
tion of the anisotropy axisl is uniform and coincides with the
direction of the magnetic fieldH which is parallel to thez
axis. We represent the value of the anisotropy in the form

bsxd = bf1 + grsxdg, s6d

whereb is the average value of the anisotropy,g is its rela-
tive rms fluctuations, andrsxd is a centeredskrl=0d and
normalizedskr2l=1d random function of coordinates. The
angle brackets here and farther denote averaging over the
ensemble of random realizations. Stochastic properties of the
function rsxd are characterized by a correlation function de-
pending on the difference of the coordinatesr =x−x8,

Ksr d = krsxdrsx + r dl, s7d

or by the spectral densitySskd which is connected withKsr d
by a Fourier transformation

Sskd =
1

s2pd3 E Ksr de−ikr dr . s8d

We perform the usual linearization of Eq.s1d sMz

<M ;Mx,My!Md, takeMx,My~eivt, and introduce the cir-
cular projections

m± = Mx ± iMy. s9d

We assume that the sample has symmetrical shape in thexy
plane. In this case the equations form± get uncoupled and for

the resonance projectionm+ we have the equation

¹2m+ + fn − hrsxdgm+ = 0, s10d

where the notations are introduced

n =
v − v0

agM
, h =

gb

a
. s11d

Herev0 is the uniform FMR frequency

v0 = gfH − sNz − NxydM − Hag, s12d

whereNz andNxy are the demagnetization factors along thez
axis and in thexy plane, respectively, andHa=bM is the
average value of the anisotropy field.

Note, that the wave equation for electromagnetic or elas-
tic waves in the scalar approximation also has the form of
Eq. s10d with corresponding redefinitions of the parameters.
So simple a form of the equation for the spin waves is a
consequence of the cylindrical symmetry of the problem
with respect to thez axis. For the problem with the inhomo-
geneous direction of the anisotropy axisl = lsxd this symme-
try disappears and the equations for the projectionsm+ and
m− become coupled. Besides that, the inhomogeneity of the
anisotropy direction leads to the inhomogeneity of the mag-
netization ground state, the SMS structure with the compo-
nents Mxsxd and Mysxd appears. This in turn leads to the
appearance of new terms in the equations for the spin waves
which describe the interaction of the projectionsm± with the
components of the SMS. As a result, the mathematical prob-
lem dramatically complicates.15 If we neglect the coupling of
m+ with the nonresonance projectionm− and with SMS com-
ponents, the only terms will be saved which describe the
direct interaction ofm+ with the random functionslx

2, ly
2, and

lz
2, wherel i are the projections of the vectorl on the coordi-

nate axes. It is easy to show that the equation form+ in this
case has the form of Eq.s10d in which the parametersh and
v0 for the case of the uniform distribution of the anisotropy
axis in all directions have the forms

h =
b

Î5a
=

1
Î5

Ha

aM
,

v0 = gfH − sNz − NxydMg. s13d

In distinction to Eq.s12d the termHa is absent now in the
equation for v0 because the averaged anisotropy field is
equal to zero in this case. So, solving the equations10d we
shall simultaneously investigate the correct model of the
value of the magnetic anisotropy fluctuations and the ap-
proximate model of the anisotropy axis direction fluctua-
tions.

Introducing the Green functionGsx ,x0d we rewrite Eq.
s10d in the form

¹2Gsx,x0d + fn − hrsxdgGsx,x0d = s2pd3dsx − x0d.

s14d

The numerical coefficients2pd3 is introduced on the right-
hand side of this equation for the simplification of the fol-
lowing equations. In the uniformly random media, where all
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variables depend only on the difference of the coordinates
r =x−x8, the Dyson equation for the averaged Green func-
tion has the formssee, for example, Ref. 20d:

Ḡsx − x0d = G0sx − x0d +E E G0sx − x1dQsx1 − x2d

3Ḡsx2 − x0ddx1dx2, s15d

whereḠsr d is the averaged Green function,G0sr d is the ini-
tial Green function for the uniform media,Qsr d is the mass
operator which depends on the correlation functionKsr d as
well as onG0sr d. Representing these functions in the form of
the Fourier integrals

Ḡsr d =E Ḡskdeikr dk ,

G0sr d =E G0skdeikr dk, Qsr d =E Mskdeikr dk , s16d

we obtain the Dyson equation for the Fourier transformations

Ḡskd, G0skd, andMskd and findḠskd from

Ḡskd =
1

G0
−1skd − Mskd

. s17d

For the case of the infinitive mediumG0
−1=n−k2 and Eq.

s17d takes the form

Ḡskd =
1

n − k2 − Mskd
. s18d

Here Mskd is the infinite power series in the Fourier trans-
formations of the Green functionsG0skd and the spectral
densitiesSskd. The modern methods of summation of this
series21–23 are based on the developing and approximate so-
lution of the self-consistent equation forMskd.

A much used method of obtaining the self-consistent
equation for the mass operatorMskd is the method of the
CPA. After the first derives of the CPA equation in Refs. 24
and 25 a number of other variants of the derives, extensions,
and development were suggested in original papers26,27 as
well as in reviews28 and books21–23.

We present here one more simple derive. Changingk by
k1 in Eq. s18d, multiplying this equation byh2Ssk −k1d, and
integrating it overk1 we obtain

h2E Ḡsk1dSsk − k1ddk1 = h2E Ssk − k1ddk1

n − k1
2 − Msk1d

. s19d

For obtaining the self-consistent equation forM skd we re-
quire that the left-hand side of Eq.s19d is approximately
equal toM skd:

Mskd < h2E Ḡsk1dSsk − k1ddk1. s20d

Carrying out the inverse Fourier transformation we obtain
that this requirement corresponds to the fulfillment of the
following approximate equality:

Qsx − x0d < h2Ḡsx − x0dKsx − x0d

= h2G0sx − x0dKsx − x0d + h4E E G0sx − x1dG0sx1 − x2dG0sx2 − x0dKsx1 − x2dKsx − x0ddx1dx2

+ h6E E E E G0sx − x1dG0sx1 − x2dG0sx2 − x3dG0sx3 − x4dG0sx4 − x0dfKsx1 − x2dKsx3 − x4d

+ Ksx1 − x3dKsx2 − x4d + Ksx1 − x4dKsx2 − x3dgKsx − x0ddx1dx2dx3dx4 + ¯ . s21d

It follows from Eq. s21d that the left-hand side of the exact
equations19d takes into account only those diagrams that
have correlations between the initial pointx0 and final point
x. Comparing Eq.s21d with the rigorous representation of the
mass operatorQsr d in the form of series in the correlators20

one can see that the formulas21d is exact in the first order of
Ksr d, takes into account one diagram from two in the second
order, three diagrams from 10 in the third order, and so on.
This is a drawback of the CPA method. However, a large
body of comparisons of the results obtained by the CPA
method with the direct numerical modelingsfor the density
of states see, for example, Ref. 23d show that this drawback
is essentially overcome by the main advantage of this

method permeating to make the analytical summationsthat
is, to reduce to an integral equationd of considering in its
framework diagrams all orders for the mass operator of the
Green function. It is convenient to introduce the mass term
Mk =Mskd and to rewrite the basic system of the CPA equa-
tions s18d and s19d in the form

Ḡk =
1

n − k2 − Mk
, s22d

Mk = h2E Ssk − k1ddk1

n − k1
2 − Mk1

. s23d
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III. ANALYSIS OF SOLUTIONS OF THE CPA EQUATIONS

We model the correlation properties of inhomogeneities
by the exponential functionKsr d and the corresponding spec-
tral densitySskd. For the 1D and 3D inhomogeneities these
functions have the form, respectively,

1D, Ksrzd = e−kcurzu, Sskd =
1

p

kc

kc
2 + k2 , s24d

3D, Ksrd = e−kcr, Sskd =
1

p2

kc

skc
2 + k2d2 . s25d

Herekc is the correlation wave number of the inhomogene-
ities src=kc

−1 is the correlation radius; for the case of poly- or
nanocrystal 2rc is equal to the size of the grainD0d.

A. Method of chain fractions

The integral equations23d cannot be solved exactly for
even such simple functions as Eqs.s24d and s25d. One way
of an approximate analysis of this equation is representing it
in the form of the infinite chain fractions of the integral ex-
pressions which are proportional toh2,

Mk <E h2Ssk − k1ddk1

n − k1
2 − h2E Ssk1 − k2ddk2

n − k2
2 − h2E Ssk2 − k3ddk3

n − k3
2 − h2E . . .

.

s26d

Restricting in this formula to the first link of the chain frac-
tions which is proportional toh2 we obtainMk in the Bourret
approximation20,29

Mk = h2E Ssk − k1ddk1

n − k1
2 . s27d

SubstitutingSskd in the form of Eqs.s24d or s25d in Eq. s27d
and performing the integration with the help of the residue
theory we obtain for the 1D and 3D inhomogeneities, respec-
tively,

1D, Mk =
h2

sÎn − ikcd2 − k2S1 −
ikc

În
D , s28d

3D, Mk =
h2

sÎn − ikcd2 − k2
. s29d

Substituting these expressions in Eq.s22d we obtain that in
this approximation the imaginary part of the Green function
G9 as a function of the frequencyn and correlation wave
numberkc for the 1D inhomogeneities has the shape that is
shown in Fig. 1. The Green function is normalized on the
valueGm9 =1/h in this figure. The form of the Green function
for the 3D inhomogeneities under the conditionkc/În!1
differs little from Fig. 1. The appearance of two resonance
peaks in the curveG9snd at the small values ofkc has no

physical sense and is a result of using the Bourret approxi-
mation. The widths of these peaks are proportional to the
damping that is due to the scattering of the spin waves by the
inhomogeneities. They are determined by the expression

Dn < 2kc
În. s30d

The distance between these peaks, as it will be shown below,
from taking into account the following approximations, is
approximately equal of the resonance linewidth that is due
not to the damping but to the stochastic spread in values of
the frequencies. With the increase ofkc the distance between
them decreases, and two peaks merge all together under the
condition

kc
2n ù h2. s31d

The Bourret approximation is valid at least qualitatively only
in the region of the existence of the one resonance maximum
in the functionG9snd.

Taking into account in Eq.s26d two integral terms and
performing integration with respect tok2 we obtain the next
approximation forMk for the 1D inhomogeneities,

Mk = h2E Ssk − k1ddk1

n − k1
2 −

h2

sn − ikcd2 − k1
2S1 −

ikc

În
D . s32d

The integral in Eq.s32d was performed with the help of the
residue theory exactly because a biquadratic form ink1 can
be obtain in its denominator. A cumbrous expression has
been obtained that we do not present here. The dependence
of G9snd, calculated with the help of this expression forMk,
is shown in Fig. 2 by circles. In this approximation the func-
tion G9srd has three resonance peaks at the small values of
kc; the region of the existence of the single-mode solution
spreads in the direction of smallerkc compared with those
which are determined by Eq.s31d for the Bourret approxi-
mation. The next approximations which take into account
greater numbers of the links of the chain fraction Eq.s26d are

FIG. 1. The dependence of the imaginary part of the Green
functionG9 on the normalized frequencyn /h for different values of
the normalized correlation wave number of the 1D inhomogeneities
kc/Îh in the approximation of the only one link of the chain frac-
tion Eq. s26d sBourret approximationd. The minimum value of
kc/Îh corresponds to 0.7310−2.
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obtained by the numerical integration. In Fig. 2 the depen-
denciesG9snd are depicted for different numbersn of the
links of the fraction Eq.s26d. It is seen that the curve with
n+1 peaks corresponds to thenth approximation. The square
under each curve remains constant, that is why the ampli-
tudes of the peaks decrease with the increase of the number
of the peaks. The convergence of the approximate solutions
to the limiting single-mode curve with the increase of the
number of approximationn for small values ofkc goes on
very slowly and becomes worse with the decrease ofkc. As is
seen from Fig. 2 atkc/Îh,10−2 that even taking into ac-
count the 40 links of the fraction and, correspondingly, per-
forming the 40 successive numerical integrations does not
lead to the single-mode functionG9snd. The limiting single-
mode functionG9snd corresponding ton→` is depicted in
Fig. 2 by the solid curve with the amplitudeG9 /Gm9 =1. It is
seen from Fig. 2 how far the several tenth of the first suc-
cessive approximations is from this limiting curve. So, the
analysis of the approximate solutions of the integral equation
s23d for the region ofkc/Îh!1 by the method of the suc-
cessive integration of the links of the infinite fraction Eq.
s26d entails the cumbrous numerical calculations; the limit-
ing transition to the case of the independent grainskc→0 is
impossible by this method. At the same time, the region of
small values ofkc is intensively investigated experimentally
now30 because it corresponds to the long correlations which
appear in the real amorphous and nanocrystalline alloys for
various physical reasons, inhomogeneities of the chemical
composition, elastic stresses, and so on. But the main disad-
vantage of the method of the chain fraction is that permitting
to investigate the region of the spin-wave resonances
skÞ0d this method does not permit to study the most impor-
tant region of the magnetic susceptibility, the uniform ferro-
magnetic resonance. Equations28d diverges and the imagi-
nation vanishes in Eq.s29d when the frequencyv approaches
the FMR frequencyv0 sand, correspondingly, the normalized
frequencyn→0d. As a result, Eq.s26d in the region of the

FMR frequencies is inapplicable if we take into account any
finite number of links of the chain fraction. That is why we
propose here the another method of the analysis of the inte-
gral equations23d—the method of algebraic equations. Con-
trary to the considered above method of chain fractions, the
accuracy of the proposing method grows not with the in-
crease but with the decrease ofkc. The main advantage of
this method is that it permits us to investigate the whole
frequency bond including the FMR.

B. Method of algebraic equations

Let us consider Eq.s23d at kc=0. Then Ssk −k1d
=dsk −k1d, the integral in Eq.s23d can be performed exactly,
and this equation transforms into an algebraic equation of the
second power inMk identical for 1D as well as 3D inhomo-
geneities. Retaining the only solution corresponding to
G9.0 we obtainMk from this equation in the form

Mk =
1

2
sn − k2d + iFh2 −

1

4
sn − k2d2G1/2

. s33d

The main assumption of the proposing method is that for
obtaining the first approximation atkcÞ0 we can set
Mk1

<Mk saving in the same time the spectral density
Ssk −k1d in the exact form. Under this assumption the inte-
gral in Eq. s23d is performed exactly and we obtain for the
first approximation ofMk the following transcendental equa-
tions for the cases of the 1D and 3D inhomogeneities, re-
spectively,

1D, Mk =
h2

sÎn − Mk − ikcd2 − k2S1 −
ikc

În − Mk
D , s34d

3D, Mk =
h2

sÎn − Mk − ikcd2 − k2
. s35d

Pay attention thatMk depends only on a module of the vector
k in both 1D and 3D cases.

Introducting the new variablez=sn−Mkd1/2 we reduce
these equations to the algebraic equations of the fifth and
fourth power, respectively,

1D, zsz2 − ndfsz− ikcd2 − k2g + h2sz− ikcd = 0, s36d

3D, sz2 − ndfsz− ikcd2 − k2g + h2 = 0. s37d

The Green function has the form

Ḡ =
1

z2 − k2 . s38d

Solutions of Eqs.s36d and s37d were found numerically. It
turns out that not all roots of these equations satisfy the
initial transcendental equationss34d and s35d. That is why
the following criterias are applied for the separation of the
physical solution. First, the imaginary part of the mass term
Mk must be positive from the physical reasons. Second, the
solution of Eq.s36d or s37d must satisfy corresponding Eq.
s34d or s35d. These two criterias permit us uniquely to sepa-
rate the physical resonance curveG9sn ,kd.

FIG. 2. The dependence ofG9 on the normalized frequencyn /h
at kc/h=0.7310−2 for different numbersn of the links of the chain
fraction Eq. s26d: n=1, dashed, two-modes curve;n=2, circles,
three-modes curve;n=9, dots, 10-modes curve;n=40, solid 41-
modes curve; the solid single-mode curve with the amplitude
G9 /Gm=1 corresponds to the limiting casen→`.
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The determined by this way continuous functionzsn ,kd,
corresponding mass termMksnd, and Green functionGksnd
are the first approximation to the solution of the CPA equa-
tion s23d. For obtaining the second approximation the mass
term of the first approximation is substituted to Eq.s23d as a
function of k1. Performing the numerical integration in Eq.
s23d we obtainMk in the second approximation which can be
substituted in the same equation again and so on, accordingly
to the recurrent formula

Mk
sn+1d = h2E Ssk − k1ddk1

n − k1
2 − Mk1

snd . s39d

The method of approximate solution of the integral CPA
equations23d that is proposed here, based on the reduction of
this equation in the first approximation to the algebraic equa-
tion s36d or s37d, has several advantages over the method of
the numerical integration of the chain fractions26d. First, the
function G9sn ,kd has no singularities atk=0 and it permits
us for the first time to use the CPA method for investigating
the FMR frequency band. Second, in the region of the large
values ofk, where both these methods are applicable, the
method of the algebraic equations gives single-mode shape
for the Green function even in the first approximation,
whereas in the method of the chain fraction at smallkc the
first approximation as well as a number of the following
approximations leads to the physically senseless many-mode
dependencies ofG9snd. Third, the method of the algebraic
equations has a very quick convergence. Our studies show
that even the first approximation is very good approximation
of the exact result in the wide region ofkc and k. In the
region of kc and k where the first approximation is inad-
equate, the second or third approximation is usually good
enough. Contrary to that, using the method of the chain frac-
tion for the smallkc one must perform several tenths or even
hundredths of successive integrations for obtaining the satis-
factory result. And finally, the method of the algebraic equa-
tions permits us to obtain the approximate analytical expres-
sion for the Green function in some region of the parameters
of the problem. At the conditions thatuMku!n ,k2 the term
Mk can be saved only in the resonance denominators of the
equations of the first approximation; as a result, Eqs.s34d
and s35d take the form, respectively,

1D, Mk =
h2

n − Mk − 2ikc
În − kc

2 − k2

În − ikc

În
, s40d

3D, Mk =
h2

n − Mk − 2ikc
În − kc

2 − k2
. s41d

Substituting solutions of these quadratic inMk equations in
Eq. s22d we obtain the explicit expressions for the Green
function in the form

1D, Ḡ =
1

n − k2 − P − iSh2
În − ikc

În
− P2D1/2, s42d

3D, Ḡ =
1

n − k2 − P − ish2 − P2d1/2, s43d

where

P =
1

2
fsÎn − ikcd2 − k2g. s44d

IV. SHAPE AND WIDTH OF RESONANCE LINES

A. Ferromagnetic resonance

The shape of the resonance line is determined by the
imaginary part of the averaged Green functionG9sn ,kd. At
k=0 it describes the uniform resonance. The dependenceG9
on n at k=0 for the 3D inhomogeneities is shown in Fig. 3
for three values of the normalized correlation wave number
kc/Îh which are depicted near the corresponding curves. The
dotted curve corresponds to the limiting case of the infinite
correlation radius of the inhomogeneitiesskc=0, the indepen-
dent grains limitd. In this only case the integral equation of
the CPA forMk has the exact solution Eq.s33d. Substituting
this solution in Eq.s22d we obtain the following expressions
for the real and imaginary parts of the Green function:

G8 =
1

2h2Hx, x2 ø 4h2,

x − sgnsxdsx2 − 4h2d1/2, x2 . 4h2,
J s45d

G9 =
1

2h2Hs4h2 − x2d1/2, x2 ø 4h2,

0, x2 . 4h2,
J s46d

wherex=n−k2. These expressions do not depend on the di-
mensionality of the inhomogeneities. The approximate ana-
lytical equationss42d and s43d at kc=0 also transform into
exact ones and coincide between each other as well as with
Eqs. s45d and s46d. As is seen from Eq.s46d and Fig. 3 the
functionG9snd at kc=0 vanishes for the valuesn /Îh outside
the intervals−2, +2d and reaches the maximumG9 /Gm9 =1 at
n=0. The width of the resonance line in the half of its maxi-
mum is determined by the formula

FIG. 3. The dependence ofG9 at k=0 sFMRd on the normalized
frequencyn /h for different values of the normalized correlation
number of the 3D inhomogeneitieskc/Îh=0.0, 0.3, and 0.5 which
are shown near the corresponding curves.
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Dn

h
=

Î5DH0

Ha
= 2Î3, s47d

This value is close to the result that has been obtained
earlier2,8 by the method of direct averaging for the model of
independent grains:DH0<s5/3dHa.

When kc becomes not equal zeroscurves, corresponding
to kc=0.3 and 0.5 in Fig. 3d the physical mechanism of ex-
change narrowing of the FMR line switches on associated
with averaging the local magnetic anisotropy over the vol-
umes of the stochastic magnetic domains, the value of the
resonance peak increases and its width decreases with the
increase ofkc. In the same time atkcÞ0 the mechanism of
broadening of the FMR line switches on associated with the
damping induced by the scattering of the spin waves from
the inhomogeneities. For the case of the FMR the latter
mechanism leads to the asymmetry of the resonance line: the
left edge of the line as before is characterized by the sharp
rise, the decrease of the line becomes smooth. It is due to that
the left part of the FMR linesn,0d is situated out of the
limits of the spin-wave dispersion lawn=k2, while in the
regionn.0 atkcÞ0 the processes of the uniform precession
decay into spin waves withkÞ0 taking place which lead to
broadening of the right part of the FMR line. However, the
effects of exchange narrowing prevails in the total linewidth.
The dependence of the FMR linewidthDn on the value of
the correlation numberkc is shown in Fig. 4 for the 1D
scrossesd and 3D scirclesd inhomogeneities. For broadening
the diapason of values ofkc the dependenciesDn on kc/Îh
fFig. 4sadg as well as on the inverse valueÎh /kc fFig. 4sbdg
are shown in this figure. This is one of the main results of our
work because it illustrates the effect of the FMR line ex-
change narrowing in the whole diapason of the correlation
wave numberskc.

At kc=0 the linewidth is maximum and determined by Eq.
s47d when the anisotropy axis fluctuates and by the formula
DH0=2Î3gHa when the anisotropy value fluctuates. Narrow-
ing of the FMR line occurs with the increase ofkc and this
effect develops itself for 3D inhomogeneities much stronger
than for 1D inhomogeneities. Forkc/Îh!1 the line narrows
linear in kc. It follows from Fig. 4sad that the dependencies
DH on kc in this region ofkc can be approximated by the
formulas for 1D and 3D inhomogeneities, respectively,

DH

DH0
<H1 − 0.45kc/Îh, 1D,

1 − 1.1kc/Îh, 3D.
J s48d

For the case of the anisotropy axis fluctuations we have
h=sÎ5L0d1/2, kc=2/D0 and Eq.s48d can be written in the
form

DH

DH0
< H1 − 1.35L0/D0, 1D,

1 − 3.3L0/D0, 3D.
J s49d

In the opposite case of large values ofkc it appears that our
numerical results are qualitatively described by Eqs.s1d and
s2d which follow from the scaling arguments.9 Comparing
Eqs. s1d and s2d for d=1 andd=3 with the corresponding
curves of Fig. 4sbd in the region ofÎh /kc!1 permits us to
find the unknown constantsa andb in Eq. s1d and to write

the formula for the FMR linewidth in this region in the form

DH

DH0
=

1
Î2

S D0

4L0
D2ds4−dd

, s50d

or in our designations

DH

DH0
=

1
Î2
S3Îh

4kc
D2ds4−dd

. s51d

The dependencies corresponding to Eq.s51d are shown in
Fig. 4sbd by dashed curves for both dimensionalitiesd=1
and 3. So, it follows from the developed here theory as well
as from the scaling arguments9 that atD0!L0 the FMR line-
width DH~D0

2/3 for the 1D andDH~D0
6 for the 3D inhomo-

geneities.
At kcÞ0 the shift of the resonance maximum takes place

in the direction of the small frequencies, that are the negative
values ofn sFig. 5d. This shift initially increases and then
decreases with thekc increase, going to zero with different
rate for the 1D and 3D inhomogeneities. The maximum shift
is in the vicinity of kc/Îh<0.7 for the 1D and 0.25 for the

FIG. 4. The linewidth of the FMRDH as a function of the
normalized correlation wave numberkc/Îh sad and of the inverse
valueÎh /kc sbd for the 1Dscrossesd and 3Dscirclesd inhomogene-
ities. Dashed lines correspond to the approximate equationss48d sad
and s51d sbd.

V. A. IGNATCHENKO AND V. A. FELK PHYSICAL REVIEW B 71, 094417s2005d

094417-8



3D inhomogeneities. The dependence of the FMR shift onkc
for the 3D inhomogeneities can be compared with the depen-
dence of the spin-wave eigenfrequency onkc which has been
found earlier15 by the perturbation theory methods,

n = k2 −
h2

kc
2 + 4k2 . s52d

The latter dependence, that for the FMR has the form
n=−sh /kcd2, is shown in Fig. 5 by the dashed curve. It is
seen that forkc/Îh@1 we have good agreement between the
results of the perturbation theory and the CPA whereas for
the smallkc the cardinal difference in the results takes place.

B. Spin waves

We consider oscillations withkÞ0 now. The shape of the
spin-wave resonance curveG9snd for the case of 3D inhomo-
geneities is shown in Fig. 6 atkc/Îh=0.5 fork/Îh=0.0, 1.5,
and 3.0. One can see that with the increase ofk the function
G9snd becomes more and more symmetric. It relates to that
the spin-wave resonance, contrary to the FMR, takes place at
the frequencies which lay inside the spin-wave band but not
at the end of this band. Because of this the processes of the
resonance precession decay into spin waves with another val-
ues of k go now in both the right and left edges of the
resonance line. In Fig. 7 the dependencies ofDn on k for the
1D scrossesd and 3D scirclesd inhomogeneities are shown.
For the comparison the dependence of the doubled value of
the damping 2n9 on k for the 3D case is shown in this figure
by the dashed curve. The dampingn9skd has been calculated
earlier15 by the perturbation theory and is determined by the
formula

n9 =
2h2k

kcskc
2 + 4k2d

. s53d

We note, that the same formula follows forn9 in the first
approximation inh2 also from the equality to zero of the
denominator of the approximate Green function Eq.s43d.

It follows from Fig. 7 that in the region of the largek,
corresponding to the inequalityk/Îh@1, there is a good
agreement between these values, 2n9<Dn. However, there is
a sharp difference between the functionDnskd and 2n9skd,
both quantitative and qualitative, in the region ofk/Îh,1,
the functionn9skd decreases proportionally tok whenk→0,
the functionDnskd goes in this case to the finite FMR line-
width corresponding to the givenkc.

The latter illustrates the fact that the linewidth at small
values ofk is mainly determined by the stochastic distribu-
tion of the frequencies but not by the relaxation processes. It
is also seen from Fig. 7 that the difference between the reso-
nance linewidths for the cases of the 1D and 3D inhomoge-
neities is large at smallk and decreases with the increase of
k. At k/Îh@1 the linewidths for the 1D and 3D cases coin-

FIG. 5. The shift of the resonance maximum in dependence on
the normalized correlation wave numberkc/Îh for 1D scrossesd and
3D scirclesd inhomogeneities. The dashed curve shows the shift of
the spin-wave eigenfrequency fork=0 calculated for the 3D inho-
mogeneities earliersRef. 15d in the framework of the perturbation
theory.

FIG. 6. The dependenceG9 on the normalized frequency
sn−k2d /h of the spin waves atkc/Îh=0.5 s3D cased for different
values of the normalized waves numberk/Îh=0.0, 1.5, and 3.0
which are shown near the corresponding curves.

FIG. 7. The normalized linewidth of the spin wavesDn /h as a
function of the normalized wave numberk/Îh for 1D scrossesd and
3D scirclesd inhomogeneities with the correlation wave number
kc/Îh=0.5. The dependence of the doubled value of the damping
2n9 calculated for the 3D case earliersRef. 15d in the framework of
the perturbation theory is shown by the dashed curve.
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cide between each other as well as with the doubled value of
the damping 2n9skd.

In Fig. 8 the dependence of the spin-wave resonance line-
width onk is shown for the 3D inhomogeneities for different
values ofkc. It is seen that the character of the functional
dependenceDnskd changes with the increase ofkc. For the
small kc the linewidth decreases monotone with the increase
of k. The maximum in the curveDnskd appears in the vicinity
of k/Îh<1 with the increase ofkc. For k/Îh@1 the each
curve in Fig. 8 goes to the curve 2n9skd, corresponding to the
given value ofkc. In Fig. 9 the dependence of the shift of the
frequency of the resonance maximumn on k is shown for the
1D scrossesd and 3Dscirclesd cases. The dependence of the
eigenfrequency of the spin waves onk for the 3D case de-
scribed by Eq.s52d is also shownsdashed curved. It is seen
that all these three dependencies coincide atk/Îh@1 and
diverge sharply atk/Îh!1.

V. CONCLUSION

The shape and linewidth of the FMR and spin-wave reso-
nances in a ferromagnet with the randomly inhomogeneous
magnetic anisotropy is studied in this paper. The investiga-
tion is carried out by the method of Green functions in the
framework of the coherent potential approximation. The
method of the approximate solution of the CPA equation is
proposed in which the first approximation is obtained as a
result of the solution of the corresponding algebraic equa-
tion, the fifth and fourth powers for the 1D and 3D inhomo-
geneities, respectively. This method has several advantages
over the usual, using for this aim the method of numerical
integrating the corresponding chain fraction. The main ad-
vantage is that this method is applicable in the vicinity of the
FMR resonance frequencyn=0 where the method of the
chain fraction leads to divergence of the corresponding inte-
grals. It permits us to apply the CPA for investigation of
exchange narrowing of the FMR line for the first time. This
method has a very quick convergence, even first or second
approximation is satisfactory in the wide region of the pa-
rameters of the system. The method has particular advan-
tages for the small correlation wave numberskc sthat is, for
the large correlation radii of the inhomogeneitiesd because
the first approximation turns to the exact solution of the CPA
equation whenkc→0. Using this method we also manage to
obtain approximate analytical expression for the Green func-
tion which is applicable in the wide region of the parameters
excluding the vicinity of the FMR frequencyn=0.

The dependencies of the width and shape of the resonance
line as well as the shift of the resonance maximum on both
the correlation wave numberkc and rms fluctuationsh of the
inhomogeneities are investigated for the FMR as well as the
spin waves in a ferromagnet. The effects of exchange nar-
rowing of the resonance line are obtained for the first time
for the whole region of values of the correlation wave num-
ber kc. For the FMR atkc=0 the linewidth is maximum and
corresponds to the limiting case of independent grains in the
polycrystalline that have been considered earlier.1,2 When
kc.0 the effect of exchange narrowing of the FMR line
switches on associated with averaging the magnetic aniso-
tropy as a consequence of the exchange coupling between
the grains. Simultaneously the mechanism of broadening of
the FMR line switches on associated with the scattering of
spin waves from the inhomogeneities. The latter mechanism
leads to the asymmetry of the resonance line. It is due to that
the left part of the FMR linesn,0d is situated out of the
limits of the spin-wave dispersion lawn=k2, while in the
region n.0 the processes of the uniform precession decay
into spin waves withkÞ0 take place which lead to broaden-
ing of the right part of the FMR line. However, the effect of
exchange narrowing prevails in the total linewidth. This ef-
fect develops itself for 3D inhomogeneities much stronger
then for 1D ones. For the smallkc skc

Îh!1d the linewidth
decreases linear inkc according to the asymptotic formulas
s48d ands49d which have been obtained by approximation of
the corresponding parts of the curves in Fig. 4sad. The
change of the character of the dependenceDHskcd occures in
the vicinity of kc/Îh<1. In the limiting casekc/Îh@1 the

FIG. 8. The normalized linewidths of the spin wavesDn /h for
the 3D case as a function of the normalized wave numberk/Îh for
different values ofkc/Îh=0.1, 0.3, and 0.5 which are shown near
the corresponding curves.

FIG. 9. The shift of the resonance maximum in the dependence
on the normalized wave numberk/Îh for 1D scrossesd and 3D
scirclesd inhomogeneities atkc/Îh=0.5. The dashed curve shows
the dependence of the shift of the spin-wave eigenfrequency on the
wave numberk/Îh for the 3D case calculated in the framework of
the perturbation theorysRef. 15d.
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dependenceDH /DH0 on kc is described qualitatively by Eqs.
s1d ands2d which follow from the scaling arguments for the
case of the strongly bounded grains.9 It permits us to deter-
mine the unknown constantsa and b in Eq. s1d swhich ap-
pear to be independent on the dimensionality of inhomoge-
neitiesd and to write asymptotic formulass50d and s51d for
this limiting case. It follows from the experimental results9

thatDH changes approximately proportional to the change of
the grain dimensionD0 in the process of annealing the
sample. Such character of this dependency does not corre-
spond to the expression either for the limiting caseÎh /kc

!1 or for the limiting caseÎh /kc@1. However, it is seen
from Fig. 4sbd that in the vicinity ofÎh /kc<1, where the
character of the dependenceDHsD0d changes, the approxi-
mate proportionality betweenDH andD0 can take place. The
shift of the resonance maximum must occur also whenkc
changes. The absolute value of this shift has a maximum in
the vicinity of kc/Îh<0.25 for the 3D case. Forkc/Îh@1
the shift of the FMR maximum coincides with the shift of the
FMR eigenfrequency which has been calculated earlier by
the perturbation theory.

The dependencies of the imaginary part of the Green
function G9 on the frequencyn for the caseskÞ0 which
describe the susceptibilities of spin-wave resonances are also
investigated in this paper. The effect of exchange narrowing
of the resonance line with increase ofkc takes place in this
case too. The asymmetry of the resonance line, which is
characteristic fork=0, decreases with the increase ofk be-
cause the spin-wave resonance at largek lays inside the spin-
wave spectrumn=k2, and the processes of the resonance

precession decay take place at the both edges of the reso-
nance line. The qualitative character of the dependencies
Dnskcd is the same for anyk, but quantitative differences can
be quite considerable. For the spin-wave resonance the de-
pendencies the linewidth onk are of great interest which are
depict in Fig. 8 for differentkc. It is shown that the character
of these dependencies can be considerably different, the
curves Dnskd can be monotonic or can have a maximum
depending on the value ofkc. In the region ofk/Îh@1 the
dependenceDnskd coincides with the dependence of the
doubled value of the dampingn9skd which has been calcu-
lated earlier by the perturbation theory methods; in the same
time there is the sharp difference betweenDnskd and 2n9skd
in the region ofk/Îh!1. The analogous picture is observed
also when comparing the dependencies of the resonance
maximum shifts and eigenfrequencies onk.

The effects of exchange narrowing of the FMR as well as
spin-wave resonance lines connect between each other the
main structural characteristics of the inhomogeneitiesskc and
hd with the main applied characteristics of the matter, that
are the magnetic resonance linewidths. Large narrowing of
the FMR and spin-wave linewidths with the decrease of the
correlation radius of inhomogeneities obtained in this paper
is the substantiation of the main advantage of the nanocrys-
talline and amorphous materials over usual polycrystals
when they are used at high frequency devices.
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