
Avoided level crossings, diabolic points, and branch points in the complex plane
in an open double quantum dot

I. Rotter1,* and A. F. Sadreev2,3,4,†

1Max-Planck-Institut für Physik Komplexer Systeme, D-01187 Dresden, Germany
2Kirensky Institute of Physics, 660036, Krasnoyarsk, Russia

3Department of Physics and Measurement, Technology Linköping University, S-581 83 Linköping, Sweden
4Astafev Krasnoyarsk Pedagogical University, 660049 Krasnoyarsk, Russia

sReceived 27 July 2004; published 31 March 2005d

We study the spectrum of an open double quantum dot as a function of different system parameters in order
to receive information on the geometric phases of branch points in the complex planesBPCPd. We relate them
to the geometrical phases of the diabolic pointssDPsd of the corresponding closed system. The double dot
consists of two single dots and a wire connecting them. The two dots and the wire are represented by only a
single state each. The spectroscopic values follow from the eigenvalues and eigenfunctions of the Hamiltonian
describing the double dot system. They are real when the system is closed, and complex when the system is
opened by attaching leads to it. The discrete states as well as the narrow resonance states avoid crossing. The
DPs are points within the avoided level crossing scenario of discrete states. At the BPCP, width bifurcation
occurs. Here, different Riemann sheets evolve and the levels do not cross anymore. The BPCP are physically
meaningful. The DPs are unfolded into two BPCP with different chirality when the system is opened. The
geometric phase that arises by encircling the DP in the real plane, is different from the phase that appears by
encircling the BPCP. This is found to be true even for a weakly opened system and the two BPCP into which
the DP is unfolded.
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I. INTRODUCTION

The phenomenon of avoided level crossing is studied
theoretically as well as experimentally for many years. It is
called also Landau-Zener effect or anticrossing of levels.
This phenomenon is a general property of the discrete states
of a quantum system: the energies of the states will never
cross when the interaction between them is nonvanishing.
Instead, their wave functions are exchanged at the critical
value of a certain tuning parameter at which the avoided
crossing takes place. The reason for the avoided crossing of
two discrete levels follows from the expression for the two
eigenvaluese± of the Hamiltonian of the system

e± =
e1 + e2

2
±

1

2
Îse1 − e2d2 + 4v2, s1d

wheree1 ande2 are the diagonal elements of the symmetric
Hamiltonian matrix while thev are its nondiagonal ele-
ments. Thee1 and e2 are the energies of the noninteracting
states andv is their interaction. Since the square root con-
tains only positive values,e+ and e− are always different
from one another with the only exception of vanishing inter-
actionv ande1=e2.

It has been known for about 40 yearsf1g that the Hilbert
space is incomplete when two discrete levels cross. Suppose,
the identitye+=e− of the two eigenvalues of the Hamiltonian
is not caused by any selection rule or symmetry property of

the system and the eigenfunctionsf± are well defined also at
the crossing point. Then it follows that not only the eigen-
valuese± but also the eigenfunctionsf± of the Hamiltonian
of the system are the same at the point of coalesced eigen-
valuesf1g. That means, the two eigenfunctionsf± are lin-
early dependent and the spectrum is incomplete. This result
is called “defect” of the Hilbert space, and the point where
v=0 and the two eigenvaluese± coalesce is called “excep-
tional point.”

Another property related to avoided level crossings is the
Berry phasef2,3g. It appears when a diabolic pointsDPd is
encircled: the phases of the two wave functions are not re-
stored after one encircling, but are changed byp. Only the
second encircling restores the wave functions including their
phases. The Berry phase is of geometrical origin, and its
existence is proven in many different experimental studies,
e.g., Ref.f4g. It is proven experimentally also in a micro-
wave cavityf5g where the phase change is traced in encir-
cling a DP.

Equations1d shows immediately that, in contrast to two
discrete states, two resonance states may cross in the com-
plex plane also whenvÞ0. The main reason is that the
energies of resonance states are complex in contrast to the
energies of discrete states which are real. The imaginary part
of e1,2 is the widthsinverse finite lifetimed of the resonance
state when isolated. Furthermore, also the interactionv of
resonance states may be complex due to the contributions
originating from the coupling of the resonance states via the
continuumf6g. The crossing point is a branch point in the
complex planesBPCPd f6–10g. Here, not only the real parts
of e± coalesce but also their imaginary parts.

The resonance states are eigenstates of a nonhermitian
Hamilton operator that describes the quantum system when
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opened by embedding it into the continuum of input and
output channelsscontinuum of scattering wave functionsd.
The open quantum system is a subsystem of the total system
containing both discrete and scattering states. The Hamil-
tonian of the open system consists of the hermitian Hamilton
operator of the closed system with discrete states and the
nonhermitian coupling term between discrete and scattering
statesf6,11g. Due to this coupling term, the discrete states of
the closed system turn over into resonance states of the open
systemf12g. There is a 1↔1 correspondence between the
discrete states embedded in the continuum and the resonance
statessfor details see Ref.f6gd.

A difference between discrete and resonance states is the
normalization of the wave functions. While the wave func-
tions of the discrete states are orthonormalized in the stan-
dard manner, the wave functions of the resonance states are
biorthogonal f6,7,13,14g due to the nonhermiticity of the
Hamilton operator describing the open quantum system. The
components of the wave functions of resonance states di-
verge when a BPCP is approachedf6,10,13,14g. Therefore,
the wave functions of the two crossing resonance states can-
not be considered as linearly dependent in spite of the rela-
tion c1= ± ic2 f6,8,10,15g holding between them at the sin-
gular point. This relation is rather an expression for nonlinear
effects appearing at the BPCPf6,8,9g. Also the normalization
and orthogonality of the wave functions are not in contradic-
tion with one another at the BPCP since the difference be-
tween two infinitely large numbers may be zero or one
f6,8,10g. The spectrum is therefore complete also at the
BPCPf12g.

Physically, the BPCP separate the regime of avoided level
crossings from that without any crossingf6,10g. Characteris-
tic of the states in the regime of avoided level crossing is the
fact that their lifetimes are of comparable value. At the
BPCP, however, the widths bifurcatef6,8,10,13–16g. As a
consequence, the lifetimes of the states become different
from one another, and there is no common time at which the
states could cross or avoid crossing. Only in the projection
onto the real energy axis, the resonance states cross.

Recently, the topology of a BPCP is studied theoretically
as well as experimentallyf17–22g by encircling it. As a result
of these studies, the wave functions of the resonance states
are restored only after four encirclings.

Furthermore, approaching a BPCP by varying the cou-
pling strengthv between system and environment is studied
both theoretically and experimentallyf19,22,23g. The BPCP
has some chirality that is caused, obviously, by the fact that
c1→ ± ic2 holds when the BPCP is approachedf9g. Here, the
wave functions can be written, e.g., asfc1=Î1

2sc1± ic2d and
fc2=Î1

2sc27 ic1d, respectively. The relative sign between
the two wave functions determines the chirality.

The question arises whether or not there is a relation be-
tween the phases observed in encircling a BPCP and the
Berry phase appearing in encircling a DP. Although this
question is studied in different papersf21,24,25g, a unique
answer has not been found up to now. In Ref.f24g, the phase
in encircling the crossing point of two Gamow states differs
from the usual Berry phase by an additional term that van-
ishes with vanishing width of the Gamow state. In Ref.f25g,

the relationc1→ ± ic2 holding in the very neighborhood of a
BPCP, is used when encircling it. The unfolding of a DP into
two different BPCP with different sign of the coupling
strengthv between system and environment, as suggested in
Ref. f21g, will surely take place. According to this sugges-
tion, the encircling of the two different BPCP with different
sign of v is expected to give the Berry phasef21g. This is,
however, not the casef20,22g. The conclusion might be that
still other features play a role when the two BPCP with dif-
ferent sign ofv are encircled.

Double quantum dotssQDsd connected by a wire repre-
sent a very powerful example for a study of the relation
between DPs and BPCP since they involve parameters of
different type that can be controlled. There are not only pa-
rameters controlling the internal properties of the closed QD,
which may be used for a study of the Berry phase. There are
also parameters by means of which the coupling strength
between the closed dot and the attached leadssenvironment
of the dotd can be controlled. It is possible therefore to study
the unfolding of a DP into the two BPCP with different sign
of v when the system is embedded in the continuum.

In the following, we study the relation between DPs and
BPCP in detail by using a double QD as an example. The
basic equations and notations are given in Ref.f10g to which
we refer directly in the present paperhe.g., Eq. s9d f10g
means Eq.s9d of Ref. f10gj. Most important for the topic of
the present paper are the eigenvalues and eigenfunctions of
the hermitian Hamilton operator of the closed double dot
system as well as those of the nonhermitian effective Hamil-
ton operator that describes the system when opened by at-
taching leads to it. The surfaces in the four-manifold param-
eter space which define the BPCP, are shown in Sec. II. In
Sec. III, the neighborhood of a BPCP is studied by approach-
ing it by varying different parameters. The DPs and BPCP
are studied by encircling them in Sec. IV. According to the
analytical and numerical results, the DPs in the real plane
and the BPCP have a completely different topological struc-
ture.

In Secs. V and VI, the BPCP and the DPs are encircled in
the space of physical parameters. While the wave functions
of the closed system are restored after two cycles around the
DP, those of the open system are restored only after four
cycles around the BPCP. This difference is caused by the fact
that the eigenstates of the closed system are exchanged twice
during one cycle while those of the open system are ex-
changed only once during one cycle. The exchange occurs,
in any case, at an avoided level crossing appearing on the
path of encircling the singular point. In Sec. VII, the rel-
evance of the singular points for physical processes is dis-
cussed. At the BPCP, different Riemann sheets evolve. Their
influence on physical observables can be seen in a large
neighborhood.

II. THE BRANCH POINTS IN THE COMPLEX
ENERGY PLANE

We consider BPCP in the case of a double QD that con-
sists of two single dots coupled to each other by a wiresFig.
1d. TheS matrix theory for transmission through such a QD
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can be formulated by using the nonhermitian effective
Hamilton operator that appears in the framework of the
Feshbach projection operator techniquef11g. The effective
Hamilton operator for QDs in the tight-binding approach is
derived in Refs.f26,27g. It contains the spectroscopic prop-
erties of the closed QD as well as the coupling matrix ele-
ments between the dot and the two attached leads. In the
subspace of discrete states, the effective Hamilton operator
has the general form

Heff = HB + o
C=L,R

VBC
1

E+ − HC
VCB, s2d

whereHB is the Hamiltonian of the closed double dot system
and HC is the Hamiltonian of the leftsC=Ld and right sC
=Rd reservoir andE+=E+ i0. The matrix elements ofHeff are
calculated in the basis of the eigenstates ofHB, i.e., in a basis
where HB is diagonalizedf6,16g. The second term ofHeff
takes into account the coupling of the eigenstates ofHB via
the reservoirsscontinuum of incoming and outgoing wavesd
when the system is opened. The corresponding coupling ma-
trix elements are denoted byVBC andVCB, respectively.

The equations that describe the double QD shown in Fig.
1, can be found in Refs.f10,27g. The energy of the single-
channel transmission is related to the wave number byE
=−2 cosk f26g. Such a band gives rise tok-dependent cou-
pling matrix elements in the effective Hamiltonian. By thisk
dependence, our model differs from the standardS matrix
theory formulated in, e.g., Refs.f28,29g.

We restrict the consideration to the case with only one
state with energy«1 in each single dot, one modee propa-
gating in the wire, and one channelsscattering wave func-

tiond in each of the two attached leads. For illustration, we
considere as a linear function of the lengthL of the wire.
This dependence ofL may be replaced by a dependence on,
e.g., the diameter of the wire without any influence on the
discussion of the physical results. For simplicity, the cou-
pling of the two single dots to the internal wire, denoted by
u, is assumed to be the same for the two single dots. Also the
coupling strengthv between the whole double dot and the
attached leads is taken to be the same for both leads.

The two eigenvaluesz1,3 of Heff:

z1,3=
«1 + esLd − v2eik

2
7 ÎF, s3d

differ by 2ÎF where

F = Sv2eik

2
− D«D2

+ 2u2 = j2, s4d

fsee Eqs.s8d f10g ands16d f10gg. The point at whichF=0, is
a BPCPf6–8g. The two equations for the BPCP take the
following form:

D«sLcd =
1

2
vc

2 coskc = −
vc

2

4
Ec, s5d

2uc
2 =

vc
4

4
S1 −

Ec
2

4
D , s6d

which define a surface of branch points for the four param-
eters of the systemssee Fig. 2d. For the energy at which the
eigenvalueszk coalesce, the fixed-point Eq.s14d f10g can be
easily solved analytically. We obtain

Ec = Ek = esLcd = −
4D«sLcd

vc
2 s7d

and

uc
2 =

D«sLcd2

2
F 4

esLcd2 − 1G . s8d

These conditions reduce the number of physical parameters
from four to three,vc, uc, Lc, related to one other by two
equations.

We underline that the coalescence of two eigenvalues of
Heff at a certain energyE of the system does not mean that
also two poles of theS matrix coalesce at this energy. The
point is that the eigenvalueszk of Heff are energy dependent

FIG. 1. Two single state QDs are connected to the wire w of
length L with the coupling constantsu and to the continuum of
scattering wave functionss“reservoir”d with the coupling constants
v. The energy of the mode in the wire isesLd and those of the two
single dots are«1

R and«1
L, respectively. Mostly the two single dots

are assumed to be equal:«1
R=«1

L;«1.

FIG. 2. The surfaces of the
BPCP in the four-manifold param-
eter space D«sLd;s«1

−esLdd /2 ,u,v ,E, defined by Eqs.
s5d and s6d.
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functions. Only the solutions of the fixed-point equations,
Ek= uReszkduE=Ek

, and the widths defined by Gk

= u−2 ImszkduE=Ek
are numbers that correspondf30g to the

poles of theS matrix. In the general case, the two levels
whosesenergy dependentd eigenvalues coalesce at the energy
E=Ec, avoid crossing.

III. APPROACHING BRANCH POINTS
IN THE COMPLEX PLANE

Here, we are interested in the question how the eigenval-
ues zk, Eq. s3d, and eigenvectorsukd, Eq. s9d f10g, of the
effective HamiltonianHeff behave when we trace them along
a certain line that touches the surface of BPCP as it is shown
in Fig. 2sad. For a fixed energyE the BPCP surface reduces
to the BPCP line shown in Fig. 3. If we start atv=0 fand
u=uc, D«c;D«sLcdg, the path will cross the line of the
BPCP atv=vc shown in Fig. 3 by a full circle. At the BPCP
line, the absolute values of the eigenvector componentsuau,
ubu are singular and the phases of the componentsa=argsad,
b=argsbd are not determined. We can therefore not trace the
path when crossing the BPCP line. We can choose, however,
paths that cross the very neighborhood of the BPCP line.
Two such paths are shown in Fig. 3 by the dashed and dot-
dashed arrows.

The behavior of the eigenvalues and eigenvectors as a
function of the coupling strengthv along the two paths with
L=Lc±DL is shown in Figs. 4 and 5. The parameters are
chosen as «1=1, esLd=2−L /5, u=uc, E=Ec but L
=Lc±0.01. HereLc=1.4645, uc=1/4 and Ec=Î2 are the
critical physical parameters which define the BPCP line
shown in Fig. 3 provided thatv=vc=1.

Let us consider at first the caseL=Lc−DL shown in Fig. 4
whereDL=0.01 is small as compared toLc. The real parts of
z1 and z3 repel each other atv,1 and cross atv=vc8<vc
=1. The imaginary parts ofz1 and z3 are similar whenv
,1 but uImsz1d−Imsz3duÞ0 for all v, including the critical

value. In the other caseL=Lc+DL, shown in Fig. 5, the real
parts ofz1 and z3 achieve a minimal distance whenv=vc9
<vc but do not cross. The imaginary parts ofz1 and z3,
however, become equal at the critical value ofv. The last
scenario atv,1 is that of avoiding level crossing in the
complex plane, see Refs.f9,10,16g. Whenv.1, the widths
bifurcate in both cases. The wave functions are exchanged at
the critical value ofv in Fig. 5, but they are not exchanged in
Fig. 4.

The two figures show further that also the complex am-
plitudesa andb of the eigenvector components, defined by
Eqs. s9d f10g and s10d f10g, have characteristic features at
v=vc8 svc9d: uau@1, ubu@1, and the phasesa=argsad and
b=argsbd jump by, respectively, +p /4 when L=Lc+0.01
sFig. 5d and −p /4 whenL=Lc−0.01 sFig. 4d. Note that the
features observed in the amplitudesa andb at v<vc are the
more pronounced the smallerDL is. According tos9d f10g
and s10d f10g, uau→`, ubu→`, vc8svc9d→vc whenDL→0.

In Figs. 4 and 5, the phase jumps atL=Lc±DL are of
different sign when traced as a function of increasingv.
When traced, however, in one case as a function of increas-
ing v and in the other case as a function of decreasingv, the
two phase jumps add to ±p /2. This last case corresponds to
a connecting of the two paths withL=Lc±DL at v= ±`, i.e.,
an encircling of the BPCP along a path that is very different
from a circle. The encircling of a BPCP along different paths
will be discussed in the next two sections. Here, we mention
only that the phase jumpsp /2 appearing when crossing the
BPCP, are related to a change of the Riemann sheet.

Analog results are obtained when the evolution of the
eigenvalueszk and of the componentsa andb of the eigen-
functions of the effective HamiltonianHeff are considered as
a function of another parameter. The parameter may even be
the energyE of the system as shown in Fig. 6.

In Figs. 4–6, we traced the eigenvaluesz1 andz3, Eq. s3d,
and eigenfunctionsu1d and u3d, Eq. s9d f10g, of the effective
Hamiltonian Heff as a function of the coupling strengthv

FIG. 3. The line of the BPCP
in the three-manifold parameter
spaceL ,u,v ssolid lined. The three
arrows show paths as a function of
v sby keepingu and L constantd
which start atv=0, u=uc and dif-
ferent L. The path starting atL
=Lc sshown by an open circled
crosses the line of the BPCP atv
=vc sshown by a full circled. The
paths which start atL=Lc±DL
sshown by a star and a cross, re-
spectivelyd do not cross the line of
the BPCP.
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.0. Analog pictures will be obtained forv,0 since onlyv2

enters the basic equations.
Note further that, due to the strong energy dependence of

the eigenvalues, there are two BPCP as a function ofE: one
at Lc1

=1.4645,Ec1
=Î2 and the other one atLc2

=8.5355,
Ec2

=−Î2. The two levels repel in energy, and the widths of
the two states are comparable in value whenE.Î2 in the
first case andE,−Î2 in the second case. In this regime, the
two levels avoid crossing in the complex plane. The jumps in
the phasesa and b have different sign at the two different
BPCP when traced as a function of increasingE.

The two BPCP atLc1
=1.4645, Ec1

=Î2 and at Lc2
=8.5355, Ec2

=−Î2 are an illustration of the fact that the

BPCP do not coincide, generally, with a double pole of theS
matrix f30g, as stated in Sec. II. In both casesEc is different
from E1 and E3: Ec1

=Î2=1.41 andEc2
=−Î2=−1.41 while

E1,3=1.71 in the first case andE1,3=0.29 in the second case.
The difference betweenE1,3 andEc1

is within the uncertainty
determined by the widths of the two statessG1,3/2=0.35d.
The other BPCP is, however, very distant as compared to the
correspondingG1,3/2. The influence of this BPCP on physi-
cal observables is therefore very limited.

At the BPCP the phasesa ,b are not determined. Every
BPCP is a chiral state. The two BPCP corresponding tov
=1 andv=−1 have different chiralitysFigs. 4–6d. The chiral-

FIG. 4. The evolution of the
eigenvaluesz1 ssolid linesd andz3

sdashed linesd sa, bd and of the
components a= uaueia sdashed
linesd andb= ubueib ssolid linesd of
the eigenfunctionsu1d and u3d sc,
dd of the effective Hamiltonian
Heff as a function ofv for E=Ec

=Î2. The parametersu=uc=1/4,
L=Lc−0.01, Lc=1.4645 corre-
spond to the point shown in Fig. 3
at v=0 by a star. The evolution
corresponds to the path shown in
Fig. 3 by the dashed-dotted arrow.
«1=1, esLd=2−L /5. At the criti-
cal value ofv, uau@1, ubu@1 and
the phases jump by −p /4.

FIG. 5. The same as Fig. 4 but
L=Lc+0.01. At v=0, the evolu-
tion starts at the point shown in
Fig. 3 by a cross. The evolution
corresponds to the path shown in
Fig. 3 by the dashed arrow. At the
critical value of v, it is uau@1,
ubu@1 and the phases jump by
+p /4.
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ity of a BPCP has been studied experimentally by approach-
ing it in a microwave cavityf19,22g.

From Figs. 4–6, we conclude that the real and imaginary
parts of the components of the wave functions evolve differ-
ently with v and E, respectively, in the regime of avoided
level crossing. This result has an important influence on the
transmission through QDs. An example is shown in Fig. 4 of
Ref. f10g where the transmission is enhanced in the region
where the phasesa andb are approaching the phase jump. In
this regime, the widths of the states are comparable in value
and the states avoid crossing.

IV. ENCIRCLING BRANCH POINTS
IN THE COMPLEX PLANE AND DIABOLIC POINTS

IN THE REAL PLANE

Let us consider the two cases when
the real eigenvaluesE1

B andE3
B of HB coalesce and

the complex eigenvaluesz1 andz3 of Heff coalesce.
The first case is a DP while the second one is a BPCP.

Both points with coalesced eigenvalues are related to
avoided level crossings. According tos3d ands4d, the condi-
tion for a BPCP to appear isF=j2=0. The corresponding
condition for a DP ish=0 with f10g:

h2 = D«2 + 2u2. s9d

Discrete states of the double QD can cross therefore only
when the interaction between the single QDs and the internal
wire vanishes,u=0. In contrast to this, resonance states may
cross, according tos4d, also when the interaction between
them is different from zero. This holds for the direct internal
interactionu as well as for the external interactionv of the
resonance states via the continuum of scattering wave func-
tions which occurs due to their overlapping. The BPCP and
DPs have therefore a completely different physical meaning.

We will show now that the DPs and BPCP are completely
different also from a mathematical point of view. To this aim,

we study the topological structure related to them.
The fundamental topological properties of certain points

can be easily established by encircling them. Let us first
analyze the DP, at which twosor threed real eigenvalues of
the hermitian Hamilton operatorHB coalesce, independently
of any symmetry relation for the systemf3g. The properties
of these points are well known. They are related to avoided
crossings of discrete levels, and an encircling of them causes
the well-known Berry phasef2g.

The DP defined byh=0 is characterized, according tos9d,
by u=0, D«=0 in the real plane of the parametersu, D« of
the closed system. By encircling the DP according to

D« = h cosu, Î2u = h sinu, s10d

we obtain thatE1
B andE3

B vary as cosu and

u1l =
1
Î21 − sinu/2

Î2 cosu/2

− sinu/2
2, u3l =

1
Î21 cosu/2

Î2 sinu/2

cosu/2
2 . s11d

We see immediately that after each encircling of a DP, the
eigenvalues ofHB are restored and the eigenfunctions change
their sign. That means, the eigenstates of the closed system
are restored after two cycles. Equationss11d express the
well-known Berry phase in our model system.

Let us now consider the BPCP that appear in the open
system whenF=j2=0, Eq. s4d. They are given by Eqs.s5d
and s6d. Let us encircle the BPCP by definingF=X+ iY
=Rexpsifd, R= uFu. Substituting these expressions intos4d
gives

X = uFucosf = h2 +
v4

4
cos 2k − v2 coskD«,

FIG. 6. The evolution of the
eigenvaluesz1 ssolid linesd andz3

sdashed linesd sa, bd and of the
components a= uaueia sdashed
linesd andb= ubueib ssolid linesd of
the eigenfunctionsu1d and u3d sc,
dd of the effective Hamiltonian
Heff as a function ofE for v<vc

=1 sv,vcd. The other parameters
of the system satisfy the Eqs.s5d
and s6d: L=Lc1

=1.4645, u=uc

=1/4, «1=1, esLd=2−L /5. At the
critical value of E, it is uau@1,
ubu@1 and the phases jump by
−p /4.
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Y = uFusinf =
v4

4
sin 2k − v2 sinkD«. s12d

We see that by encircling a BPCP, the eigenvalueszk of the
effective Hamiltonian Heff behave asz1−z3,expsif /2d
while the components of the eigenstates behave asa,b
,exps−if /4d. This result is similar to that found in Ref.
f21g. It means that the eigenvalues of the effective Hamil-
tonian are restored after two cycles while the eigenstates are
restored only after four cycles. Thus the DPs and the BPCP
differ when encircled.

Now the following question arises. Can the encircling of
the DP give rise to a nontrivial phase behavior of the eigen-
states ofHeff? Froms10d and s12d we obtain

X = r2 +
v4

4
cos 2k − v2 cosk r cosu,

Y =
v4

4
sin 2k − v2 sink r cosu, s13d

where r =h. The mapping of the encircling of a DP in the
planeD«, Î2u onto the complex planeX,Y is shown in Fig.
7. Irrespective of the choice of the parametersE andv of the
open system, the encircling of the DP maps onto a straight
line in the X,Y plane. It does not cross the branch pointX
=0, Y=0. Hence, the encircling of the DP has no conse-
quence for the open system.

We will now consider the opposite case, i.e., we start from
the encircling of the BPCP in the complex planeX,Y. Some
simple algebra gives us, according tos13d, the following
mapping:

D« = −
v2

4
E −

Y

v2Î1 −
E2

4

,

2u2 = X +
v4

4
S1 −

E2

4
D −

Y2

v2S1 −
E2

4
D . s14d

This mapping simplifies by choosingE=0:

D« = −
Y

v2 ,

2u2 = X +
v4

4
−

Y2

v2 . s15d

From these expressions, we obtain the conditionRøv4/4 for
the encircling radius. The mappings15d is shown in Fig. 8 by
the dashed line for a fixed value of the coupling constantv.
The caseEÞ0 shifts the mapping to the planeD«, u but
never encircles the DP. Thus, irrespective of the choice ofv
andE, the encircling of the BPCP does not encircle the DP.

The conclusions from the two mappings shown in Figs. 7
and 8 are the following.

sid The encircling of a DP gives rise to a geometric phase
in the closed system, and does not cause any phase in the
open system.

sii d The encircling of the BPCP gives rise to a geometric
phase in the open system but has no effect in the closed
system.

V. ENCIRCLING A BPCP IN THE SPACE
OF PHYSICAL PARAMETERS

The double QD considered by us in the foregoing sections
consists of two identical single dots and a wire connecting
them, Fig. 1. It is characterized by four physical parameters.
The two parametersu and D«sLd are defined in the closed
system while the two parametersv and E are meaningful
only in the open system. Using two of these four parameters
for each encircling of a BPCP, we can realize six types of
encircling. There are still other couples of parameters as,
e.g.,«1 and L. They are, however, dependent from one an-
other at the BPCP, Eqs.s5d f10g and s5d, and can therefore
not be used for a meaningful encircling of a BPCP in our
simple model system.

In microwave transmission it is comparably easy to vary
the frequency and the length of the wire, i.e., to varyE and
D«sLd. We begin therefore with the encircling of the BPCP
by varyingE andL, i.e., by varying the squared frequency of
the microwave transmission and the length of the wire. The
other parameters belonging to the branch point surface
shown in Fig. 2, remain fixedsv=1,u=1/4d. In this case, the
encircling is given by

FIG. 7. The encircling of the diabolic pointu=0, D«=0, given
by Eq. s10d, sleftd and its mapping onto the planeX,Y srightd ac-
cording to Eq.s13d.

FIG. 8. The encircling of the branch pointX=0, Y=0, given by
Eq. s12d, sleftd and its mapping onto the planeD«, u srightd accord-
ing to Eq. s15d for E=0, v=0.5. Dashed line:R=v4/4, solid line:
R=v4/6. The point marked by an open circle corresponds to the
branch pointX=0, Y=0. The point marked by a full circle corre-
sponds to the DPD«=0, u=0.
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E = Ec + r sinu, L = Lc + r cosu, s16d

where Ec=Î2, Lc=5s1−1/Î2d=1.4645. This encircling
maps onto the complex planesX,Yd in accordance to Eq.
s12d:

X = Rcosf = sD«sLd + Ed2 +
E2

16
−

1

8
,

Y = Rsinf = − SD«sLd +
E

4
DÎ1 −

E2

4
, s17d

whereE andL are given bys16d. The mapping of the encir-
cling s16d onto the encirclings17d is shown in Fig. 9. Al-
though this mapping looks complicated, the encircling in the
planeL, E gives rise to the encircling in the complex plane
X, Y. The dependence of the eigenvalues and eigenfunctions,
Eqs. s3d and s9d f10g, respectively, of the effective Hamil-
tonianHeff on the encircling angleu is shown in Fig. 10.

In microwave transmission it is also possible to vary the
couplingv of the leads to the billiardf31,32g. The encircling
in the planeL, v is

L = Lc + r cosu, v = vc + r sinu. s18d

The mapping of this encircling onto the complex planeX, Y
is shown in Fig. 11. The circular encirclings18d gives rise to
a very anisotropic encircling in theX, Y plane, see the
dashed line in Fig. 11sbd. The encircling of the BPCP be-
comes more isotropic when an elliptical encircling in the
planeL, v is chosen, as shown by the solid lines in Fig. 11.
The eigenvalues and eigenfunctions of the effective Hamil-
tonianHeff, Eqs.s3d and s9d f10g, respectively, as a function
of the encircling angleu are shown in Fig. 12.

The eigenvalue pictures 10 and 12 show that in the space
of the parametersL, E as well asL, v the two states 1 and 3
avoid crossing in the complex plane only once during each
cycle: the avoided level crossing seen in the projection onto
the real energy axis and accompanied by a “crossing” in the
projection onto the imaginary width axisfmore exactly: by
Imsz1d=Imsz3dg, takes place only once within one cycle. An-
other time, a crossing appears in the projection onto the real
energy axis that is accompanied by Imsz1dÞ Imsz3d sno
crossing in the projection onto the imaginary width axisd.
This behavior proves once more that the crossing scenario
changes at the BPCP. As a consequence, the two states are
exchanged after one encircling and the eigenvalues are re-
stored only after the second cycle. The moduli of the com-
ponents of the wave functions have maxima in each cycle
and repeat their behavior after every second encircling. The
phases of the components of the eigenvectors are, however,
restored only after four encirclings.

These results agree with those discussed in Secs. III and
IV as well as in Refs.f17,21,22g. Above all, they agree with
those obtained experimentally in a microwave cavity
f18,20,22g. That means, the BPCP are of fourth order. It is
clear from Eqs.s16d ands18d and from all the figures shown
that the encircling of a BPCP in the opposite direction cor-
responds to the encircling of a BPCP with the opposite

FIG. 9. Mapping of the encircling of the BPCPsopen circled in

the plane E=Î2+r sinu, L=1.4645+r cosu onto the planeX
=Rcosf, Y=Rsinf given by Eq. s17d for r =0.25. Ec=Î2, Lc

=1.4645,v=vc=1, u=uc=1/4, «1=1, esLd=2−L /5.

FIG. 10. The evolution of
Reszkd sad and Imszkd sbd of the
two eigenvaluesz1 ssolid linesd
andz3 sdashed linesd of the effec-
tive Hamiltonian Heff as a func-
tion of the angleu. The corre-
sponding evolution of the
componentsa= uaueia ssolid linesd
andb= ubueib sdashed linesd of the
two eigenvectorsu1d andu3d sc, dd.
The encircling is around the
BPCP in the planeE, L given by
s16d. The parameters are the same
as in Fig. 9. The eigenvalueszk

and the moduliuau, ubu are restored
after two cycles while the phases
a, b are restored after four cycles.
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chirality. Also this result is in agreement with the experimen-
tal onesf18,20,22g.

Similar pictures are obtained when other parameters are
varied such as the energy«1 of the single dots or the cou-
pling strengthu of the two single dots to the internal wire.
An exception is only the case when the two parameters con-
sidered are related to one another at the BPCP, as it is the
case in our simple model for, e.g., the energy«1 of the single
dot and the lengthL, Eqs.s5d f10g and s5d.

The encircling of the two BPCP withv= ±1 sandE=Ec1
=Î2, L=Lc1

=1.4645,u=uv=1/4d corresponds to an encir-
cling of two BPCP that have different chirality. Therefore,
the phase changes compensate each other. As a consequence
the wave functions, including their phases, are restored after
every encircling. The situation is another one when the two
BPCP are encircled in opposite directions as discussed in
Refs.f20,22g. Since the two BPCP are of the same type, the
number of encirclings of a BPCP is simply doubled in such a
procedure. Accordingly, the phases of the wave functions are
restored already after two encirclings of both BPCP. A simi-
lar picture follows when the two BPCPEc2

=−Î2, Lc2

=8.5355 atv= ±1 are encircled.

VI. ENCIRCLING A DP IN THE SPACE
OF PHYSICAL PARAMETERS

We consider now the evolution of the eigenvaluesEk
B, Eq.

s4d f10g, and eigenvectorsukl, Eq. s6d f10g, of the Hamil-
tonian HB by encircling of a DP in the space of physical
parameters of the closed double QD. The parameters varied
are the lengthL of the wire and the internal coupling strength
u. The other parametersfesLd=2−L /5 for the energy of the
wire and«1=1 for the energy of the single dotsg are the same
as in Fig. 4, butv=0. The circular encircling of the DP is

L = 5 + 10r cosu, u =
r

Î2
sinu s19d

according tos10d with r =h, while an elliptic encircling is
given, e.g., by

L = 5 + 0.25 cosu, u = 0.1 sinu. s20d

For the circular encircling, the difference between the eigen-
values does not depend onu according tos9d, and the evo-
lution of the eigenvectors ofHB is given bys11d. The results
of the elliptic encirclings20d are shown in Fig. 13.

FIG. 11. Mapping of the circu-
lar encircling of the BPCPsopen
circled in the plane L=Lc

+0.5 cosu, v=vc+0.5 sinu
sdashed lined and of the elliptic
encircling L=Lc+2 cosu, v=vc

+0.5 sinu ssolid lined onto the
plane X=Rcosf, Y=Rsinf for
r =0.5. It is v=vc=1, E=Ec=Î2,
L=Lc=1.4645,u=uc=1/4, «1=1,
esLd=2−L /5.

FIG. 12. The evolution of
Reszkd sad and Imszkd sbd of the
two eigenvaluesz1 ssolid linesd
andz3 sdashed linesd of the effec-
tive Hamiltonian Heff as a func-
tion of the angleu. The corre-
sponding evolution of the
componentsa= uaueia ssolid linesd
andb= ubueib sdashed linesd of the
two eigenvectorsu1d andu3d sc, dd.
The elliptical encircling is around
the BPCP in the planeL, v shown
in Fig. 11 by the solid lines. The
parameters are the same as in Fig.
11. The eigenvalueszk and the
moduli uau, ubu are restored after
two cycles while the phasesa, b
are restored after four cycles.
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According to s9d and s4d f10g and s5d f10g, all three ei-
genvaluesEk

B coalesce at the DPsh=0d when the two single
QDs are identical. For comparison, we show therefore in Fig.
14 the results obtained for the elliptical encirclings20d when
only two eigenvalues coalesce. Here, the two single dots are
different from one another, i.e.,«1

L of the left dot is different
from «1

R of the right dot.
Common to all types of encircling is the following. Dur-

ing each cycle ofu, the internal interactionu vanishes twice.
Each time, the two states avoid crossing and the two wave
functionsu1l and u3l are exchanged according tos6d f10g. As
a consequence, the two eigenvalues are restored after each
cycle, and the eigenvectors are restored only after two
cycles. This result is in full correspondence to those obtained
by Berry f2g and with Eq.s11d for the circular encircling. It
differs, however, from the results obtained from an encircling
of the BPCPsSec. Vd where an avoided level crossing ap-
pears only once in each cycle and the two eigenvalues are
restored therefore only after two encircling cycles.

In Fig. 13, some internal symmetry of the system is in-
volved in the results which arises from the identity of the two
single dots. We underline, however, that the system as a
whole does not show any symmetry due to the wire that
connects the two single dots in an unsymmetrical manner.
The results shown in Fig. 13 should be comparedsqualita-
tivelyd with the experimental results obtained in the case of
three crossing states of a rectangular microwave billiardf5g.

In these data, a phase change was observed that arises, ac-
cording to the authors of Ref.f5g, from an additional mirror
symmetry in the system. Meanwhile, this symmetry is ex-
plained as being due to off-diagonal Berry phasesf33g. It
seems to be that the phase changes observed in the two dif-
ferent cases are of the same origin.

We study now the influence of extending the function
space by including scattering states. In Figs. 15 and 16, we
show the evolution of the eigenvalueszk and of the compo-
nentsa and b of the eigenvectors of the effective Hamil-
tonianHeff by using the parameterss19d ands20d for, respec-
tively, circular and elliptic encircling of a DP but allow for a
nonvanishing coupling strengthv to the continuum. The real
parts Reszkd of the eigenvalues of the effective Hamiltonian
Heff show the same behavior as the eigenvaluesEk

B of the
HamiltonianHB, see Eqs.s4d f10g, s10d for the circular en-
circling, and Fig. 13sad for the elliptical encircling of the DP.
The similarity is the larger the smallerv is. The widths of the
two resonance states, which do not have any counterpart in
the closed system, are strongly dependent onu. The wave
functions of the two resonance states reflect the biorthogo-
nality relationsszkuzld=dk,l. As can be seen from the two
Figs. 15 and 16, the amplitudes ofa and b are no longer
restricted by the standard normalization conditionucku2=1.
The wave functions are normalized tosckd2=1, and ucku2
may be larger than one. In our calculations,uau=1, ubu=0 sor
uau=0, ubu=1d only when the path passesu=0. The structure

FIG. 13. The evolution of the two eigenvaluesE1,3
B , Eq.s4d f10g,

sad and eigenvectorscmskd, m, k=1,3, Eq.s6d f10g, sb, cd of the
HamiltonianHB of the closed system for the elliptic encirclingL
=5+0.25 cosu, u=0.1 sinu. E1 is shown insad by the solid line and
E3 by the dashed line. The componentsc1s1d, c3s1d are shown by
the dashed lines insb, cd, and the componentsc1s3d, c3s3d by the
solid lines. The eigenvalues are restored after every cycle while the
eigenvectors are restored after two cycles.

FIG. 14. The same as Fig. 13 but for a double QD consisting of
two different single QDs with«1

L=1, «1
R=0, and a wire of lengthL.

E2 is shown insad by the solid line,E3 by the dashed line. Insb, cd,
the componentscmskd, m=2,3,k=1,2,3 areshown. Dotted-dashed
line: k=1, solid line:k=2 and dashed line:k=3. The eigenvalues
are restored after every cycle while the eigenvectors are restored
after two cycles.
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of the bumps that occurs in the amplitudes of the wave func-
tions sFig. 16d is a typical interference effect. It is caused by
the fact that there are altogether three states two of which
interfere. The phases of the eigenfunctions ofHeff are re-
stored after every cycle of circular or elliptical encircling
whenvÞ0 snot shownd. A Berry phase does not appear.

The difference between the two cases withv=0 and v
Þ0 can be seen best whenu→0 is passed on the path of
encircling. Whenv=0, the phases of both wave functions are
changed after one encircling, i.e., the Berry phase appears.
When howevervÞ0, such a phase change does not occur
since the system has the additional freedom to change the

widths of the states, see Figs. 15 and 16. The Berry phase
vanishes therefore whenvÞ0 but the widths depend
strongly on the angle: in every cycle, the widths of the two
states are twice equal to one another and differ twice by the
maximum possible value from one another. The last case
corresponds to width bifurcation appearing whenu=0 sand
v /u→`d is passed. The width bifurcation seen atu=0 shows
that the DP is unfolded into two BPCPs, with different
chirality whenvÞ0 sandv /u→`d. Encircling the DP does
therefore not influence the phases of the eigenvectors of the
effective Hamiltonian. This result corresponds to the map-
ping shown in Fig. 7.

FIG. 15. The evolution of the
eigenvaluesz1,3 sa, bd, and of the
componentsa andb of the eigen-
vectors sc, dd of the effective
Hamiltonian for the circular encir-
cling of the DP given by Eq.s19d.
v=0.2, «1=1, esLd=2−L /5, E
=Î2, r =1. The eigenvalues and
eigenvectors are restored after ev-
ery cycle.

FIG. 16. The same as Fig. 15,
but the BP is encircled by the el-
liptic path L=5+0.25 cosu, u
=0.1 sinu as in Figs. 13 and 14.
The eigenvalues and eigenvectors
are restored after every cycle.
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VII. CONCLUDING REMARKS

In the double QD considered by us, the eigenvalues of
two states coalesce at the DPs in the real plane as well as at
the BPCP. At the DPs, the interactionu vanishes and the
system decomposes into three independent parts. At the
BPCP, however, the system as a whole is well defined with
nonvanishing interactionu between the two single dots and
the internal wire and a nonvanishing couplingv of the
double dot to the two attached leads. The BPCP are physi-
cally relevant.

The avoided crossings of discrete states can analytically
continued to those of resonance statesf8g. The DPs charac-
terize true crossings of discrete states while the BPCP are
related to true crossings of resonance states. Although both,
DPs and BPCP, are related to avoided level crossings, they
are different from one another. The DPs are within the
avoided crossing scenario of discrete states. The BPCP, how-
ever, are singular points that separate the avoided level cross-
ing scenario from that with different Riemann sheets and
without level crossings.

WhenF=0, the eigenvaluesz1 andz3 of Heff coalesce and
the eigenvectorsu1d and u3d have some nontrivial properties
f10g. According tos9d f10g and Figs. 4–6, the components of
the scomplexd eigenvectorsu1d and u3d diverge whenF→0
sfor the open quantum system withvÞ0 and uÞ0d. The
biorthogonality relationszkuzld is therefore fulfilled also in
approachingF=0, since the difference between two infi-
nitely large numbers may be 0 or 1. Furtherf10g:

u1d = ± i u3d, whenF = j2 = 0. s21d

The last relation does not mean that the two wave functions
u1d and u3d are linearly dependent at the BPCP since their
components are infinitely large at this singular point. It holds
not only for the special system considered here. It holds gen-
erally for the eigenvectors of a nonhermitian Hamilton op-
erator f6,8,21g and expresses nonlinear effects in the open
quantum system, see later. Another concrete example are the
eigenfunctions of the effective Hamiltonian that describes
atoms under the influence of a laser fieldf15g. The function
space can thereforenot be considered as incomplete at the
BPCP. At these points, different Riemann sheets evolve
which are caused by the width bifurcation taking place at the
BPCP.

The relations21d means that the states at the BPCP are
chiral states. Letu1d→ ± i u3d and u3d→ 7 i u1d according to
s21d when the BPCP is approached. Then the wave functions
at the BPCP may be written, e.g., asc+= 1

2hu1d± i u3dj; c−

= 1
2hu3d7 i u1dj. The c± are wave functions of chiral states,

where the sign ± determines the chirality.
Another difference between BPCP and DPs is related to

nonlinear effects caused by the overlapping of resonance
states. In order to show this, let us rewrite the effective
Hamiltonians2d as

Heff = Heff
0 + W= Heff

0 + 10 0 f

0 0 0

f 0 0
2 , s22d

whereHeff
0 is the diagonal part ofHeff and the nondiagonal

matrix elementsf given by s10d f10g describe the coupling

between the two resonance states 1 and 3 due to their over-
lapping. Then, the Schrödinger equation with the Hamil-
tonianHeff

0 reads

fHeff
0 − zlguld = − 10 0 f

0 0 0

f 0 0
2uld ; − Wuld. s23d

The eigenfunctions ofHeff, given in Eq.s9d f10g, are bior-
thogonal,Heffukd=zkukd with sku ld;kk* u ll=dk,l. From these
relations follows:

kkukl = Rekkukl, Ak ; kkukl ù 1,

kkull = i Imkkull = − kl ukl, uBk
l u ; ukkullu ù 0, l Þ k.

s24d

Using these equations, the right-hand sidesrhsd of Eq. s23d
readsf6,8g:

Wuld = Wull = o
k=1,3

kkuWull o
m=1,3

kkumluml

= W1lsAu1l + iBu3ld + W3lsAu3l − iBu1ld s25d

with Wkl;kkuWull, k=1,3. This relation givesuld→ ± i u jd, l
Þ j , in approaching the BPCP due toAl = →`, Bl

j = →`
what agrees withs21d. Furthermore, we see that nonlinear
terms, caused by the interactionf, appear in the Schrödinger
Eq. s23d as soon asAÞ1 and BÞ0, i.e., as soon as the
resonance states overlap. This means, nonlinear terms in the
Schrödinger equation appear due to the overlapping of reso-
nance states. They are large in the neighborhood of BPCP.
An analogous effect does not occur in the neighborhood of
DPs.

The nonlinear effects can be seen in the line shape of
resonances. Knowing the eigenvalues and eigenfunctions of
Heff, theS matrix can be written down. When two eigenval-
ues coalesce, it readsf9,34g:

S= 1 + 4i
Imszdd
E − zd

− 4
Imszdd2

sE − zdd2 , s26d

where zd;z1=z3 and the smooth background is neglected.
Equations26d shows that the nonlinear terms ins23d influ-
ence directly the line shape of overlapping resonances. The
extreme case Eq.s26d occurs when the eigenvalues of two
resonance states coalesce at the energyE=Ek= uReszkduE=Ek

,
k=1,3, i.e., when theS matrix has a double pole atE=E1
=E3 f30g. The interference between the two resonance states
1 and 3 leads to an interference minimumszerod at the en-
ergy E=Reszdd. At this energy, an isolated resonance of
Breit-Wigner shape has its maximumspeakd since there are
no neighbored resonances and the third term on the rhs of
s26d does not appear. Examples for line shapes with overlap-
ping resonances are considered in, e.g., Refs.f6,15,34g.

The results represented in Figs. 15 and 16 need to be
compared with those obtained in Ref.f24g for the phase ob-
tained from encircling the crossing point of Gamow states.
This phase consists of two parts: one part is the well-known
expression for the Berry phase of two interfering bound
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states that are adiabatically transported in parameter space
around the point of the accidental degeneracy of two eigen-
values. The other part is proportional to the width of the state
and vanishes when the width vanishes.

The difference between this result and those represented
in the present paper consists, above all, in the difference
between a Gamow state and a discrete state embedded in the
continuum. Every Gamow state has its own continuum part.
Embedding of the Gamow states into a common continuum
of scattering statesf35g is not considered in Ref.f24g.

In contrast to this, the different resonance states consid-
ered by us in the present paper are discrete states embedded
in one and the same environmentscommon continuum of
scattering wave functionsd. The function space is enlarged,
indeed, in our calculations by opening the system: it consists
not only of discrete states but contains also the common
scattering statessfor details see Refs.f6,16gd. The wave func-
tions of discrete states and scattering states form each a sub-
space of the total function space according to the Feshbach
unified theory of nuclear reactionsf11g. The discrete states
characteristic of one of the subspaces, pass into resonance
states when they are embedded in the other subspace, i.e., the
common continuum of scattering statesf12g. The wave func-
tions of the resonance states contain contributions from both
the discrete states and the common continuous statesf6,16g.
When the system is opened at the DP and encircled, one of
the two resonance states passes back, withu→0, into the
function space of discrete states by loosing its width while
the other one becomes a short-lived resonance state.

Thus, there is no contradiction of our results to those ob-
tained in Ref.f24g. Obviously, the Berry phase appears al-
ways when the considered states are not embedded into a
common continuum and do not interact via the environment.
In this sense, the Berry phase is related to the incompleteness
of the function space. The Berry phase vanishes by embed-
ding the system into the common continuum of scattering
states due to which the system turns over into a subsystem
and the discrete states become resonance statesf12g, see
Sec. VI.

The results discussed in the present paper coincide with
the unfolding of the DP into two different BPCP when the
system is opened, as suggested in Ref.f21g. The two BPCP
appear due to the two different signs of the coupling strength
v between system and environment and have, as shown in
Sec. III, different chirality. The difference between the encir-
cling of the DP atv=0 and the same encircling, butvÞ0, is
that the left and right wave functions are equal to one another
in the first case while they are different from one another in
the second case, see Sec. VI. As a consequence, the Berry
phase appears in the first case and not in the second case
where the function space is enlarged by including the con-
tinuum of scattering wave functions. Moreover, it has been
shown in Fig. 7 that the encircling of a DP does not cause a
geometric phase in the open system.

In the avoided level crossing scenario, the phases of the
wave functions evolve as a function ofv. This means that the
real and imaginary parts of the eigenfunctions of the Hamil-
tonianHeff decouple to a great deal. Both parts evolve more
or less independently from one another up to the BPCP. As
has been shown in Ref.f10g, this fact influences physical
observables as, e.g., the transmission through a double QD.

All the results discussed in this paper show that the BPCP
are physically meaningful since they influence observables.
They are responsible for the transition from one scenario to
another one that both are qualitatively different from one
another: one scenario is characterized by level repulsion and
similar decay widths of the states while the other one results
from width bifurcation and is accompanied by some level
clusteringf6,10g. The DPs do not have such a physical mean-
ing. The different nature of DPs and BPCP corresponds with
the fact that the topological structure of DPs and BPCP is
different from one anothersFigs. 7 and 8d.
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