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We study the spectrum of an open double quantum dot as a function of different system parameters in order
to receive information on the geometric phases of branch points in the complex(BRG®. We relate them
to the geometrical phases of the diabolic poifi9 of the corresponding closed system. The double dot
consists of two single dots and a wire connecting them. The two dots and the wire are represented by only a
single state each. The spectroscopic values follow from the eigenvalues and eigenfunctions of the Hamiltonian
describing the double dot system. They are real when the system is closed, and complex when the system is
opened by attaching leads to it. The discrete states as well as the narrow resonance states avoid crossing. The
DPs are points within the avoided level crossing scenario of discrete states. At the BPCP, width bifurcation
occurs. Here, different Riemann sheets evolve and the levels do not cross anymore. The BPCP are physically
meaningful. The DPs are unfolded into two BPCP with different chirality when the system is opened. The
geometric phase that arises by encircling the DP in the real plane, is different from the phase that appears by
encircling the BPCP. This is found to be true even for a weakly opened system and the two BPCP into which
the DP is unfolded.
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[. INTRODUCTION the system and the eigenfunctions are well defined also at

. L . the crossing point. Then it follows that not only the eigen-
The phenomenon of avoided level crossing is studieq g ese, but also the eigenfunctions, of the Hamiltonian

theoretically as well as experimentally for many years. It isyf e system are the same at the point of coalesced eigen-

called also Landau-Zener effect or anticrossing of levelsygjyes[1]. That means, the two eigenfunctiogs are lin-

This phenomenon is a general property of the discrete statesrly dependent and the spectrum is incomplete. This result

of a quantum system: the energies of the states will neveg called “defect” of the Hilbert space, and the point where
cross when the interaction between them is nonvanishing,=0 and the two eigenvalues coalesce is called “excep-

Instead, their wave functions are exchanged at the criticaional point.”
value of a certain tuning parameter at which the avoided Another property related to avoided level crossings is the
crossing takes place. The reason for the avoided crossing &erry phasdg2,3]. It appears when a diabolic poitDP) is
two discrete levels follows from the expression for the twoencircled: the phases of the two wave functions are not re-
eigenvalues, of the Hamiltonian of the system stored after one encircling, but are changedsyOnly the
second encircling restores the wave functions including their
gt 1 —m—— phases. The Berry phase is of geometrical origin, and its
&=", % EV(el‘ez) + 407, (1) existence is proven in many different experimental studies,
e.g., Ref.[4]. It is proven experimentally also in a micro-
wheree; ande, are the diagonal elements of the symmetricwave cavity[5] where the phase change is traced in encir-
Hamiltonian matrix while thew are its nondiagonal ele- Ccling a DP. , _ _
ments. Thee; ande, are the energies of the noninteracting _EQuation(1) shows immediately that, in contrast to two
states andv is their interaction. Since the square root con-diSCrete states, two resonance states may cross in the com-
tains only positive valuese, and e_ are always different plex plane also wherw# 0. The main reason is that the

from one another with the only exception of vanishing mter_energ!es of resonance states are complex in contrast to the
actionw ande. =e energies of discrete states which are real. The imaginary part
1~ ©2-

. of e, , is the width(inverse finite lifetimé of the resonance
It has been known for about 40 yedf that the Hilbert state when isolated. Furthermore, also the interactioof

space is _incomplete when two discrete levels Cross. SUF_’posl‘:e'sonance states may be complex due to the contributions
the identitye, =e. of the two eigenvalues of the Hamiltonian ;qinating from the coupling of the resonance states via the
is not caused by any selection rule or symmetry property o ontinuum[6]. The crossing point is a branch point in the
complex plangBPCP [6-10]. Here, not only the real parts
of e, coalesce but also their imaginary parts.
*Email address: rotter@mpipks-dresden.mpg.de The resonance states are eigenstates of a nonhermitian
"Email address: almsa@ifm.liu.se; almas@tnp.krasn.ru Hamilton operator that describes the quantum system when
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opened by embedding it into the continuum of input andthe relationy;, — =i, holding in the very neighborhood of a
output channelgcontinuum of scattering wave functions BPCP, is used when encircling it. The unfolding of a DP into
The open quantum system is a subsystem of the total systetwo different BPCP with different sign of the coupling
containing both discrete and scattering states. The Hamiktrengthy between system and environment, as suggested in
tonian of the open system consists of the hermitian HamiltorRef. [21], will surely take place. According to this sugges-
operator of the closed system with discrete states and thgon, the encircling of the two different BPCP with different
nonhermitian coupling term between discrete and scatteringign of v is expected to give the Berry phag&l]. This is,
stateq6,11]. Due to this coupling term, the discrete states ofhowever, not the cag®0,22. The conclusion might be that
the closed system turn over into resonance states of the opetill other features play a role when the two BPCP with dif-
system[12]. There is a -1 correspondence between the ferent sign ofv are encircled.
discrete states embedded in the continuum and the resonanceDouble quantum dotéQDs) connected by a wire repre-
states(for details see Ref6]). sent a very powerful example for a study of the relation
A difference between discrete and resonance states is thtween DPs and BPCP since they involve parameters of
normalization of the wave functions. While the wave func-different type that can be controlled. There are not only pa-
tions of the discrete states are orthonormalized in the starrameters controlling the internal properties of the closed QD,
dard manner, the wave functions of the resonance states afghich may be used for a study of the Berry phase. There are
biorthogonal[6,7,13,14 due to the nonhermiticity of the also parameters by means of which the coupling strength
Hamilton operator describing the open quantum system. Theetween the closed dot and the attached l¢adsironment
components of the wave functions of resonance states dif the doj can be controlled. It is possible therefore to study
verge when a BPCP is approaché10,13,14. Therefore, the unfolding of a DP into the two BPCP with different sign
the wave functions of the two crossing resonance states canf v when the system is embedded in the continuum.
not be considered as linearly dependent in spite of the rela- In the following, we study the relation between DPs and
tion ¢y ==*iyy, [6,8,10,15 holding between them at the sin- BPCP in detail by using a double QD as an example. The
gular point. This relation is rather an expression for nonlineabasic equations and notations are given in IREJ] to which
effects appearing at the BPC#®8,9]. Also the normalization we refer directly in the present papée.g., Eq.(9) [10]
and orthogonality of the wave functions are not in contradic-means Eq(9) of Ref.[10]}. Most important for the topic of
tion with one another at the BPCP since the difference bethe present paper are the eigenvalues and eigenfunctions of
tween two infinitely large numbers may be zero or onethe hermitian Hamilton operator of the closed double dot
[6,8,10. The spectrum is therefore complete also at thesystem as well as those of the nonhermitian effective Hamil-
BPCP[12]. ton operator that describes the system when opened by at-
Physically, the BPCP separate the regime of avoided levehching leads to it. The surfaces in the four-manifold param-
crossings from that without any crossif@10]. Characteris- eter space which define the BPCP, are shown in Sec. Il. In
tic of the states in the regime of avoided level crossing is theSec. 111, the neighborhood of a BPCP is studied by approach-
fact that their lifetimes are of comparable value. At theing it by varying different parameters. The DPs and BPCP
BPCP, however, the widths bifurcaé,8,10,13-16 As a  are studied by encircling them in Sec. IV. According to the
consequence, the lifetimes of the states become differerinalytical and numerical results, the DPs in the real plane
from one another, and there is no common time at which theand the BPCP have a completely different topological struc-
states could cross or avoid crossing. Only in the projectionure.
onto the real energy axis, the resonance states cross. In Secs. V and VI, the BPCP and the DPs are encircled in
Recently, the topology of a BPCP is studied theoreticallythe space of physical parameters. While the wave functions
as well as experimentalfyl 7-22 by encircling it. As a result  of the closed system are restored after two cycles around the
of these studies, the wave functions of the resonance stat@P, those of the open system are restored only after four
are restored only after four encirclings. cycles around the BPCP. This difference is caused by the fact
Furthermore, approaching a BPCP by varying the couthat the eigenstates of the closed system are exchanged twice
pling strengthv between system and environment is studiedduring one cycle while those of the open system are ex-
both theoretically and experimentall$9,22,23. The BPCP  changed only once during one cycle. The exchange occurs,
has some chirality that is caused, obviously, by the fact thain any case, at an avoided level crossing appearing on the
Y — %y, holds when the BPCP is approach®d Here, the  path of encircling the singular point. In Sec. VII, the rel-
wave functions can be written, e.g., ¢§1=\E(<ﬂ1ii¢z) and evance of the singular points for physical processes is dis-
%f\%(dfziilﬂl), respectively. The relative sign between cussed. At the BPCP, different Riemann sheets evolve. Their
the two wave functions determines the chirality. mfl_uence on physical observables can be seen in a large
The question arises whether or not there is a relation be?€ighborhood.
tween the phases observed in encircling a BPCP and the
Berry phase appearing in encircling a DP. Although this
guestion is studied in different papdd1,24,23, a unique
answer has not been found up to now. In R2#], the phase
in encircling the crossing point of two Gamow states differs We consider BPCP in the case of a double QD that con-
from the usual Berry phase by an additional term that vansists of two single dots coupled to each other by a \iig.
ishes with vanishing width of the Gamow state. In R@6], 1). The S matrix theory for transmission through such a QD

Il. THE BRANCH POINTS IN THE COMPLEX
ENERGY PLANE

036227-2



AVOIDED LEVEL CROSSINGS, DIABOLIC POINTS,. PHYSICAL REVIEW E 71, 036227(2005

tion) in each of the two attached leads. For illustration, we
considere as a linear function of the length of the wire.
This dependence df may be replaced by a dependence on,
e.g., the diameter of the wire without any influence on the
discussion of the physical results. For simplicity, the cou-
pling of the two single dots to the internal wire, denoted by
u, is assumed to be the same for the two single dots. Also the
FIG. 1. Two single state QDs are connected to the wire w ofcOUPling strength, between the whole double dot and the
length L with the coupling constants and to the continuum of aftached leads is taken to be the same for both leads.

scattering wave function&reservoir”) with the coupling constants The two eigenvalues, 3 of Heg:
v. The energy of the mode in the wire é6l.) and those of the two 2 ik
. R h i . g1 t+e(ll)—ve" _ —
single dots ares7 and ey, respectively. Mostly the two single dots 2,3=————— T \F, (3)
are assumed to be equaf=ci=e¢. ' 2

reservoir
reservoir

differ by 2\F where
can be formulated by using the nonhermitian effective 5 ik )
Hamilton operator that appears in the framework of the F:(i—Ag> + 2= & (4)
Feshbach projection operator technidud]. The effective ’

Hamilton operator for QDs in the tight-binding approach is . T,
derived in Refs[26,27). It contains the spectroscopic prop- L5€€ EAs(8) [10] and(16) [10]]. The point at whictF=0, is

erties of the closed QD as well as the coupling matrix ele? BP(_:P[B_S]'_ The two equations for the BPCP take the
ments between the dot and the two attached leads. In tH‘gIIowmg form:

subspace of discrete states, the effective Hamilton operator 1 02
has the general form Ae(Ly) = Evg cosk.= - ZCEC, (5)
Her=Hg+ X VBC%VCBa 2 vd E?
cs=Lr E —Hc 2u§:f<l—zc), (6)

whereHg is the Hamiltonian of the closed double dot systemyynich define a surface of branch points for the four param-
andHc is the Hamiltonian of the leftC=L) and right(C  eters of the systerfsee Fig. 2 For the energy at which the
=R) reservoir andE"=E+i0. The matrix elements dfe are  gjgenvalueg, coalesce, the fixed-point EGL4) [10] can be
calculated in the basis of the eigenstatesigfi.e., in a basis easily solved analytically. We obtain
where Hg is diagonalized[6,16]. The second term o
takes into account the coupling of the eigenstateblgiia E.=E.=e(l)=- 4Ae(Ly) 7)
the reservoirgcontinuum of incoming and outgoing wayes ¢T Tk ¢ v2
when the system is opened. The corresponding coupling ma-
trix elements are denoted Mg and Vg, respectively.
The equations that describe the double QD shown in Fig. , As(L)? 4
1, can be found in Ref§10,27. The energy of the single- Uz = > L2 -
channel transmission is related to the wave numbefEby elle
=-2 cosk [26]. Such a band gives rise tedependent cou- These conditions reduce the number of physical parameters
pling matrix elements in the effective Hamiltonian. By tkis  from four to threew,, u., L., related to one other by two
dependence, our model differs from the stand@rthatrix  equations.
theory formulated in, e.g., Reff28,29. We underline that the coalescence of two eigenvalues of
We restrict the consideration to the case with only oneH . at a certain energ§ of the system does not mean that
state with energy; in each single dot, one modepropa- also two poles of thés matrix coalesce at this energy. The
gating in the wire, and one channgcattering wave func- point is that the eigenvalueg of H.; are energy dependent

(8

FIG. 2. The surfaces of the
BPCP in the four-manifold param-

eter space Ae(L)=(gq
—-¢€(L))/2,u,v,E, defined by Egs.
(5) and(6).

(b)
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FIG. 3. The line of the BPCP
in the three-manifold parameter
spaced_,u,v (solid line). The three
arrows show paths as a function of
v (by keepingu and L constank
which start atv=0, u=u, and dif-
ferent L. The path starting at
=L, (shown by an open circle
crosses the line of the BPCP at
=v. (shown by a full circlg. The
paths which start at.=L.+AL
(shown by a star and a cross, re-
spectively do not cross the line of
the BPCP.

functions. Only the solutions of the fixed-point equations,value. In the other cade=L.+AL, shown in Fig. 5, the real
Ex= Re(z)|e- o and the widths defined byI parts ofz; andz; achieve a minimal distance wherFvc

= -21m(z)|e-= g, are numbers that correspod0] to the  =uv. but do not cross. The imaginary parts of and z,
poles of theS matrix. In the general case, the two levels however, become equal at the critical valuevofThe last
whose(energy dependeneigenvalues coalesce at the energyscenario atv <1 is that of avoiding level crossing in the

E=E,, avoid crossing. complex plane, see Ref9,10,16. Whenv > 1, the widths
bifurcate in both cases. The wave functions are exchanged at
IIl. APPROACHING BRANCH POINTS the critical value ob in Fig. 5, but they are not exchanged in
IN THE COMPLEX PLANE Fig. 4.

The two figures show further that also the complex am-
Here, we are interested in the question how the eigenvablitudesa andb of the eigenvector components, defined by
uesz, Eq. (3), and eigenvectorgk), Eq. (9) [10], of the  Egs. (9) [10] and (10) [10], have characteristic features at
effective HamiltoniarH behave when we trace them along v=v. (ve): |a|>1, |b|>1, and the phases=arga) and
a certain line that touches the surface of BPCP as it is showg=argb) jump by, respectively, #/4 when L=L.+0.01
in Fig. 2(@). For a fixed energ¥ the BPCP surface reduces (Fig. 5 and -m/4 whenL=L.-0.01(Fig. 4). Note that the
to the BPCP line shown in Fig. 3. If we start @0 [and  features observed in the amphtucmandb atv=uv, are the
u=u., Aec=Ae(Ly)], the path will cross the line of the more pronounced the small&L is. According to(9) [10]
BPCP atv=v. shown in Fig. 3 by a full circle. At the BPCP  and(10) [10], |a| -, |b| =%, v (ver) — v When AL — 0.
line, the absolute values of the eigenvector compongits In Figs. 4 and 5, the phase jumps latL AL are of
|b| are singular and the phases of the componertarga),  different sign when traced as a function of increasing
B=argb) are not determined. We can therefore not trace thevhen traced, however, in one case as a function of increas-
path when crossing the BPCP line. We can choose, howeveng v and in the other case as a function of decreasirie
paths that cross the very neighborhood of the BPCP linetwo phase jumps add tom#/ 2. This last case corresponds to
Two such paths are shown in Fig. 3 by the dashed and dot connecting of the two paths with=L .+ AL atv==*x, i.e.,
dashed arrows. an encircling of the BPCP along a path that is very different
The behavior of the eigenvalues and eigenvectors as from a circle. The encircling of a BPCP along different paths
function of the coupling strength along the two paths with  will be discussed in the next two sections. Here, we mention
L=L AL is shown in Figs. 4 and 5. The parameters areonly that the phase jumps/2 appearing when crossing the
chosen ase;=1, e(L)=2-L/5, u=u, E=E; but L BPCP, are related to a change of the Riemann sheet.

=L.x0.01. HerelL.=1.4645,u.=1/4 and E.= V2 are the Analog results are obtained when the evolution of the
critical physical parameters which deflne the BPCP lineeigenvalueg, and of the componenis andb of the eigen-
shown in Fig. 3 provided that=v.=1. functions of the effective HamiltoniaH are considered as

Let us consider at first the cakeL.—AL shown in Fig. 4  a function of another parameter. The parameter may even be
whereAL=0.01 is small as compared kQ. The real parts of the energ)E of the system as shown in Fig. 6.
z, and z; repel each other at<<1 and cross abt=v. =~uv, In Figs. 4—6, we traced the eigenvalugsandz;, Eq.(3),
=1. The imaginary parts of; and z; are similar whenv and eigenfunctionl) and[3), Eq. (9) [10], of the effective
<1 but |Im(z;)—Im(z3)| # 0 for all v, including the critical HamiltonianHg; as a function of the coupling strength
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FIG. 4. The evolution of the
eigenvalueg; (solid lineg andz;
(dashed lines (a, b and of the
components a=|alé* (dashed
lines) andb=|b|e'# (solid lines of
the eigenfunctionsgl) and |3) (c,
d) of the effective Hamiltonian
He @s a function ofy for E=E,
=\2. The parameters=u,=1/4,
L=L.-0.01, L.=1.4645 corre-
spond to the point shown in Fig. 3
at v=0 by a star. The evolution
corresponds to the path shown in
Fig. 3 by the dashed-dotted arrow.
e1=1, e(L)=2-L/5. At the criti-
cal value ofv, |a|>1, |b|>1 and
the phases jump by=/4.

>0. Analog pictures will be obtained far<0 since onlyy?>  BPCP do not coincide, generally, with a double pole of$he

enters the basic equations. matrix [30], as stated in Sec. Il. In both casggis different
Note further that, due to the strong energy dependence dfom E, and Eg: ECI:@2:1_41 andECZ:—\s’Z:—lAl while

the eigenvalues, there are two BPCP as a functioB:aine g ,=1.71 in the first case arf, ;=0.29 in the second case.

at L, =1.4645,E; =\2 and the other one &;,=8.5355,  The difference betweel, ;andE, is within the uncertainty

Ec,=—\2. The two levels repel in energy, and the widths of yetermined by the widths of the two statdy; 5/2=0.35.

the two states are comparable in value witen 2 in the  The other BPCP is, however, very distant as compared to the

first case andE <-+2 in the second case. In this regime, the corresponding”, 5/2. The influence of this BPCP on physi-
two levels avoid crossing in the complex plane. The jumps in.5| gpservables is therefore very limited.

téﬁcp;lasﬁw ?nd ﬂdhave (f:i|ﬁert¢nt s:‘g_n at tr;eE]two different At the BPCP the phases, 8 are not determined. Every
when traced as a function of Increastng BPCP is a chiral state. The two BPCP corresponding to

The two BPJ‘(—:P atL01:.1.4645., Be,=v2 and atle, —_ andv=-1 have different chiralityFigs. 4—6. The chiral-
=8.5355,E,,=-V2 are an illustration of the fact that the

3 7

: FIG. 5. The same as Fig. 4 but
Y L=L,+0.01. At v=0, the evolu-

AY
0.5 -15 ; : . .
0 05 ] 15 > 0 05 1 15 5 thn starts at the point shown. in
(a) v (b) v Fig. 3 by a cross. The evolution

corresponds to the path shown in

Fig. 3 by the dashed arrow. At the
critical value ofv, it is |a|>1,
|b|>1 and the phases jump by
= éﬂ_ +7/4.
< E
- 3
0 0.5 1 1.5 2
(c) v (d) v
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g e E 0Bl o eigenvalueg; (solid lineg andz;
-7 - 7 (dashed lines (a, b). and of the
T -0.8 e T : components a=|aj¢* (dashed
- - lines) andb=|b|€'# (solid lines of
0.5 -1 . :
o 05 1 15 5 0 05 ] 15 o the elgenfunctlon$l) and !3) (9,
@) E () E d) of the effective Hamiltonian
A Heft a@s a function ofE for v=uv,
0.6 =1 (v<v). The other parameters
0db of the system satisfy the Eqe5)
3 -7 - and (6): L=L=1.4645, u=uc
= £ 02 : ( : =1/4,e,=1, e(L)=2-L/5. At the
2 a “ L o
- 2 " -~ critical value of E, it is |a|>1,
o , 3 o] I IR R ‘b|>l and the phases Jump by
R -7l 4.
1 T _0.2AW
0 - -0.4 ‘
0 0.5 1 1.5 2 0 0.5 1 1.5 2
() E (d) E

ity of a BPCP has been studied experimentally by approachwe study the topological structure related to them.

ing it in a microwave cavity19,22. The fundamental topological properties of certain points
From Figs. 4-6, we conclude that the real and imaginarcan be easily established by encircling them. Let us first

parts of the components of the wave functions evolve differanalyze the DP, at which tw(or threg real eigenvalues of

ently with v and E, respectively, in the regime of avoided the hermitian Hamilton operatdig coalesce, independently

level crossing. This result has an important influence on thef any symmetry relation for the systef]. The properties

transmission through QDs. An example is shown in Fig. 4 ofof these points are well known. They are related to avoided

Ref. [10] where the transmission is enhanced in the regiorcrossings of discrete levels, and an encircling of them causes

where the phasasandg are approaching the phase jump. In the well-known Berry phasg].

this regime, the widths of the states are comparable in value The DP defined by;=0 is characterized, according (®),

and the states avoid crossing. by u=0, Ae=0 in the real plane of the parametersAe of

the closed system. By encircling the DP according to
IV. ENCIRCLING BRANCH POINTS

IN THE COMPLEX PLANE AND DIABOLIC POINTS B =
IN THE REAL PLANE Ae=ncosf, V2u=zsing, (10

Let us consider the two cases when we obtain thaES andEE vary as cos) and
the real eigenvalueS; andE; of Hg coalesce and

the complex eigenvalueg andz; of Hyi coalesce.

The first case is a DP while the second one is a BPCP. 1 ;sm 012 1 ’EOSH/Z
Both points with coalesced eigenvalues are related to =% V2cosdi2 |, [3)=—F|V2sinai2 |. (11)
avoided level crossings. According t8) and(4), the condi- Yo\ Zsingr2 A cos6/2

tion for a BPCP to appear i6=¢£>=0. The corresponding

condition for a DP isp=0 with [10]: We see immediately that after each encircling of a DP, the
7= A&’ + 2u°. (9)  eigenvalues oHg are restored and the eigenfunctions change
their sign. That means, the eigenstates of the closed system
re restored after two cycles. Equatiofisl) express the
ell-known Berry phase in our model system.

Discrete states of the double QD can cross therefore onl
when the interaction between the single QDs and the intern
wire vanishesy=0. In contrast to this, resonance states may Let us now consider the BPCP that appear in the open
cross, according td¢4), also when the interaction between system wherF=¢=0, Eq.(4). They are given by Eqg5)
them is different from zero. This holds for the direct internal ;4 (6). Let us enci’rcle the BPCP by defining=X+iY

interactionu as well as for the external interactienof the =Rexpi$), R=|F|. Substituting these expressions irt)
resonance states via the continuum of scattering wave func.. ’ '
. : : ) ives
tions which occurs due to their overlapping. The BPCP an
DPs have therefore a completely different physical meaning. 4
We will show now that the DPs and BPCP are completely X = |Flcosp= 77+ v cos X — v2 coskAe
4 1

different also from a mathematical point of view. To this aim,
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7= S N S It
2 X Y . Pt ~~\
u mapping mapping o ,’/ \\
! ° \
* ’ 1 BP II
= \
i) )T AN
r X \\ ’
DP BP . ,/
Ag Y . \\EE’/
-0.05 0 0.05
Ae

FIG. 8. The encircling of the branch poikt=0, Y=0, given by
Eq. (12), (left) and its mapping onto the plares, u (right) accord-
ing to Eq.(15) for E=0, v=0.5. Dashed lineR=v%/4, solid line:
R=v%/6. The point marked by an open circle corresponds to the
branch pointX=0, Y=0. The point marked by a full circle corre-
sponds to the DRAe=0, u=0.

FIG. 7. The encircling of the diabolic poini=0, Ae=0, given
by Eqg. (10), (left) and its mapping onto the plang Y (right) ac-
cording to Eq.(13).

4
Y:|F|sin¢:vzsin X - v?sinkAs. (12)
4 2
We see that by encircling a BPCP, the eigenvalresf the =X+ - Y_2

effective HamiltonianH.; behave asz;—z;~expli¢/2) 4 v

while the components of the eigenstates behaveads

~exp(-i¢/4). This result is similar to that found in Ref. o ihese expressions, we obtain the condierw?/4 for
[21]. It means that the eigenvalues of the effective Hamil-y,o encircling radius. The mappirds) is shown in Fig. 8 by
tonian are restored after two cycles while the eigenstates atfo gashed line for a fixed value of the coupling constant
restored only after four cycles. Thus the DPs and the BPCHp o caseE+0 shifts the mapping to the planks, u but
differ when encircled. _ _ o never encircles the DP. Thus, irrespective of the choice of
Now the following question arises. Can the encircling of 304 E the encircling of the BPCP does not encircle the DP.

the DP give rise to a nontrivial phase behavior of the eigen- 1ha conclusions from the two mappings shown in Figs. 7
states ofH.4? From(10) and(12) we obtain and 8 are the following.

v (i) The encircling of a DP gives rise to a geometric phase
X=r?+ " cos X —v? cosk r cosé, in the closed system, and does not cause any phase in the
open system.

(i) The encircling of the BPCP gives rise to a geometric
phase in the open system but has no effect in the closed
system.

(15

4
Y=Uzsin & -v?sinkr cosé, (13)
wherer=7. The mapping of the encircling of a DP in the
planeAe, V2u onto the complex plan,Y is shown in Fig.
7. Irrespective of the choice of the parametéranduv of the
open system, the encircling of the DP maps onto a straight

line in the X, Y plane. It does not cross the branch poit The double QD considered by us in the foregoing sections
=0, Y=0. Hence, the encircling of the DP has no conseqnsists of two identical single dots and a wire connecting
quence for the open system. , , them, Fig. 1. It is characterized by four physical parameters.

We WI|| now consider the'opposne case, i.e., we start fromrpa wwo parameters and As(L) are defined in the closed
the encircling of the BPCP in the pomplex plaxiey. So_me system while the two parametersand E are meaningful
simple algebra gives us, according ®3), the following oy in the open system. Using two of these four parameters
mapping: for each encircling of a BPCP, we can realize six types of
encircling. There are still other couples of parameters as,
e.g.,e; andL. They are, however, dependent from one an-
other at the BPCP, Eq¢5) [10] and (5), and can therefore
not be used for a meaningful encircling of a BPCP in our
simple model system.

V. ENCIRCLING A BPCP IN THE SPACE
OF PHYSICAL PARAMETERS

2 Y

U

_E_—,

4 > 1 E2
"N

Ag=~-

4

2= X+ =
4

(1__ _

E2
4

In microwave transmission it is comparably easy to vary
the frequency and the length of the wire, i.e., to verand
Ae(L). We begin therefore with the encircling of the BPCP
by varyingE andL, i.e., by varying the squared frequency of
the microwave transmission and the length of the wire. The
other parameters belonging to the branch point surface
shown in Fig. 2, remain fixetb=1,u=1/4). In this case, the
encircling is given by
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FIG. 9. Mapping of the encircling of the BPGBpen circl¢ in
the plane E=\2+rsing, L=1.46454 cosd onto the planeX
=Rcos¢, Y=Rsin¢ given by Eq.(17) for r=0.25. E;.=2, L,
=1.4645,v=v.=1,u=u,=1/4,&,=1, e(L)=2-L/5.

E=E.+rsiné,

L=L.+r cosé, (16)

where E.=12, L.=5(1-1/y2)=1.4645. This encircling
maps onto the complex plan&,Y) in accordance to Eq.
(12):

2

E2 1
X=R =(Ae(L) +E)?+ — - =
cos¢ = (Ae(L) +E) T

Y—Rsinqb——(A (L)+E> 1—E—2
- TT\SEH TN T

whereE andL are given by(16). The mapping of the encir-
cling (16) onto the encircling(17) is shown in Fig. 9. Al-

(17)

PHYSICAL REVIEW E71, 036227(2005

L=Lc,+rcosf, v=uv.+rsiné. (18
The mapping of this encircling onto the complex plateY
is shown in Fig. 11. The circular encircli@8) gives rise to
a very anisotropic encircling in th&, Y plane, see the
dashed line in Fig. 1b). The encircling of the BPCP be-
comes more isotropic when an elliptical encircling in the
planeL, v is chosen, as shown by the solid lines in Fig. 11.
The eigenvalues and eigenfunctions of the effective Hamil-
tonianHg, Egs.(3) and(9) [10], respectively, as a function
of the encircling angl® are shown in Fig. 12.

The eigenvalue pictures 10 and 12 show that in the space
of the parameterk, E as well asL, v the two states 1 and 3
avoid crossing in the complex plane only once during each
cycle: the avoided level crossing seen in the projection onto
the real energy axis and accompanied by a “crossing” in the
projection onto the imaginary width axjsnore exactly: by
Im(z;) =Im(zz)], takes place only once within one cycle. An-
other time, a crossing appears in the projection onto the real
energy axis that is accompanied by () #Im(z;) (no
crossing in the projection onto the imaginary width axis
This behavior proves once more that the crossing scenario
changes at the BPCP. As a consequence, the two states are
exchanged after one encircling and the eigenvalues are re-
stored only after the second cycle. The moduli of the com-
ponents of the wave functions have maxima in each cycle
and repeat their behavior after every second encircling. The
phases of the components of the eigenvectors are, however,

though this mapping looks complicated, the encircling in therestored only after four encirclings.

planelL, E gives rise to the encircling in the complex plane

These results agree with those discussed in Secs. Il and

X, Y. The dependence of the eigenvalues and eigenfunctiony as well as in Refs[17,21,23. Above all, they agree with
Egs. (3) and (9) [10], respectively, of the effective Hamil- those obtained experimentally in a microwave cavity

tonianHgg on the encircling angl® is shown in Fig. 10.

[18,20,23. That means, the BPCP are of fourth order. It is

In microwave transmission it is also possible to vary theclear from Eqs(16) and(18) and from all the figures shown
couplingv of the leads to the billiarfi31,32. The encircling
in the planeL, v is

that the encircling of a BPCP in the opposite direction cor-
responds to the encircling of a BPCP with the opposite

FIG. 10. The -evolution of
Re(z) () and Imz) (b) of the
two eigenvaluesz; (solid lineg
and z; (dashed linesof the effec-
tive HamiltonianHg as a func-
tion of the angled. The corre-

sponding evolution of the
componentsa=|al¢* (solid lines
andb=|b|e'# (dashed lingsof the

two eigenvectorl) and|3) (c, d).
The encircling is around the
BPCP in the plan&, L given by
(16). The parameters are the same
as in Fig. 9. The eigenvaluex
and the modul|al, |b| are restored
after two cycles while the phases
a, B are restored after four cycles.

o/n
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_ FIG. 11. Mapping of the circu-

lar encircling of the BPCRopen
circle) in the plane L=L,
+0.5 cos, v=v.+0.5sing
(dashed ling and of the elliptic
encircling L=L.+2 cosf, v=v.
+0.5sinf (solid line) onto the
SRR : plane X=Rcos¢, Y=Rsin¢ for
r=0.5. It isv=v,=1, E=E.=V2,

05 04 L=L,=1.4645u=u,=1/4, &,=1,
(a) e(L)=2-L/5.
chirality. Also this result is in agreement with the experimen- VI. ENCIRCLING A DP IN THE SPACE
tal ones[18,20,23. OF PHYSICAL PARAMETERS

Similar pictures are obtained when other parameters are

varied such as the energy of the single dots or the cou- (4) [10], and eigenvector&), Eq. (6) [10], of the Hamil-

pling strengthu of the two single dots to the internal wire. tonian Ha by encircling of a DP in the space of phvsical
An exception is only the case when the two parameters con- B Oy 9 P pny

sidered are related to one another at the BPCP, as it is tr%arameters of the cIos.ed double .QD' The parameters varied

case in our simple model for, e.g., the enesgyf the single are the length. of the wire and the internal coupling strength

dot and the length., Egs. (5) ’[1(')] .ajmd 5) u. The other parametefg(L)=2-L/5 for the energy of the
The encircling o;‘ the two BPCP with=+1 (andE=E wire ande;=1 for the energy of the single ddtare the same

_\2, L=L, =1.4645,u=u,=1/4) corresponds to an erit:ir as in Fig. 4, bub=0. The circular encircling of the DP is

B e O A=Wy T -

cling of two BPCP that have different chirality. Therefore, r.

the phase changes compensate each other. As a consequence L=5+10cosd, u= " sing (19)
the wave functions, including their phases, are restored after ‘

every encircling. The situation is another one when the twaccording to(10) with r=7, while an elliptic encircling is
BPCP are encircled in opposite directions as discussed igiven, e.g., by

Refs.[20,22. Since the two BPCP are of the same type, the .

number of encirclings of a BPCP is simply doubled in such a L=5+0.25co9, u=0.1sino. (20
procedure. Accordingly, the phases of the wave functions argor the circular encircling, the difference between the eigen-
restored already after two encirclings of both BPQP. A simi-yalues does not depend @haccording to(9), and the evo-

lar picture follows when the two BPCRE.=-v2, L, lution of the eigenvectors dfi is given by(11). The results
=8.5355 aw=+1 are encircled. of the elliptic encircling(20) are shown in Fig. 13.

We consider now the evolution of the eigenvallh‘ﬁs Eq.

FIG. 12. The evolution of
Rez) (a) and In(z) (b) of the
two eigenvaluesz; (solid lines
and z; (dashed linesof the effec-
tive HamiltonianHg as a func-
tion of the angled. The corre-
sponding  evolution of the
componentsa=|alé“ (solid lineg
andb=|b|€# (dashed lingsof the
two eigenvectorl) and|3) (c, d).
The elliptical encircling is around
the BPCP in the plank, v shown
in Fig. 11 by the solid lines. The
parameters are the same as in Fig.
11. The eigenvalueg, and the
moduli |a|, |b| are restored after
two cycles while the phases, B
are restored after four cycles.

o/n, B/t
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o/n o/n

FIG. 13. The evolution of the two eigenvalug$ ., Eq. (4) [10], FIG. 14. The same as Fig. 13 but for a double QD consisting of
(a) and eigenvectorgi(k), m, k=1,3, Eq.(6) [10], (b, O of the  two different single QDs witls;=1, £7¥=0, and a wire of length..
Hamiltonian Hg of the closed system for the elliptic encircling  E; is shown in(a) by the solid line E; by the dashed line. Itb, 0),
=5+0.25 co®, u=0.1 sing. E; is shown in(a) by the solid line and  the componentg,(k), m=2,3,k=1,2,3 areshown. Dotted-dashed
E; by the dashed line. The componemtg1), y»(1) are shown by line: k=1, solid line:k=2 and dashed line&k=3. The eigenvalues
the dashed lines ib, ¢, and the components;(3), ¥5(3) by the  are restored after every cycle while the eigenvectors are restored
solid lines. The eigenvalues are restored after every cycle while thafter two cycles.
eigenvectors are restored after two cycles.

According to(9) and (4) [10] and (5) [10], all three ei- In these data, a phase change was observed that arises, ac-
genvaluesEE coalesce at the DPy=0) when the two single cording to the authors of Ref5], from an additional mirror
QDs are identical. For comparison, we show therefore in FigSymmetry in the system. Meanwhile, this symmetry is ex-
14 the results obtained for the elliptical encircli(@p) when  plained as being due to off-diagonal Berry phafg&3]. It
only two eigenvalues coalesce. Here, the two single dots argeems to be that the phase changes observed in the two dif-
different from one another, i.es; of the left dot is different ~ ferent cases are of the same origin.
from &R of the right dot. We study now the influence of extending the function

Common to all types of encircling is the following. Dur- space by including scattering states. In Figs. 15 and 16, we
ing each cycle of, the internal interaction vanishes twice. Show the evolution of the eigenvalugsand of the compo-
Each time, the two states avoid crossing and the two wavBentsa and b of the eigenvectors of the effective Hamil-
functions|1) and|3) are exchanged according ¢6) [10]. As  tonianHeq by using the paramete($9) and(20) for, respec-

a consequence, the two eigenvalues are restored after eaé¥ely, circular and elliptic encircling of a DP but allow for a
cycle, and the eigenvectors are restored only after twdonvanishing coupling strengthto the continuum. The real
cycles. This result is in full correspondence to those obtaine@arts Réz,) of the eigenvalues of the effective Hamiltonian
by Berry[2] and with Eq.(11) for the circular encircling. It Her Show the same behavior as the eigenvalERsf the
differs, however, from the results obtained from an encirclingHamiltonianHg, see Egs(4) [10], (10) for the circular en-

of the BPCP(Sec. ) where an avoided level crossing ap- circling, and Fig. 18 for the elliptical encircling of the DP.
pears only once in each cycle and the two eigenvalues arEhe similarity is the larger the smalleris. The widths of the
restored therefore only after two encircling cycles. two resonance states, which do not have any counterpart in

In Fig. 13, some internal symmetry of the system is in-the closed system, are strongly dependentdoifhe wave
volved in the results which arises from the identity of the twofunctions of the two resonance states reflect the biorthogo-
single dots. We underline, however, that the system as Bality relations(z|z)=8,. As can be seen from the two
whole does not show any symmetry due to the wire thafigs. 15 and 16, the amplitudes afand b are no longer
connects the two single dots in an unsymmetrical mannerestricted by the standard normalization conditigi?=1.

The results shown in Fig. 13 should be compafedalita- The wave functions are normalized tg)?=1, and |¢/?
tively) with the experimental results obtained in the case ofmay be larger than one. In our calculatiof@=1, |b|=0 (or
three crossing states of a rectangular microwave billigid  |a/=0, |b|=1) only when the path passes-0. The structure
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-1 ~0.03_ N componentsa andb of the eigen-
0 0.5 1 15 2 0 0.5 1 1.5 2 vectors (c, d) of the effective
(@) o/ (b) om Hamiltonian for the circular encir-
1.5 0.012 cling of the DP given by Eq(19).
0.01 v=9.2, e1=1, e(L)=2-L/5, E
) =y2, r=1. The eigenvalues and
0.008 eigenvectors are restored after ev-
— _ ery cycle.
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of the bumps that occurs in the amplitudes of the wave funcwidths of the states, see Figs. 15 and 16. The Berry phase
tions (Fig. 16 is a typical interference effect. It is caused by vanishes therefore whew #0 but the widths depend
the fact that there are altogether three states two of whicktrongly on the angle: in every cycle, the widths of the two
interfere. The phases of the eigenfunctionsHy are re-  states are twice equal to one another and differ twice by the
stored after every cycle of circular or elliptical encircling maximum possible value from one another. The last case
whenuv # 0 (not shown. A Berry phase does not appear. corresponds to width bifurcation appearing when0 (and

The difference between the two cases withO andv v/u— ) is passed. The width bifurcation seeruatO shows
#0 can be seen best when—0 is passed on the path of that the DP is unfolded into two BPCPs, with different
encircling. Wherv =0, the phases of both wave functions arechirality whenv # 0 (andv/u— ). Encircling the DP does
changed after one encircling, i.e., the Berry phase appeartherefore not influence the phases of the eigenvectors of the
When howevew # 0, such a phase change does not occueffective Hamiltonian. This result corresponds to the map-
since the system has the additional freedom to change thging shown in Fig. 7.

~ ~ 0 l|
ré \ / \ |
12t/ NS AN -0.005 ¥
7 \ 7/ \ 1y
—~ 1177 \/ v -~ -0.01 I
2V < N 2 -7 Mo
N N _0015f _--"— -
E ’ S
o E
0.9 -0.02 // \
1
0.8 -0.025(/ ‘\
0.7 ~0.03 FIG. 16. The same as Fig. 15,
0 0.5 1 1.5 2 0 0.5 1 15 2 but the BP is encircled by the el-
(a) o/m (b) o/n liptic path L=5+0.25co®, u
=0.1sinf as in Figs. 13 and 14.
The eigenvalues and eigenvectors
1.04 0.25
are restored after every cycle.
0.2
w1.02 = 0.15
0.1
1 V \} 0.05
0
0 0.5 1 1.5 2 0 0.5 1 1.5 2
(© o (d) o/
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VIl. CONCLUDING REMARKS between the two resonance states 1 and 3 due to their over-

In the double QD considered by us, the eigenvalues Oppping.OThen, the Schrodinger equation with the Hamil-
two states coalesce at the DPs in the real plane as well as @hianHe; reads
the BPCP. At the DPs, the interactianvanishes and the

system decomposes into three independent parts. At the 0 0 0f
BPCP, however, the system as a whole is well defined with [Her—2z]h=-{0 0 O |[)=-W). (23
nonvanishing interaction between the two single dots and f 0O

the internal wire and a nonvanishing couplingof the ) ) ) . )
double dot to the two attached leads. The BPCP are physithe eigenfunctions oHc, given in Eq.(9) [10], are bior-
cally relevant. thogonal, Hek) =7/k) with (k|1)=(K'[l)=¢&,. From these
The avoided crossings of discrete states can analyticallyelations follows:
continued to those of resonance stdi@&s The DPs charac-
terize true crossings of discrete states while the BPCP are (k) = Relklk), A= (k) =1,
related to true crossings of resonance states. Although both,
DPs and BPCP, are related to avoided level crossings, they  (k|I} =i Im(K|l) = = (I|k), |BL| = [(Kl)] =0, | # k.
are different from one another. The DPs are within the (24)
avoided crossing scenario of discrete states. The BPCP, how-
ever, are singular points that separate the avoided level crosgsing these equations, the right-hand sfdes) of Eq. (23)
ing scenario from that with different Riemann sheets andeads[6,8]:
without level crossings.
WhenF =0, the eigenvalues andz; of He coalesce and WID=WIIy= > (kWD > (kmp|m)
the eigenvector§l) and|3) have some nontrivial properties k=13 m=1,3
[10]. According to(9) [10] and Figs. 4—6, the components of T . | .
the (comple® eigenvectorgl) and |3) diverge whenF —0 =WH(AL) +iB[3)) + W(A]3) - iB[1) (25
(for the open quantum system with#=0 andu#0). The  \ith WK = (KW}, k=1,3. This relation givegl) — #ilj), |
biorthogonality relation(z|z) is therefore fulfilled also in #], in approaching the BPCP due #§=—, Bl=—x
approachingF=0, since the difference between two infi- what agrees wit21). Furthermore, we see that nonlinear
nitely large numbers may be 0 or 1. Furttie0]: terms, caused by the interactibpappear in the Schradinger
|1)= £i|3), whenF=¢=0. (21  Eq. (23 as soon aA#1 andB+#0, i.e., as soon as the
_ _resonance states overlap. This means, nonlinear terms in the
The last rela’ﬂon. does not mean that the two WaVQ fUnCtlonSChr(’jdinger equation appear due to the over|apping of reso-
1) and [3) are linearly dependent at the BPCP since theimance states. They are large in the neighborhood of BPCP.
components are infinitely large at this singular point. It holdsan analogous effect does not occur in the neighborhood of
not only for the special system considered here. It holds gerpps.
erally for the eigenvectors of a nonhermitian Hamilton op-  The nonlinear effects can be seen in the line shape of
erator[6,8,21] and expresses nonlinear effects in the opernresonances. Knowing the eigenvalues and eigenfunctions of

quantum system, see later. Another concrete example are the,;, the S matrix can be written down. When two eigenval-
eigenfunctions of the effective Hamiltonian that describesyes coalesce, it read,34:

atoms under the influence of a laser figld]. The function

space can therefoneot be considered as incomplete at the S=1+4 Im(zy) _ Im(zg)? (26)
BPCP. At these points, different Riemann sheets evolve E-zg (E-2z)%

which are caused by the width bifurcation taking place at the .

BPCP. where z;=2z,=73 and the smooth background is neglected.

The relation(21) means that the states at the BPCP ard=duation(26) shows that the nonlinear terms (83) influ-
chiral states. Le{l)— +i|3) and |3)— Fi|1) according to €NC€ directly the line shape of overlappl'ng resonances. The
(21) when the BPCP is approached. Then the wave function§Xtreme case E¢26) occurs when the eigenvalues of two
at the BPCP may be written, e.g., aﬁ=%{|1)ii|3)}: .~ resonance states coalesce at the enérgf, = Re(zk)|E:Ek,

:%{|3)1i|1)}. The . are wave functions of chiral states, k=1,3,1.e., when theS matrix has a double pole &=FE,
where the sign + determines the chirality. =E3[30]. The interference between the two resonance states

Another difference between BPCP and DPs is related tél and 3 leads to an interference minimyeerg at the en-

nonlinear effects caused by the overlapping of resonancggyt 5\/:. Re(zd).hAt tu's gtnergy, an |so|ateq res;ﬁnance of
states. In order to show this, let us rewrite the effective® c' 'VI9NEr Shape nhas Its maxmutpealé since there are
Hamiltonian(2) as no neighbored resonances and the third term on the rhs of

(26) does not appear. Examples for line shapes with overlap-
00 f ping resonances are considered in, e.g., Hé{45,34.
Hei=H%+W=H%+[0 0 0], (22 The results represented in Figs. 15 and 16 need to be
f 00 compared with those obtained in RE24] for the phase ob-
tained from encircling the crossing point of Gamow states.
whereHY, is the diagonal part oH; and the nondiagonal This phase consists of two parts: one part is the well-known
matrix elements given by (10) [10] describe the coupling expression for the Berry phase of two interfering bound
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states that are adiabatically transported in parameter space The results discussed in the present paper coincide with
around the point of the accidental degeneracy of two eigenthe unfolding of the DP into two different BPCP when the
values. The other part is proportional to the width of the statgystem is opened, as suggested in R&f]. The two BPCP
and vanishes when the width vanishes. appear due to the two different signs of the coupling strength
The difference between this result and those representeg hetween system and environment and have, as shown in
in the present paper consists, above all, in the differencgec. |1, different chirality. The difference between the encir-
between a Gamow state and a discre_te state embedded in taﬁ]g of the DP a=0 and the same encircling, but4 0, is
continuum. Every Gamow state has its own continuum party ot the |eft and right wave functions are equal to one another
Embedding of the Gamow states into a common continuuny, he first case while they are different from one another in

of scattering stateB}S] is hot considered in Ref24]. . the second case, see Sec. VI. As a consequence, the Berry
In contrast to this, the different resonance states consi Shase appears "’1 the first case and not in the se;cond case

;regngyalilsd'Thtgesg:sesegs“ﬁfopne;]:(&g}'ﬁ%ﬁtigﬁtﬁju;mg?d Where the function space is enlarged by including the con-
. . . . tinuum of scattering wave functions. Moreover, it has been
scattering wave functl_omsThe funqtlon space 1s er."afge‘?" shown in Fig. 7 that the encircling of a DP does not cause a
indeed, in our calculations by opening the system: it consist eometric ph.ase in the open system
not on!y of discrete states but contains also the commo In the avoided level crossing scenario, the phases of the
scattering statedor details see Refs§6,16]). The wave func- ave functions evolve as a function®@f This means that the
tions of discrete states and scattering states form each a su "2l and imaainary barts of the eigenfunctions of the Hamil-
space of the total function space according to the Feshba% ginary p g

. : . nianH.; decouple to a great deal. Both parts evolve more
unified theory of nuclear reactiorfi41]. The discrete states or less independently from one another up to the BPCP, As

characteristic of one of the subspaces, pass into resonan . . ; ;
states when they are embedded in the other subspace, i.e., &%s been shown in Ref10}, this fact influences physical

common continuum of scattering stafdg]. The wave func- servables as, e.g., the transmission through a double QD.

tions of the resonance states contain contributions from both All the results discussed in this paper show that the BPCP
the discrete states and the common continuous Siajee]. are physically meaningful since they influence observables.

. . They are responsible for the transition from one scenario to
When the system is opened at the DP and' encqcled, one %ﬁother one that both are qualitatively different from one
the two resonance states passes back, withO, into the

function space of discrete states by loosing its width Whileanother: one scenario is characterized by level repulsion and
P > DY g similar decay widths of the states while the other one results
the other one becomes a short-lived resonance state.

Thus, there is no contradiction of our results to those Objrom width bifurcation and is accompanied by some level
tained in Ref[24]. Obviously, the Berry phase appears al_clusterlng[6,10]. The DPs do not have such a physical mean-

ways when the considered states are not embedded into 9 The different nature of DPs and BPCP corresponds with

common continuum and do not interact via the environmentt e fact that the topological structure of DPs and BPCP is
different from one anothe(fFigs. 7 and 8

In this sense, the Berry phase is related to the incompleteness
of the function space. The Berry phase _vanlshes by embed- ACKNOWLEDGMENTS
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