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A hybrid scheme for the electronic structure calculations of strongly correlated electron systems is proposed.
The ab initio local density approximation calculation is used to construct the Wannier functions and obtain
single electron and Coulomb parameters of the multiband Hubbard-type model. In strong correlation regime
the electronic structure within multiband Hubbard model is calculated by the generalized tight-binding method,
which combines the exact diagonalization of the model Hamiltonian for a small cluster �unit cell� with
perturbation treatment of the intercluster hopping and interactions. For undoped La2CuO4 and Nd2CuO4 this
scheme results in charge transfer insulators with correct values of gaps and dispersions of bands in agreement
with the angle-resolved photoemission data.
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I. INTRODUCTION

A conventional band theory is based on the density func-
tional theory1 �DFT� and on the local density approximation2

�LDA� within DFT. In spite of great success of the LDA and
its extensions for conventional metallic systems it appears to
be inadequate for strongly correlated electron systems
�SCES�. For instance, LDA predicts La2CuO4 to be a metal
whereas, in reality, it is an insulator. Several approaches to
include strong correlations in the LDA method are known,
for example, LDA+U �Ref. 3� and LDA-SIC.4 Both methods
result in the correct antiferromagnetic insulator ground state
for La2CuO4 contrary to LDA, but the origin of the insulat-
ing gap is not correct. It is formed by the local single-
electron states splitted by spin or orbital polarization. In
these approaches the paramagnetic phase of the undoped
La2CuO4 �above the Néel temperature TN� will be metallic in
spite of strong correlation regime U�W, where U is the
Hubbard Coulomb parameter5 and W is a free electron band-
width. The spectral weight redistribution between Hubbard
subbands is very important effect in SCES that is related to
the formation of the Mott-Hubbard gap in the paramagnetic
phase. This effect is incorporated in the hybrid LDA
+dynamical mean field theory �DMFT� �for review see Refs.
6–9� and LDA++ approaches.9 The electron self-energy in
LDA+DMFT approach is calculated by the DMFT theory in
the limit of infinite dimension10,11 and is k independent,
�k�E�→��E�.12,13 That is why the correct band dispersion
and the ARPES data for high-Tc compounds cannot be ob-
tained within LDA+DMFT theory. Recent development of
the LDA+cluster DMFT method14,15 and spectral density
functional theory16 gives some hope that nonlocal correc-
tions may be included in this scheme. Another self-consistent
scheme with advantage to be valid for excited states in
contrast with standard DFT calculations is known as GW
approximation.17,18 The GW method now is a fully working
method for electronic structure calculations19,20 taking into

account electron correlations. Recently it was successfully
applied to some strongly correlated materials.21

A generalized tight-binding22 �GTB� method has been
proposed to study the electronic structure of SCES as a gen-
eralization of Hubbard ideas for the realistic multiband
Hubbard-like models. The GTB method combines the exact
diagonalization of the intracell part of the Hamiltonian, con-
struction of the Hubbard operators on the basis of the exact
intracell multielectron eigenstates, and the perturbation treat-
ment of the intercell hoppings and interactions. A similar
approach to the three-band p-d model of cuprates23,24 is
known as the cell perturbation method.25–27 The practical re-
alization of the GTB method for cuprates required an explicit
construction of the Wannier functions to overcome the non-
orthogonality of the oxygen molecular orbitals at the neigh-
boring CuO6 cells.28 The GTB calculations for undoped and
underdoped cuprates are in good agreement with angle-
resolved photoemission �ARPES� data both in the dispersion
of the valence band and in the spectral intensity.28,29 A strong
redistribution of spectral weight with hole doping and the
formation of the in-gap states have been obtained in these
calculations. Similar GTB calculations for the manganites
has been done recently.30

As any model Hamiltonian approach the GTB method is
not ab initio, there are many Hamiltonian parameters such as
intra-atomic energy levels of p and d electrons, various p-d
and p-p hopping parameters, Coulomb and exchange inter-
action parameters. These parameters have been obtained by
fitting the set of optical, magnetic31 and ARPES data.28 Gen-
erally the question arises how unique the set of parameters is.
To overcome this restriction we have proposed in this paper
a hybrid LDA+GTB scheme that allows one to calculate the
GTB parameters by the ab initio LDA approach.

The paper is organized as follows. In Sec. II the construc-
tion of Wannier functions from self-consistent LDA eigen-
functions as well as ab initio parameters of the multiband
p-d model for La2CuO4 and Nd2CuO4 are given. A brief
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description of the GTB method is done in Sec. III. Section
IV contains the LDA+GTB band structure calculations for
La2CuO4 and Nd2CuO4. The effective low-energy t-J* model
with ab initio parameters is presented in Sec. V. Section VI is
the conclusion.

II. CALCULATION OF AB INITIO PARAMETERS
FROM LDA

To obtain hopping integrals for different sets of bands
included in consideration we apply projection procedure us-
ing Wannier functions �WFs� formalism.36 WFs were first
introduced in 1937 by Wannier32 as Fourier transformation of
Bloch states ��ik�

�Wi
T� =

1
�N

�
k

e−ik·T��ik� , �1�

where T is lattice translation vector, N is the number of
discrete k points in the first Brillouin zone, and i is band
index. One major reason why the WFs have seen little prac-
tical use in solid-state applications is their nonuniqueness
since for a certain set of bands any orthogonal linear combi-
nation of Bloch functions ��ik� can be used in Eq. �1�. There-
fore to define them one needs an additional constraint.
Among others, Marzari and Vanderbilt33 proposed the condi-
tion of maximum localization for WFs, resulting in a varia-
tional procedure. To get a good initial guess authors of Ref.
33 proposed to choose a set of localized trial functions ��n�
and project them onto the Bloch states ��ik�. It was found
that this starting guess is usually quite good. This fact later
led to the simplified calculating scheme34 where the varia-
tional procedure was abandoned as in the present work and
the result of the aforementioned projection was considered as
the final step.

A. Wannier function formalism

To construct the WFs one should define a set of trial or-
bitals ��n� and choose the Bloch functions of interest by band
indexes �N1 , . . . ,N2� or by energy interval �E1 ,E2�. Nonor-

thogonalized WFs in reciprocal �W̃nk� space are then the pro-
jection of the set of site-centered atomiclike trial orbitals ��n�
on the Bloch functions ��ik� of the chosen bands:

�W̃nk� � �
i�E1��i�k��E2	

��ik�
�ik��n� , �2�

where �i�k� is the band dispersion of ith band obtained from
self-consistent ab initio LDA calculation. In the present work
we use LMT orbitals35 as trial functions. The Bloch functions
in LMTO basis are defined as

��ik� = �
�

c�i
k ���

k� , �3�

where � is the combined index representing qlm �q is the
atomic number in the unit cell, l and m are orbital and mag-
netic quantum numbers�, ��

k�r� are the Bloch sums of the
basis orbitals ���r−T�

��
k�r� =

1
�N

�
T

eik·T���r − T� �4�

and the coefficients are

c�i
k = 
����ik� . �5�

Since in present work ��n� is an orthogonal LMTO basis
set orbital �in other words n in ��n� corresponds to the par-
ticular qlm combination�, then 
�ik ��n�=cni

k*. Hence

�W̃nk� = �
i=N1

N2

��ik�cni
k* = �

i=N1

N2

�
�

c�i
k cni

k*���
k� . �6�

In order to orthonormalize the WFs �6� one needs to calcu-
late the overlap matrix Onn��k�

Onn��k� � 
W̃nk�W̃n�k� = �
i=N1

N2

cni
k cn�i

k* , �7�

then its inverse square root Snn��k� is defined as

Snn��k� � Onn�
−1/2�k� . �8�

In the derivation of Eq. �7� the orthogonality of Bloch states

�nk ��n�k�=	nn� was used.

From Eqs. �6� and �8�, the orthonormalized WFs in k
space �Wnk� can be obtained as

�Wnk� = �
n�

Snn��k��W̃n�k� = �
i=N1

N2

��ik�c̄ni
k*,

c̄ni
k* � 
�ik�Wnk� = �

n�

Snn��k�cn�i
k* .

Then the matrix element of the Hamiltonian ĤWF in recipro-
cal space is

Hnn�
WF�k� = 
Wnk�� 1

N
�
k�

�
i=N1

N2

��ik���i�k��
�ik����Wn�k�

= �
i=N1

N2

c̄ni
k c̄n�i

k* �i�k� . �9�

Hamiltonian matrix element in real space is

Hnn�
WF�T� = 
Wn

0�Ĥ�Wn�
T � =

1

N
�
k

�
i=N1

N2

c̄ni
k c̄n�i

k* �i�k�e−ik·T,

here atom n� is shifted from its position in the primary unit
cell by a translation vector T. For more detailed description
of this procedure see Ref. 36.

B. LDA band structure, hopping and Coulomb parameters
for p- and n-type cuprates

Basically all cuprates have one or more CuO2 planes in
their structure, which are separated by layers of other ele-
ments �Ba, Nd, La,…�. They provide the carriers in CuO2
plane and according to the type of carriers all cuprates can be

KORSHUNOV et al. PHYSICAL REVIEW B 72, 165104 �2005�

165104-2



divided into two classes: p type and n type. In the present
paper we deal with the simplest representatives of these two
classes La2−xSrxCuO4 �LSCO� and Nd2−xCexCuO4 �NCCO�,
correspondingly.

La2CuO4 at the low temperature and zero doping has
the orthorhombic structure �LTO� with the space group
Bmab.38 The lattice parameters and atomic coordinates at
10 K were taken from Ref. 38 to be a=5.3346, b=5.4148,
and c=13.1172 Å, La �0,−0.0083,0.3616�, Cu �0,0,0�,
Op�0.25,0.25,−0.0084�, Oa �0, 0.0404, 0.1837�. Here and
below Op denotes in-plane oxygen ions and Oa, apical oxy-
gen ions. In comparison with high-temperature tetragonal
structure �HTT� orthorhombic La2CuO4 have two formula
units per unit cell and the CuO6 octahedra are rotated coop-
eratively about the �110	 axis �see Fig. 1�. As a result Op ions
are slightly moved off the Cu plane and four in-plane
La-Oa bond lengths are unequal.

Nd2CuO4 at the room temperature and zero doping has
the tetragonal structure with the space group I4/mmm �Ref.
39� also called T�-structure �Fig. 1�. The lattice parameters
are a=b=3.94362, c=12.1584 Å.39 Cu ions at the 2a site
�0, 0, 0� are surrounded by four oxygen ions O1 which oc-

cupy 4c position �0,1 /2 ,0�. The Nd at the 4e site �0, 0,
0.35112� have eight nearest oxygen ions neighbors O2 at 4d
position �0,1 /2 ,1 /4�.39 One can imagine body-centered T�
structure as the HTT structure of La2CuO4 but with two oxy-
gen atoms moved from apices of each octahedron to the face
of the cell at the midpoints between two oxygen atoms on the
neighboring CuO2 planes �Fig. 1�. In other words Nd2CuO4
in T�-structure has no apical oxygens around Cu ion.

LDA band calculation for La2CuO4 and Nd2CuO4 was
done within LMTO method35 using atomic sphere approxi-
mation in tight-binding approach40 �TB-LMTO-ASA�. In the
case of Nd2CuO4 Nd-4f states were treated as pseudocore
states.

The LDA band structure of both compounds along the
high-symmetry lines in the Brillouin zone is shown in Figs.
2–5 by dotted lines. The coordinates of high-symmetry
points in BZ are given on top of each picture. The complex
of bands in the energy range �−8,2.5� eV consists primarily
of Cu-3d and O-2p states. The total bandwidths amount
10 eV for La cuprate and 7 eV for Nd cuprate. Contribution
of Cu-3d and O-2p orbitals to the different bands is dis-
played by arrows.

One can see that the band crossing EF have character of
Cu-dx2−y2 and Op-px,y for La2CuO4 and Cu-dx2−y2, O1-px,y in
the case of Nd2CuO4. It corresponds to antibonding pd

orbital. So for hoppings calculation the projection on

FIG. 2. �Color online� Comparison of the band structure of
La2CuO4 from LDA calculation �dotted lines� and from projection
on the Cu-dx2−y2 and Op-px, Op-py set of orbitals �bold solid lines�.
Fermi level corresponds to zero energy.

FIG. 3. �Color online� The same as in Fig. 2 but projection is
done on the Cu-dx2−y2, Cu-d3z2−r2 and Op-px, Op-py, Oa-pz set of
orbitals.

FIG. 1. T�-structure of tetragonal Nd2CuO4 on the left, and T
structure of the HTT phase �tetragonal, K2NiF4 type� of the
La2CuO4 on the right. Orthorhombic distortions and rotation of the
CuO6 octahedra in the LTO phase of the La2CuO4 are schematically
shown in the middle. The figure is taken from Ref. 37.

FIG. 4. �Color online� Comparison of the band structure of
Nd2CuO4 from LDA calculation �dotted lines� and from projection
on the Cu-dx2−y2, O1-px, and O1-py set of orbitals �bold solid lines�.
Fermi level corresponds to zero energy.
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Cu-dx2−y2, Op-px, Op-py orbitals for La cuprate and
Cu-dx2−y2, O1-px, O1-py orbitals for Nd cuprate was done.
Such set of orbitals corresponds to the three-band p-d model.
The bands obtained by the projection procedure described in
Sec. II A are shown by solid lines in Figs. 2 and 4. It is
clearly seen that in the case of La2CuO4 the 3-band model
did not reproduce the band crossing EF properly �Fig. 2, SR
direction�.

Since the three-band p-d model did not provide proper
description of the LDA bands around Fermi level the projec-
tion on more complex set of trail orbitals for both com-
pounds was done. The resulting bands are plotted by solid
lines in Figs. 3 and 5. Corresponding multiband p-d model
contains Cu-dx2−y2, Cu-d3z2−r2, Op-px, Op-py, Oa-pz states for
La2CuO4 and Cu-dx2−y2, Cu-d3z2−r2, O1-px, O1-py, O2-pz

states for Nd2CuO4. The energy range for projection was
�−8.4,2.5� eV and �−8,2� eV for the case of La cuprate and
Nd cuprate correspondingly. The main effect of taking into
account Cu-d3z2−r2 and Oa-pz states for La2CuO4 is the
proper description of the band structure �in comparison with
LDA calculation� at the energies up to 2 eV below Fermi
level. From Figs. 4 and 5 one can see that in case of
Nd2CuO4 both sets of trial orbitals properly describe the
LDA band crossing the Fermi level which has Cu-dx2−y2 sym-
metry. At the same time its bonding part does not agree well
with the LDA bands since projection did not include all Cu
-d and O-p orbitals.

The resulting hopping parameters and energy of particular
orbitals for two sets of trial orbitals are presented in Tables I
and II. The second column contains the connecting vector T
between two sites. It is clearly seen that hoppings decay
quite rapidly with distance between ions.

For the multiband p-d model the values of Coulomb pa-
rameters are also required. For Cu in La2CuO4 they were
obtained in constrained LDA supercell calculations41 to be
U=10 eV and J=1 eV.42 For the Nd2CuO4 we will use the
same values of these parameters.

III. GTB METHOD OVERVIEW

As the starting model that reflects chemical structure of
the cuprates it is convenient to use the three-band p-d

model23,24 or the multiband p-d model.43 While the first one
is simpler it lacks for some significant features, namely, im-
portance of dz2 orbitals on copper and pz orbitals on apical
oxygen. Nonzero occupancy of dz2 orbitals was pointed out
in XAS and EELS experiments which shows 2–10 % occu-
pancy of dz2 orbitals44,45 and 15% doping dependent occu-
pancy of pz orbitals46 in all hole doped high-Tc compounds.
Henceforth the multiband p-d model will be used.

Let us consider the Hamiltonian with the following gen-
eral structure:

H = �
f ,�,


��� − ��nf�
 + �
f�g

�
�,��,


Tfg
���cf�


† cg��


+
1

2 �
f ,g,�,��

�

1,2,3,4

Vfg
���cf�
1

† cf�
3
cg��
2

† cg��
4
, �10�

where cf�
 is the annihilation operator in Wannier represen-
tation of the hole at site f at orbital � with spin 
, nf�


=cf�

† cf�
.

FIG. 5. �Color online� The same as in Fig. 4 but projection is
done on the Cu-dx2−y2, Cu-d3z2−r2 and O1-px, O1-py, O2-pz set of
orbitals.

TABLE I. Hopping parameters and single electron energies for
orthorhombic La2CuO4 obtained in WF projection procedure for
different sets of trial orbitals �all values in eV�. Here x2, z2, px, py,
pz denote Cu-dx2−y2, Cu-d3z2−r2, Op-px, Op-py, Oa-pz orbitals, corre-
spondingly. The third and fourth columns correspond to bases of the
three-band and the multiband p-d models, respectively.

Hopping
Connecting

vector
Cu-x2

O px, py

Cu-x2, z2

O-px, py, pz

Ex2 =−1.849 Ex2 =−1.849

Epx
=−2.767 Ez2 =−2.074

Epy
=−2.767 Epx

=−2.806

Epy
=−2.806

Epx
=−1.676

t�x2 ,x2� �−0.493,−0.5� −0.188 −0.188

t��x2 ,x2� �−0.985,0.0� 0.001 0.002

t�z2 ,z2� �−0.493,−0.5� 0.054

t��z2 ,z2� �−0.985,0.0� −0.001

t�x2 , px� �0.246,0.25,−0.02� 1.357 1.355

t��x2 , px� �−0.739,0.25,−0.02� −0.022 −0.020

t�z2 , px� �0.246,0.25,−0.02� −0.556

t��z2 , px� �−0.739,0.25,−0.02� −0.028

t�z2 , pz� �0,0.04,0.445� 0.773

t��z2 , pz� �−0.493,−0.46,−0.445� −0.011

t�px , py� �0.493, 0.0� −0.841 −0.858

t��px , py� �0,0.5,0.041� 0.775 0.793

t��px , py� �0.985,0.5,0.041� −0.001 −0.001

t�px , pz� �−0.246,−0.21,0.465� −0.391

t��px , pz� �0.246,0.29,−0.425� −0.377

t��px , pz� �0.246,−0.21,−0.746� 0.018
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In the particular case of cuprates and corresponding multi-
band p-d model, f runs through copper and oxygen sites,
index � run through dx2−y2 �dx2 and d3z2−r2 �dz2 orbitals on
copper, px and py atomic orbitals on the Op-oxygen sites and
pz orbital on the apical Oa oxygen; �� -single-electron energy

of the atomic orbital �. Tfg
��� includes matrix elements of

hoppings between copper and oxygen �tpd for hopping
dx2↔px , py; tpd /�3 for dz2↔px , py; tpd� for dz2↔pz� and be-
tween oxygen and oxygen �tpp for hopping px↔py; tpp� for

hopping px , py↔pz�. The Coulomb matrix elements Vfg
��� in-

clude intra-atomic Hubbard repulsions of two holes with op-
posite spins on one copper and oxygen orbital �Ud, Up�, be-
tween different orbitals of copper and oxygen �Vd, Vp�, Hund
exchange on copper and oxygen �Jd, Jp� and the nearest-
neighbor copper-oxygen Coulomb repulsion Vpd.

GTB method22,28,29 consist of exact diagonalization of in-
tracell part of the multiband Hamiltonian �10� and perturba-
tive account of the intercell part. For La2−xSrxCuO4 and
Nd2−xCexCuO4 the unit cells are CuO6 and CuO4 clusters,
respectively, and a problem of nonorthogonality of the mo-
lecular orbitals of adjacent cells is solved by an explicit fash-
ion using the diagonalization in k space.47 In a new symmet-

ric basis the intracell part of the total Hamiltonian is
diagonalized, allowing us to classify all possible effective
quasiparticle excitations in CuO2-plane according to a sym-
metry. To describe this process the Hubbard X operators48

Xf
m↔Xf

p,q��p�
q� are introduced. Index m↔ �p ,q� enumer-
ates quasiparticle with energy �m=p�N+1�−q�N�, where
p is the pth energy level of the N-electron system. There is
a correspondence between Hubbard operators and single-
electron creation and annihilation operators

cf�
 = �
m

��
�m�Xf
m, �11�

where ��
�m� determines the partial weight of a quasiparticle
m with spin 
 and orbital index �. Using this correspondence
we rewrite the Hamiltonian �10�

H = �
f ,p

�p − N��Xf
p,p + �

f�g
�

m,m�

tfg
mm�Xf

m†Xg
m�. �12�

This Hamiltonian, actually, has the form of the multiband
Hubbard model.

Diagonalization of the Hamiltonian �10� mentioned above
gives energies p and the basis of Hubbard operators Xf

m.
Values of the hoppings

tfg
mm� = �


,�,��

Tfg
�����


* �m����
�m�� , �13�

are calculated straightforwardly using the exact diagonaliza-
tion of the intracell part of the Hamiltonian �10�.

In the Hamiltonian �12� the intercell hoppings tfg
mm� are

treated by the perturbation theory over t /U�1. In the Mott-
Hubbard insulators far from the Mott transition this is a good
small parameter. For cuprates, instead of large tpd=1 eV the
intercluster hoppings are strongly decreased and are less than
0.5 eV �see Eq. �15� and Tables IV and V below	, while the
effective U is large and given by the value of the charge-
transfer gap Ect2 eV.

Again, in the particular case of the multiband p-d model,
the essentials for cuprates multielectron configurations are
d10p6 �vacuum state �0� in a hole representation�, single-hole
configurations d9p6, d10p5, and two-hole configurations d8p6,
d9p5, d10p4, d10p5p5. In the single-hole sector of the Hilbert
space the b1g molecular orbital, which we will denote later as
�
�= ��↑ � , �↓ ��, has the minimal energy. In the two-hole sec-
tor the lowest energy states are singlet state �S� with 1A1g
symmetry, that includes Zhang-Rice singlet among other lo-
cal singlets, and triplet states �T�= �TM� �M = +1,0 ,−1� with
3B1g symmetry.28,29,47 All these states form the basis of the
Hamiltonian �12�, and they are shown together with quasi-
particle excitations between them in Fig. 6.

In this basis relations �11� between annihilation-creation
operators cf�
 and Hubbard X operators Xf

m are

cfdx2
 = uXf
0,
 + 2
�xXf


̄,S,

cfpb
 = vXf
0,
 + 2
�bXf


̄,S,

cfpa
 = �a�
�2Xf

̄,T0 − Xf


,T2
� ,

TABLE II. Hopping parameters and single electron energies for
Nd2CuO4 obtained in WF projection procedure for different sets of
trial orbitals �all values in eV�. Here x2, z2, px, py, pz denote
Cu-dx2−y2, Cu-d3z2−r2, O1-px, O1-py, O2-pz orbitals, correspond-
ingly. The third and fourth columns correspond to bases of the
three-band and the multiband p-d models, respectively.

Hopping
Connecting

vector
Cu-x2,

O px, py

Cu-x2, z2,
O-px, py, pz

Ex2 =−1.989 Ex2 =−1.991

Epx
=−3.409 Ez2 =−2.778

Epz
=−3.409 Epx

=−3.368

Epz
=−2.30

t�x2 ,x2� �1, 0� 0.01 0.01

t��x2 ,x2� �1, 1� −0.00 −0.00

t�z2 ,z2� �1, 0� 0.01

t��z2 ,z2� �1, 1� 0.00

t�x2 , px� �0.5,0� 1.18 1.18

t��x2 , px� �0.5,1� −0.06 −0.06

t��x2 , px� �1.5,0� 0.04 0.04

t��x2 , px� �1.5,1� 0.00 0.00

t�z2 , px� �0.5,0� −0.29

t��z2 , px� �0.5, 1� 0.01

t�z2 , pz� �0, 0.5, 0.771� 0.10

t��z2 , pz� �1, 0.5, 0.771� 0.02

t�px , py� �0.5,0.5� 0.69 0.67

t��px , py� �1.5,0.5� 0.00 0.00

t�px , pz� �0.5, 0.5, 0.771� 0.02

t��px , pz� �0.5,�0.5, 0.771� 0.02
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cfdz2
 = �z�
�2Xf

̄,T0 − Xf


,T2
� ,

cfpz

= �p�
�2Xf


̄,T0 − Xf

,T2
� ,

and the explicit form of the Hamiltonian �12� is given by

Hpd = �
f
�1�




Xf

,
 + 2SXf

S,S + 2T�
M

Xf
TM,TM�

+ �
f�g,


�tfg
00Xf


,0Xg
0,
 + tfg

SSXf
S,
̄Xg


̄,S + 2
tfg
0S�Xf


,0Xg

̄,S

+ H.c.� + tfg
ST��
�2Xf

T0,
̄ − Xf
T2
,
��vXg

0,
 + 2
�bXg

̄,S�

+ H.c.� + tfg
TT�
�2Xf

T0,
̄ − Xf
T2
,
��
�2Xg


̄,T0 − Xg

,T2
�	 .

�14�

Here 
̄�−
. The relation between effective hoppings �13� in
this Hamiltonian and microscopic parameters of the multi-
band p-d model is as follows:49,50

tfg
00 = − 2tpd� fg2uv − 2tpp� fgv

2,

tfg
SS = − 2tpd� fg2�x�b − 2tpp� fg�b

2,

tfg
0S = − 2tpd� fg�v�x + u�b� − 2tpp� fgv�b,

tfg
TT =

2tpd

�3
� fg2�a�z + 2tpp� fg�a

2 − 2tpp� � fg2�p�a,

tfg
ST =

2tpd

�3
� fg�z + 2tpp� fg�a − 2tpp� � fg�p. �15�

The factors �, �, �, �, � are the coefficients of Wannier
transformation made in the GTB method and u, v, �x, �b, �a,
�p, �z are the matrix elements of annihilation-creation opera-
tors in the Hubbard X-operator representation.28

Calculations28,29 of the quasiparticle dispersion and spec-
tral intensities in the framework of the multiband p-d model
by the GTB method are in very good agreement with the
ARPES data on insulating compound Sr2CuO2Cl2.51,52 Other
significant results of this method are as follows.53,54

�i� Pinning of Fermi level in LSCO at low concentrations
was obtained in agreement with experiments.55,56 This pin-
ning appears due to the in-gap state, spectral weight of this
state is proportional to doping concentration x and when
Fermi level comes to this in-gap band then Fermi level
“pins” there. The localized in-gap state exists in NCCO also
for the same reason as in LSCO, but its energy is determined
by the extremum of the band at �� /2 ,� /2� point and it ap-
pears to be above the bottom of the conductivity band. Thus,
the first doped electron goes into the band state at the �� ,0�
and the chemical potential � for the very small concentration
merges into the band. At higher x it meets the in-gap state
with a pinning at 0.08�x�0.18 and then � again moves
into the band. The dependence ��x� for NCCO is quite
asymmetrical to the LSCO and also agrees with experimental
data.56

�ii� The experimentally observed57 evolution of Fermi sur-
face with doping from hole-type �centered at �� ,��	 in the
underdoped region to electron-type �centered at �0, 0�	 in the
overdoped region is qualitatively reproduced.

�iii� A pseudogap feature for LSCO is obtained as a low-
ering of density of states between the in-gap state and the
states at the top of the valence band.

In all these calculations the set of the microscopic model
parameters, obtained by fitting to experimental ARPES
data,51,58 was used. Hoppings and single-electron energies
are listed in Table III, values of Coulomb parameters are as
follows:

Ud = Vd = 9, Up = Vp = 4,

Jd = 1, Jp = 0, Vpd = 1.5. �16�

All results above were obtained by treating the intercell
hopping in the Hubbard-I approximation.5 But the GTB

FIG. 6. Schematic picture of states and quasiparticle excitations
between them in Hubbard-type model �12�. Here nh stands for num-
ber of holes, �i numerates Fermi-type quasiparticles, states �0�, �
�,
�S�, �T� represents basis of the Hamiltonian �12�. Also, bases of
effective models are shown.

TABLE III. Hopping parameters and single-electron energies of
holes obtained by fitting GTB band structure to experimental data
and in the ab initio calculations for p- and n-type cuprates �all
values in eV�.

p-type n-type

fitted ab initio fitted ab initio

dx2 0 0 0 0

px
1.5 0.91 1.4 1.38

dz2 0.2 0.14 0.5 0.79

pz
0.45 −0.26 0.45 0.31

tpd 1 1 1 1

tpp 0.46 0.63 0.56 0.57

tpd� 0.58 0.57 0 0.08

tpp� 0.42 0.29 0.1 0.02
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method is not restricted to such a crude approximation. The
Fourier transform of the two-time retarded Green function in
energy representation can be rewritten in terms of matrix
Green function Dk


mn�E�= 

Xk

m �Xk


n †��E:



ck�
�ck�

† ��E = �

m,m�

��
�m���

* �m��Dk


mm��E� .

The diagram technique for Hubbard X operators is
developed59,60 and the generalized Dyson equation61 reads

D̂k
�E� = ��Ĝk

�0��E�	−1 + �̂k
�E��−1P̂k
�E� . �17�

Here, �̂k
�E� and P̂k
�E� are the self-energy and the
strength operators, respectively. The presence of the strength
operator is due to the redistribution of the spectral weight
that is an intrinsic feature of SCES. First time it was intro-
duced in the spin diagram technique and called “a strength

operator”62 because the value of P̂k
�E� determines an oscil-
lator strength of excitations. It is also should be stressed that

�̂k
�E� in Eq. �17� is the self-energy in X-operator represen-
tation and therefore it is different from the self-energy enter-
ing Dyson equation for the Green function 

ck�
 �ck�


† ��E.

The Green function Ĝk

�0��E� is defined by the formula

�Ĝk

�0��E�	−1 = Ĝ0

−1�E� − P̂k
�E�t̂k
, �18�

where Ĝ0
−1�E� is the free propagator and t̂k
 is the interaction

matrix element �for the Hubbard model, tk

mm�

=�
�m��

*�m��tk, and G0

mm��E�=	mm� / �E−1�	.
In the Hubbard-I approximation at U�W the self-energy

�̂k
�E� is equal to zero and the strength operator Pk

mn�E� is

replaced by Pk

mn�E�→P


mn=	mnF

m, where F


m= 
Xf
p,p�+ 
Xf

q,q�
is the occupation factor. So, in this approximation the follow-
ing equation is derived from Eq. �17�:

D̂k

�0� = �Ĝ0

−1�E� − P̂
t̂k
�−1P̂
. �19�

Using diagram technique for the X operators it is possible to
find solution in the GTB method beyond the Hubbard-I ap-
proximation. But such discussion is far from the scope of this
paper’s goals.

It should be stressed that the GTB bands are not free
electron bands of the conventional band structure, these are
the quasiparticle bands with the number of states in each
particular band depending on the occupation number of the
initial and final multielectron configurations, and thus on the
electron occupation. Bands with zero spectral weight or
spectral weight proportional to doping value x appear in the
GTB approach.

IV. LDA+GTB METHOD: RESULTS AND DISCUSSION

In this section we will describe the LDA+GTB method
itself and some results of this approach. In the LDA+GTB
scheme all parameters of the multiband model are calculated
within the ab initio LDA �by Wannier function projection
technique, see Sec. II A� and constrained LDA method.41

Analysis of the LDA band structure gives the minimal model

that should be used to describe the physics of system under
consideration. Although LDA calculation does not give cor-
rect description of the SCES band structure, it gives ab initio
parameters and reduced number of essential orbitals or the
“minimal reliable model.” Then the effects of strong electron
correlations in the framework of this model with ab initio
calculated parameters are explicitly taken into account within
the GTB method, and the quasiparticle band structure is de-
rived.

In Sec. II the ab initio calculations for undoped La2CuO4
and Nd2CuO4 are presented. One can see that in the three-
band model �Figs. 2 and 4� it is possible to describe the
bands crossing the Fermi level but not the lower lying exci-
tations within 4 eV. The main effect of taking into account
Cu-d3z2−r2 and Oa-pz states for La2CuO4 system is the proper
description of the band structure �in comparison with LDA
calculation� at the energies up to 4 eV below Fermi level
�see Fig. 3�. Of course, the ab initio LDA band structure is
not correct in undoped cuprates, but it gives an indication of
what orbitals should be included in more appropriate calcu-
lations. Therefore if one needs to describe quantitatively the
low-energy excitations of La2−xSrxCuO4, the Cu-d3z2−r2 and
Oa-pz orbitals should be taken into account and the reliable
minimal model is the multiband p-d model. In Nd2CuO4 the
Cu-d3z2−r2 and O2-pz states do not contribute significantly to
the band structure �compare Figs. 4 and 5� and the minimal
model is the three-band p-d model. There is the physical
reason why both dx2−y2 and d3z2−r2 states are necessary in the
basis for the low energy description of La2CuO4 and d3z2−r2

state is not necessary for Nd2CuO4. In La2CuO4 with T struc-
ture �see Fig. 1� the tetragonal component of the crystal field
is small ��0.5 eV�, and so the splitting of the two eg levels is
also small. In Nd2CuO4 with T�-structure the apical oxygen
is absent, so the tetragonal component of the crystal field is
large and is of the same order of magnitude as the cubic
component. That is why the splitting of eg levels is large, and
d3z2−r2 hole has rather high energy and is not important in the
low excitation energy calculations for Nd2CuO4. Neverthe-
less to treat p- and n-type cuprates on equal footing later we
will use the same multiband p-d model for both LSCO and
NCCO with different material-dependent parameters. Hop-
ping parameters decay rapidly with distance �see Tables I and
II� so in GTB calculation we will use only nearest copper-
oxygen and oxygen-oxygen hoppings which are listed in
Table III.

In Refs. 63 and 64 ab initio calculations were done for
YBa2Cu3O7 and La2CuO4, and single-electron energy px
=0.9 eV was obtained. This value is very close to the one
presented in Table III. But in Refs. 63 and 64 the Cu-s states
were taken into account with energy s=−6.5 eV. Our LDA
calculations show that Cu-s bands contribute to the band
structure shown in Figs. 3 and 5 at approximately 7 eV be-
low and at 2 eV above Fermi level. Therefore Cu-s states do
not contribute significantly to the low-energy physics. But
these states can contribute to the effective intraplane hopping
parameters t� and t� between the nearest- and next-nearest-
neighboring unit cells. In our LDA+GTB method Cu-s
states are neglected. It could be a reason why for La2CuO4
our t� / t=−0.137 �see Table IV� is less than t� / t=−0.17 ob-
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tained in Ref. 64, where influence of Cu-s orbital on hop-
pings was taken into account.

There is a claim that pd�-bonds65 and nonbonding oxy-
gen states66 are very important in low-energy physics of
high-Tc cuprates. To discuss this topic let us start with analy-
sis of ab initio calculations. Present LDA calculations show
that antibonding bands �* of � bonds �Cu-d+O-p�, see
Figs. 2 and 4� situated slightly below antibonding 
a

* bands
of Cu-d3z2−r2 +Oa-pz origin in La2CuO4 and slightly above
antibonding 
a

* bands of Cu-d3z2−r2 origin in Nd2CuO4 �see
Figs. 3 and 5�. GTB calculations28 show that states corre-
sponding to 
a

* band contributes to the a1g molecular orbital
in the single-hole sector of the Hilbert space. This a1g mo-
lecular orbital situated above b1g state �
�= ��↑ � , �↓ �� by an
energy about 1.2 eV. From the relative position of 
a

* and
�* bands in LDA calculations we conclude that the energy of
molecular orbital corresponding to the �* band will be situ-
ated around energy of a1g state. Therefore, it will be above
�
� state by about 1.0–1.4 eV. Also, both states correspond-
ing to �* and 
a

* are empty in undoped compound and spec-
tral weight of quasiparticle excitations to or from these states
will be zero. Summarizing, � bonds, as well as 
a

* states,
will contribute to the GTB dispersion only upon doping and
only in the depth in the valence band below 1 eV from the
top. Moreover, since energy difference between triplet �T�
and singlet �S� states is about 0.5 eV,28 the contribution from
the singlet-triplet excitations will be much more important to
the low-energy physics. Although, � bonds could be impor-
tant for explanation of some optical and electron-energy loss
spectroscopy experiments, but in description of low-energy
physics of interest they could be neglected. The nonbonding
oxygen states contribute to the valence band with energy
about 2–3 eV below the top. That is why we will not take �
bonds and nonbonding oxygen states in our further consid-
eration.

Now we have an idea what model should be used and ab
initio microscopic parameters of this model. As described in
Sec. III, the GTB method is appropriate method for descrip-
tion of SCES in Mott-Hubbard type insulators and its results
are in good agreement with experimental data. Then it is
natural to use this method to work with the ab initio derived
multiband p-d model.

The parameters �15� of the Hamiltonian in the GTB
method derived from ab initio one are presented in Tables IV
and V for p- and n-type cuprates, respectively. Single-
electron energies �in eV� and matrix elements of
annihilation-creation operators in the X operators representa-
tion were calculated for both LSCO

�1 = − 1.919, �2S = − 2.010, �2T = − 1.300,

u = − 0.707, v = − 0.708, �x = − 0.619,

�b = − 0.987, �a = − 0.032, �p = − 0.962, �z = − 0.237

�20�

and NCCO

�1 = − 1.660, �2S = − 1.225, �2T = − 0.264,

u = − 0.756, v = − 0.655, �x = 0.626,

�b = 0.984, �a = − 0.008, �p = 0.997, �z = 0.037.

�21�

It is known67 that sign of the hoppings in the t-t�-t�-J
model changes during electron-hole transformation of the
operators. Therefore, t� will have different signs in p- and
n-type cuprates. In present paper we do not do electron-hole
transformation of the operators, and both t-t�-t�-J* and
singlet-triplet t-t�-t�-J* models are written using hole opera-
tors. Because of that there is no difference in signs of the
hoppings t� for the hole- and electron-doped systems pre-
sented in Tables IV and V.

As the next step we calculate the band structure of the
undoped antiferromagnetic �AFM� insulating cuprate within
the GTB method. Results for both GTB method with fitting
parameters and LDA+GTB method with ab initio param-
eters �Table III� are presented in Fig. 7 for La2CuO4 and in
Fig. 8 for Nd2CuO4.

The GTB band structure obtained for both phenomeno-
logical and ab initio sets of parameters is almost identical:
the valence band, located below 0 eV in figures, and the
conductivity band, located above +1.5 eV, divided by the
insulator gap of the charge transfer origin Ect2 eV; the
undoped La2CuO4 and Nd2CuO4 are insulators in both anti-
ferromagnetic and paramagnetic states. In-gap states at the
top of the valence band and about the bottom of the conduc-
tivity band are shown by dashed lines. Their spectral weights
and dispersions are proportional to doping x and concentra-
tion of magnons.68 Therefore, for undoped compounds, in the
Hubbard-I approximation used in GTB method, these states
are dispersionless with zero spectral weight.

The valence band have bandwidth about 6 eV and con-
sists of a set of very narrow subbands with the highest one at
the top of the valence band—the so-called “Zhang-Rice sin-

TABLE IV. Parameters of the multiband Hubbard model �12�
and exchange integral J for LSCO obtained in the framework of the
LDA+GTB method �all values in eV�. Hoppings giving main con-
tribution to the top of the valence band are shown by bold type.

� t�
00 t�

SS t�
0S t�

TT t�
ST J�

�0,1� 0.453 0.679 0.560 0.004 −0.086 0.157

�1,1� −0.030 −0.093 −0.055 −0.001 0 0.001

�0,2� 0.068 0.112 0.087 0.002 −0.016 0.004

�2,1� 0.003 −0.005 0 0 −0.002 0

TABLE V. The same as in Table IV, but for NCCO. Hoppings
giving main contribution to the bottom of the conductivity band are
shown by bold type.

� t�
00 t�

SS t�
0S t�

TT t�
ST J�

�0,1� 0.410 0.645 −0.523 0 −0.0052 0.137

�1,1� −0.013 −0.076 0.035 0 0 0.001

�0,2� 0.058 0.104 −0.078 0 −0.0002 0.003

�2,1� 0.005 −0.002 −0.003 0 −0.0004 0
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glet” subband. The dominant spectral weight in the singlet
band stems from the oxygen p states, while for the bottom of
the empty conductivity band it is from dx2−y2 states of copper.
Both methods give small, less then 0.5 eV, splitting between
the 1A1g Zhang-Rice-type singlet band and 3B1g narrow trip-
let band located below the singlet band �e.g., in Fig. 8 for
Nd2CuO4 it is located at −1.5 eV�. The energy of Cu
−d3z2−r2 orbital plays the dominant role in this splitting in the
GTB method. For La2CuO4 energy dz2 is smaller than for

Nd2CuO4 �see Table III�. This results in smaller width of the
singlet band for the LSCO compared to the NCCO: about
0.5 eV and 1 eV correspondingly.

However, for La2CuO4 minor discrepancies occur in the
dispersion of the bottom of the conductivity band near �� ,0�
point obtained by GTB with phenomenological set of param-
eters and by LDA+GTB. This leads to the different character
of the optical absorption edge in two presented methods. The
absorption edge for the LDA+GTB is formed by the indirect
transitions in contrast to the GTB method with phenomeno-
logical set of parameters, where the momentum of excited
quasiparticle is conserved by optical transition at the absorp-
tion edge. For Nd2CuO4 both GTB method with fitting pa-
rameters and LDA+GTB result in the conductivity band
minima at the �� ,0� point �see Fig. 8�. Also, in the LDA
+GTB method the triplet band dispersion and the singlet-
triplet hybridization are much smaller then in the GTB
method with fitting parameters. This happens mainly due to
the smaller values of tpp� used in LDA+GTB method, be-

cause it is this microscopic parameter that gives main nu-
merical contribution �see Eqs. �15�, �20�, and �21�	 to the tfg

TT

and tfg
ST hoppings that determines the triplet band dispersion

and the singlet-triplet hybridization, respectively. So, despite
some minor discrepancies, both GTB method with phenom-
enological parameters and LDA+GTB method without free
parameters give similar band dispersion.

Next topic that we will discuss in connection to the
LDA+GTB method is the value of magnetic moment on
copper MCu. From the neutron diffraction studies of
La2CuO4 �Ref. 69� and YBa2Cu3O6 �Ref. 70� it is known
that MCu is equal to 0.5�B where �B is Bohr magneton.
There are two reasons why MCu is different from the free
atomic value 1.14�B in S=1/2Cu2+, namely, zero tempera-
ture quantum spin fluctuations and the covalent effect. Since
each oxygen has two neighboring coppers belonging to dif-
ferent magnetic sublattices the total moment on oxygen is
equal to zero. But due to p-d hybridization the p states of
oxygen are partially filled so these orbitals could carry non-
zero magnetic moment MO, while total moment on oxygen
will be equal to zero. Such space distribution of magnetic
moment leads to the difference71 between experimentally ob-
served antiferromagnetic form factor for La2CuO4 and the
Heisenberg form-factor of Cu2+. In order to take into account
covalent effects and zero quantum fluctuations on equal foot-
ing we will write down the expression for MCu:

MCu = 2.28�B
Sz�u2, �22�

where zero quantum spin fluctuations are contained in 
Sz�
and covalent effects are described by the weight u2 of the

FIG. 7. The AFM band structure of La2CuO4 obtained in the
GTB method with phenomenological set of parameters �a� and in
the LDA+GTB method �b�. In the figure �a� bands are labeled; in
other GTB band structure figures relative positions of bands are the
same.

FIG. 8. The AFM band structure of Nd2CuO4 obtained in the
GTB method with phenomenological set of parameters �left� and in
the LDA+GTB method �right�.
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d9p6 configuration. The last quantity is calculated in the
framework of the LDA+GTB method and equal to u2=0.5.
In Ref. 72 the value 
Sz�=0.3 was obtained self-consistently
in the effective quasi-two-dimensional Heisenberg antiferro-
magnetic model for typical in La2CuO4 ratio 10−5 of the
interplane and intraplane exchange parameters. Close value
of 
Sz�=0.319 was obtained in Ref. 73 where also the
plaquette ring-exchange was considered in Heisenberg
Hamiltonian. Using Eq. �22� and above values of u2 and 
Sz�
we have calculated magnetic moment on copper MCu
=0.4�B, that is close to the experimentally observed MCu
=0.5�B.

Summarizing this section, we can conclude that the pro-
posed LDA+GTB scheme works quite well and could be
used for quantitative description of the high-Tc cuprates. The
LDA+GTB scheme also can be used for wide class of
SCESs—cuprates, manganites, and others.

V. EFFECTIVE LOW-ENERGY MODEL

When we are interested in the low-energy physics �such
as, e.g., superconductivity� it is useful to reduce the micro-
scopic model to a simpler effective Hamiltonian. For ex-
ample, for the Hubbard model in the regime of strong corre-
lations the effective model is the t-J* model �t-J model plus
three-center correlated hoppings H3� obtained by exclusion
of the intersubband hoppings perturbatively.74–76 Analysis of
the three-band model results in the effective Hubbard and the
t-J model.25,27,77–79

As the next step we will formulate the effective model for
the multiband p-d model. The simplest way to do it is to
neglect completely contribution of two-particle triplet state
3B1g. Then there will be only one low-energy two-particle
state—Zhang-Rice-type singlet 1A1g—and the effective
model will be the usual t-J* model. But in the multiband
p-d model the difference �T−�S between energy of two-
particle singlet and two-particle triplet depends strongly on
various model parameters, particularly on distance of the api-
cal oxygen from the planar oxygen, energy of the apical
oxygen, difference between energy of dz2 orbitals and dx2

orbitals. For the realistic values of model parameters T−S
is close to 0.5 eV �Refs. 29 and 47� contrary to the three-
band model with this value being about 2 eV. To take into
account triplet states we will derive the effective Hamil-
tonian for multiband p-d model by exclusion of the intersub-
band hopping between low �LHB� and upper �UHB� Hub-
bard subbands. These subbands divided by the energy of
charge-transfer gap Ect2 eV �similar to U in the Hubbard
model� and using perturbation theory, similar to Ref. 75, with
small parameter W /U we can derive separate effective mod-
els for UHB and LHB. This procedure is schematically
shown in Fig. 6. And, as one can see, since the UHB and
LHB in initial model �14� are formed by different quasipar-
ticles �namely, �0 for LHB and �1, �2, �3 for UHB in Fig.
6�, the effective models will be different for upper �valence
band, hole doped� and lower �conductivity band, electron
doped� subbands.

We write the Hamiltonian in the form H=H0+H1, where
the excitations via the charge transfer gap Ect are included in

H1. Then we define an operator H���=H0+�H1 and make the

unitary transformation H̃���=exp�−i�Ŝ�H���exp�i�Ŝ�. Van-

ishing linear in � component of H̃��� gives the equation for

matrix Ŝ: H1+ i�H0 , Ŝ	=0. The effective Hamiltonian is ob-

tained in second order in � and at �=1 is given by H̃=H0

+ 1
2 i�H1 , Ŝ	. For the multiband p-d model �14� in case of

electron doping we obtain the usual t-J* model describing
conductivity band

Ht-J* = �
f ,


1Xf

,
 + �

f�g,

tfg
00Xf


,0Xg
0,


+ �
f�g�m,


H3 + �
f�g

Jfg�S� fS�g −
1

4
nfng� , �23�

here H3 contains three-centers interaction terms given by Eq.

�A1�, S� f are spin operators and nf are number of particles
operators. The Jfg=2�tfg

0S�2 /Ect is the exchange parameter.
For p-type systems the effective Hamiltonian has the form

of the singlet-triplet t-J* model describing valence band

Heff = H0 + Ht + �
f�g�m,


Heff3 + �
f�g

Jfg�S� fS�g −
1

4
nfng� .

�24�

Three-centers interaction terms Heff3 are given by Eq. �A2�.
Expressions for H0 and Ht are as follows:

H0 = �
f
�1�




Xf

,
 + 2SXf

S,S + 2T�
M

Xf
TM,TM� ,

Ht = �
f�g,


�tfg
SSXf

S,
̄Xg

̄,S + tfg

TT�
�2Xf
T0,
̄ − Xf

T2
,
��
�2Xg

̄,T0

− Xg

,T2
� + tfg

ST2
�b�Xf
S,
̄�
�2Xg


̄,T0 − Xg

,T2
� + H.c.	� .

The resulting Hamiltonian �24� is the two-band generali-
zation of the t-J* model. Significant feature of effective
singlet-triplet model is the asymmetry for n- and p-type sys-
tems which is known experimentally. So, we can conclude
that for n-type systems the usual t-J* model takes place while
for p-type superconductors with complicated structure on the
top of the valence band the singlet-triplet transitions are im-
portant.

Contrary to the multiband p-d model’s parameters that
fall with distance rapidly, effective model parameters do not
decrease so fast. This happens due to weak distance depen-
dence of Wannier functions that determine coefficients28 � fg,
� fg, � fg, � fg, � fg which, in turn, determine distance depen-
dence of effective model parameters �15�.

To demonstrate the importance of hoppings to far coordi-
nation spheres �c.s.� in Fig. 9 we present the dispersion and
DOS in the t-J* model with parameters from Table IV. The
electron Green function �17� has been calculated beyond the
Hubbard-I approximation by a decoupling of static correla-
tion functions that includes short-range magnetic order:


Xf


Xg


�
��→np
2 + �
 /
�� 1

2Cfg, 
Xf


̄Xg


̄
�=Cfg. Here np is the
occupation factors of the single-particle state, Cfg=2
Sf

zSg
z�

are static spin correlation functions which were self-
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consistently calculated from the spin Green’s functions in the
2D t-J model.80 As one can easily see from Fig. 9, the dis-
persion with hoppings only to nearest neighbors �1 c.s.� and
to next-nearest neighbors �2 c.s., the so called t-t�-J* model�
is quantitatively different around �0, 0� point and qualita-
tively different around �� ,0� point from the dispersion with 3
c.s. �t-t�-t�-J* model� and more coordination spheres taken
into account.

Recent ARPES experiments81 show that the Fermi veloc-
ity vF=EF /kF is nearly constant for wide range of p-type
materials and doping independent within an experimental er-
ror of 20%. We have calculated this quantity in the t-J*

model with parameters from Table IV in the approximation
described above. In the doping range from x=0.03 to x
=0.15 our calculations give very weak doping dependence of
the Fermi velocity. Assuming the lattice constant equal to
4 Å we have vF varying from 1.6 to 2.0 eV Å−1. Taking into
account experimental error of 20% our results are very close
to the experimental one.

VI. CONCLUSION

The approach developed here assumes the multiband
Hamiltonian for the real crystal structure and its mapping
onto low-energy model. Parameters of the effective model
�15� are obtained directly from ab initio multiband model
parameters. The sets of parameters for the effective models
�23� and �24� are presented in Tables IV and V for p- and
n-type cuprates, correspondingly.

The effective low-energy model appears to be the
t-t�-t�-J* model �23� for Nd2CuO4 and the singlet-triplet
t-t�-t�-J* model �24� for La2CuO4. There is almost no differ-
ence in the band dispersion with addition of numerically
small hoppings to fourth, fifth, etc., neighbors. Summarizing,
we have shown that the hybrid LDA+GTB method incorpo-
rates the ab initio calculated parameters of the multiband p
-d model and the adequate treatment of strong electron cor-
relations.
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APPENDIX: EXPRESSIONS FOR THREE-CENTER
CORRELATED HOPPINGS IN EFFECTIVE MODELS

In the t-J* model �23� the three-center correlated hoppings
are given by

H3 =
tfm
0S tmg

0S

Ect
�Xf


0Xm

̄
Xg

0
̄ − Xf

0Xm


̄
̄Xg
0
� . �A1�

The three-center interaction terms Heff3 in the effective
Hamiltonian �24� are much more complicated than in the
t-J* model due to additional triplet and singlet-triplet contri-
butions:

Heff3 =
tfm
0S tmg

0S

Ect
H3

SS − v
tfm
0S tmg

ST

Ect
H3

ST + v2 tfm
STtmg

ST

Ect
H3

TT,

H3
SS = �Xf


SXm

̄
Xg

S
̄ − Xf

̄SXm



Xg
S
̄� ,

H3
ST =

1
�2

�Xf

T0Xm


̄
Xg
S
̄ − Xf


̄T0Xm


Xg

S
̄�

+ 2
�Xf

̄T2
̄Xm


̄
Xg
S
̄ + Xf


T2
Xm


Xg

S
̄�

+
1
�2

�Xf

SXm


̄
Xg
T0
̄ − Xf


̄SXm


Xg

T0
̄�

− 2
�Xf

SXm


̄
Xg
T2

 − Xf


̄SXm


Xg

T2

� ,

H3
TT =

1

2
�Xf


T0Xm

̄
Xg

T0
̄ − Xf

̄T0Xm



Xg
T0
̄�

− �Xf

̄T2
̄Xm


̄
Xg
T2

 + Xf


T2
Xm


Xg

T2

�

+
2


�2
�− Xf


T0Xm

̄
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 + Xf
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+
2
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�+ Xf
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FIG. 9. �Color online� Quasiparticle dispersion and correspond-
ing densities of states �DOS� in the t-J* model calculated for dif-
ferent number of taken into account coordination spheres �c.s.�.
Chemical potential shown by the straight horizontal line was calcu-
lated self-consistently assuming 15% holes doping.
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