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By using a simple model we consider single-channel transmission through a double quantum dot that
consists of two single dots coupled by a wire of finite lengthL. Each of the two single dots is characterized by
a few energy levels only, and the wire is assumed to have only one level whose energy depends on the length
L. The transmission is described by usingS matrix theory and the effective non-Hermitian Hamilton operator
Heff of the system. The decay widths of the eigenstates ofHeff depend strongly on energy. The model explains
the origin of the transmission zeros of the double dot that is considered by us. Mostly, they are caused by
sdestructived interferences between neighboring levels and are of first order. When, however, both single dots
are identical and their transmission zeros are of first order, those of the double dot are of second order.
First-order transmission zeros cause phase jumps of the transmission amplitude byp, while there are no phase
jumps related to second-order transmission zeros. In this latter case, a phase jump occurs due to the fact that
the width of one of the states vanishes when crossing the energy of the transmission zero. The parameter
dependence of the widths of the resonance states is determined by the spectral properties of the two single dots.
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I. INTRODUCTION

Some years ago, the phase of the transmission amplitude
has been measured in a double-slit interference experiment
f1g. The results showed phase jumps byp between reso-
nances which raised intensive theoretical work for an expla-
nation f2–7g. Most of these calculations associate the sharp
phase drops with the occurrence of transmission zeros and
relate them to the interference zeros of Fano resonances. In
Ref. f6g, it was shown, however, that the existence of a trans-
mission zero is, indeed, a necessary condition for the phase
jump but not a sufficient one. The sharp phase change bases,
according to Ref.f6g, on the destructive interference between
neighboring resonance states. Destructive interferences be-
tween neighbored resonances are considered also in Refs.
f4,5g.

The Fano resonance phenomenon characterizes the inter-
ference between a single resonance with a relatively smooth
backgroundf8g. The interference processes in the regime of
overlapping resonances are, however, much more compli-
cated than those in the regime of isolated resonances. This
has been demonstrated, e.g., in an experimental study of the
conductance through a quantum dotsQDd in an Aharonov-
Bohm interferometerf9g and in a theoretical studyf10g. The
Fano parameter becomes complex when there are interfer-
ences between short-lived resonances, long-lived resonances,
and a smooth background. Numerical calculations with a
complex Fano parameter are performed also in Ref.f11g.
These results are a hint to the conclusion that the sharp phase

changes observed in Ref.f1g are the result of interference
processes not only between a narrow Fano resonance and the
smooth background but also between neighboring reso-
nances.

In a preceding paperf12g, we studied the transmission
properties of a double QD system when one lead is attached
to the first single QD, another one to the second single QD,
and both single QDs are connected by a wire of finite length
L. Also in this system, transmission zeros appear when there
are more than one state in each single dot. The special situ-
ation of a double QD is such that, on the one hand, the
transmission zeros of the double dot are determined by the
zeros in the transmission through the single QDs to which
the leads are attached. The reason for this fact is that the total
reflection szero transmissiond is determined by the overlap
integrals between leads and single QDs. On the other hand,
the resonance picture as a whole is determined by the reso-
nance states of the double QD. As a consequence, the inter-
ference processes between the resonance states of the double
QD are expected to be more complicated than those for a
single QD. Since phase jumps in the transmission amplitudes
are related to the transmission zeros, they are related there-
fore, first of all, to the resonances of the single QDs.

We will show in the present paper that transmission zeros
of a single two-dimensionals2Dd QD cause phase jumps by
p in the amplitude of the transmission through this single
QD. This situation corresponds to the usual Fano interfer-
ence picture between narrow resonances and background or
between neighboring resonance states. The situation in
double QDs is, however, more complicated. It depends on
the spectral properties of both single QDs and on the manner
they are connected to the wire and to the leads, whether or
not the transmission zeros of the single QDs cause transmis-
sion zeros of the same type also in the double QD system.
When the single QDs remain true 2D systems in the double
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QD and have different energy spectra, each transmission zero
of each single QD causes a transmission zero of the same
type in the double QD system. When the spectra of both
single QDs are however equal, the corresponding transmis-
sion zeros of the double QD system are of another type. They
give rise to two phase jumps, each byp, that compensate
each other. When a resonance state crosses this transmission
zero at a certain length of the wire, its decay width vanishes
and a phase jump appears now due to the extremely narrow
resonance. This mechanism differs completely from the
simple Fano interference picture.

In Sec. II, we sketch the formalism for describing the
double QD in order to provide a minimum of necessary
equations. The method used by us is theSmatrix represented
by means of the eigenvalues and eigenfunctions of the non-
Hermitian effective Hamilton operator of the open quantum
system. We will neglect the Coulomb interaction in and be-
tween the single dots although it can be taken into account
f13g. The point is that we are interested in this paper in a
study of the origin of the transmission zeros and of the phase
jumps of the transmission amplitudes related to them, and
not in the quantitative description of the results obtained in a
special experimental setup. In Sec. III, we study the trans-
mission zeros appearing in a double dot consisting of two
identical single dots coupled by a wire. We compare the re-
sults in Sec. IV with those obtained for a double dot with the
same structure, but with different spectra of the two single
dots. The results show which role the parameter dependence
of the widths of the resonance states may play in order to
satisfy the unitarity condition. The width of one of the states
may even vanish at a certain value of the parameter.

II. BASIC EQUATIONS

The double dot system we will study in the following
consists of two single dots connected by a wire; see Fig. 1
for illustration. The single dots have each two levels the
energies of which are denoted by«iL

, «iR
, i =1,2whereL and

R stand for the left and right single dot. The energye of the
wire depends on its lengthL. The coupling strengthu be-
tween single dot and wire is assumed to be the same for both
single dots. It characterizes the “internal” interaction of the
double dot system. The coupling strengthv of the double dot
as a whole to the attached leads characterizes the openess of
the system. It may be called “external” interaction. The in-
terplay between internal and external interaction and its role
for the transmission through the double dot is studied in Ref.
f12g.

The S matrix theory of single-channel transport through
two QDs coupled by a variable wire is given in Ref.f13g.
Different from the standardSmatrix theory, the energies and
widths as well as the wave functions of the resonance states
are obtained, in this approach, by diagonalizing the effective
Hamiltonian of the open double QD. We will present here
only a few formulas of that theory which are important for
the study of the transmission zeros. We will neglect the Cou-
lomb interaction although its influence can be taken into ac-
count f13g. The reason for doing this is that we are inter-
ested, in the present paper, in the discussion of the origin of
the transmission zeros in double QDs. We will not try to
describe quantitatively the results that can be obtained in a
special experimental device.

When the double dot is a 1D chain or when the single dots
have each only one level there do not appear any transmis-
sion zeros. This result is obtained in different studies, e.g.,
Refs.f3,13,14g. We will not consider it here again.

Following Ref.f13g, the Hamiltonian of our closed double
QD consisting of the two single QDs and the wire is

HB =1
«1 0 u 0 0

0 «2 u 0 0

u u esLd u u

0 0 u «2 0

0 0 u 0 «1

2 . s1d

For simplicity we have assumed that all the coupling con-
stants between the wire and the single QD are the same and
are given by the constant valueu. The Coulomb interaction
is ignored; see above.

Two eigenvalues of the HamiltonianHB coincide with the
energies«1 and «2 of the single QDsf13g. The other three
eigenvalues of Eq.s1d can be found by solving a cubic equa-
tion. Also the finding of the eigenstates of Eq.s1d is a for-
midable task. We consider therefore the transmission through
a system with two states in each single QD numerically.

The Hamiltonians1d is written in the energy representa-
tion. In order to specify the connection between the reser-
voirs and the single QDs, we have, however, to know the
eigenstates of Eq.s1d also in the site representation. The
Hamiltonian of the single QD in the site representation is

Hb = S«0 ub

ub «0
D . s2d

The hopping matrix elementsub are shown in Fig. 1 by thin
solid lines. The eigenfunctions and eigenvalues are the fol-
lowing:

k j u«1l =
1
Î2

S1

1
D,k j u«2l =

1
Î2

S1

− 1
D ,

«1,2= «0 7 ub. s3d

We introduce the projection operators

FIG. 1. The double dot system is connected to the reservoirs by
the coupling constantsv. The single dots are coupled to the wire by
the coupling constantsu.
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PL = o
bL

u«bL
lk«bL

u, Pw = u1wlk1wu, PR = o
bR

u«bR
lk«bR

u,

s4d

where bL=1,2, bR=1,2, and u1wl is the one-dimensional
eigenstate of the wire. LetEm and uml with m=1, . . . ,5 de-
note the five eigenenergies and eigenstates of Eq.s1d,
HBuml=Emuml. The elements of the left coupling matrix are

kL,EuVuml = kL,EuVPLuml = o
bL

kL,EuVu«bL
lk«bL

uml

= o
jL=1,2

o
bL

kL,EuVu jLlk jLu«bL
lk«bL

uml. s5d

Similar expressions can be derived for the right coupling
matrix. Here we used the assumption that the left reservoir is
connected only to the left single QD and the right reservoir
only to the right single QD. As previously, the reservoirs are
assumed to be semi-infinite one-dimensional wires. Next we
have to specify which sites of the leftsrightd single QD are
connected to the leftsrightd reservoir. There are two possi-
bilities.

sid Assume the left reservoir is connected only to the first
site jL=1 of the left single QD. Then, with account of Eq.
s3d, Eq. s5d becomes

kL,EuVuml = vÎsink

2p
o
bL

k«bL
uml. s6d

A corresponding expression can be written down for the right
coupling matrix if the right reservoir is connected to the first
site of the right single QD.

sii d We can assume that the reservoirs are connected to
both sites of the single QDs with the same coupling constant
v. Then the elements of the coupling matricess6d are the
following:

kL,EuVuml = vÎsink

2p
k«1uml s7d

provided that the energy level«1 is the lowest in energy; see
Eq. s3d.

Knowing the Hamiltonians1d of the closed system and
the coupling matrix elementss6d ands7d to the reservoir, the
effective HamiltonianHeff can be obtainedf13g. It is non-
Hermitian. Its complex eigenvalueszi provide the positions
in energy, Reszid, as well as the widths,Gi /2;−Imszid, of the
resonance states. After diagonalizingHeff, the transmission
through the double QD readsf13,14g

t = − 2pio
l

kLuVuldsluVuRl
E − zl

. s8d

Here uld and slu are, respectively, the right and left eigen-
functions ofHeff. They are bi-orthogonalf15g. The transmis-
sion probability isT= utu2.

In the double dot system, the leads are attached to the
single dots. The transmission zeros are determined therefore
by the spectroscopic properties of the single dots, and not by
those of the double dot as a whole. Due to the unitarity of the
S matrix, transmission zeros appear, in the single-channel

case, always between every two states. As a consequence, no
transmission zeros will appear when the single dots have
only one state each. The most important difference between
the casesN=1 andN=2 of the single QDs is therefore that
the double dot as a whole is no longer necessarily one di-
mensional in theN=2 case. Therefore zeros in the transmis-
sion probability may appear in theN=2 case in contrast to
the N=1 case.

We underline here once more that our approach differs
from the standardS matrix theory. Although the resonance
part of theS matrix has the standard view, there are differ-
ences between the two approaches which are important in the
regime of overlapping resonancesf15g. In our approach

sid the coupling matrix elements entering the numerator
of Eq. s8d are calculated by means of the eigenfunctions of
Heff,

sii d the zk are the eigenvalues ofHeff,
siii d the coupling matrix elements and thezk depend on

the energyE sand other parametersd,
sivd the energyE of the incident particle is real. The po-

sitions and widths of the resonances are determined by the
complex eigenvalues ofHeff, and the poles of theS matrix
are not considered.
We underline furthermore that the HamiltonianHB of the
closed system is diagonalized before it enters into the expres-
sion for the effective Hamilton operatorHeff and that theS
matrix is unitary at all energiesE also in the regime of over-
lapping resonancesf16g.

III. DOUBLE DOT WITH TWO IDENTICAL SINGLE
DOTS COUPLED BY A WIRE

We represent here the results of some calculations for the
transmission through double quantum dots with altogether
2N+1 states:N states in each single QD and one state in the
wire that connects the two single dots. The two single dots
are assumed here to be identical, i.e., the energies of the two
states of the left single dot are the same as those of the right
dot. The energye of the wire is assumed to depend linearly
on the lengthL of the wire. This assumption does not play
any role for the study of the origin of transmission zeros in
double dots. Similar results are obtained with, e.g., a qua-
dratic dependence ofe on the lengthL f13g. One may con-
sider the dot considered by ussFig. 1d also as a triple QD.
We keep, however, the notation “double QD” in order to
express the different nature of the wire and of the two single
dots.

In Fig. 2, the transmission probability versus energyE
and lengthL of a double QD is shown for the case that each
single dot has two states and that both sites of the single QD
are connected to the reservoir with the coupling matrix ele-
mentss7d. The figure shows a zero in the transmission prob-
ability, indeed; see Fig. 2sbd. According to Figs. 2scd and
2sdd, the positions and decay widths of the eigenstates 2 and
4 of the effective Hamiltonian are independent of the length
L of the wire while those of the other states depend onL.
State 3, lying in the middle of the spectrum, crosses the
transmission zero atL=2.75. Here, the decay width of this
state approaches zero for all energiesE.
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In Fig. 3sad, the transmission through a double QD with
two identical single QDs is shown, while Fig. 3sbd, shows
the transmission through one of these single QDssthe lower
curves correspond to the modules of the transmission ampli-
tude and the upper curves to their phasesd. In the double QD,
the two single QDs are connected to the leads and to the wire
as shown in Fig. 1. Comparing the two figures, we see that
the transmission zero of the double QD coincides with that
of the single QD. This result is in agreement with the fact
that the leads are coupled to the single dots. However, there
is a difference between the zeros in both cases as will be
explained in the following.

Single QDfFigs. 3sbd and 3sddg: The transmission zero of
the single QD is due to the destructive interference of the
two neighboring resonance statesf3,6,14g and is located be-

tween the energies of the single QD. It is caused by the
unitarity of theSmatrix f15g with account of the fact that the
leads are attached to the single QDs being the constituents of
the double dot. Around the energyE0, the transmission am-
plitude vanishes,tsE0d=0. Here ReftsEdg,sE−E0d2 while
ImftsEdg,dhReftsEdgj /dE,sE−E0d. It holds therefore for
the modulus of the transmission amplitudeutsEdu,uE−E0u
nearE0, see Fig. 3sbd, and udtsEd /dEuE0

Þ0. Thus the phase
of the transmission amplitude argftsEdg jumps by p at E0,
according to Ref.f6g. The geometrical origin of this phase
jump can clearly be seen in Fig. 3sdd. By pathing through the
origin of the coordinates Restd=0, Imstd=0, the value argstd
is not defined unambiguously. The phase jumps by ±p, and
the sign of the phase jump is not observable. We can call
such a zero a first order zero.

FIG. 2. sad The transmission through a double
QD with two identical single QDs that are con-
nected by a wire according to Fig. 1. The eigen-
values ofHB are shown by full lines.«1=−1.7,
«2=−1.4, and esLd=−1−L /5 sdashed lined, v
=0.3,u=0.1.sbd The modules of the transmission
amplitudeutsE,Ldu for the same double QD as in
sad for fixed lengthsL=2.75 ssolid lined and L
=4 sdashed lined. The energies of the two single
QDs are shown by circles. The real partscd and
imaginary partsdd of the five eigenvalueszk of
the effective Hamiltonian as a function ofL for
E=−1.5. Thin solid line:z1; dashed line:z2; thick
solid line: z3; dotted line: z4; and dash-dotted
line: z5. At L=2.75 the imaginary part of the third
eigenvalue is equal to zero at all energiesE.

FIG. 3. sad The modulesutsEdu slower curved
and the phase argstd /p supper curved of the trans-
mission amplitude for a double QD with two
identical single QDs. The parameters are the
same as in Fig. 2, andL=4 as in Fig. 2sbd, dashed
line. sbd The modulesut1sEdu slower curved and
the phase argst1d /p supper curved of the transmis-
sion amplitude for one of the single QDs that is
part of the double QD considered insad. The en-
ergy positions of the single QD levels are shown
by circles in Fig. 2sbd. scd Evolution of imaginary
and real parts of the transmission amplitudet of
the double QD with energy. At the upper right
corner, a zoomed fragment of the evolution is
shown which demonstrates that the evolution has
cusplike behavior in the vicinity of the transmis-
sion zero.sdd The same asscd but for the single
QD. Here, the evolution is of standard type.
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Double QDfFigs. 3sad and 3scdg: The zeros in the trans-
mission through the double QD with two identical single
QDs are of another type. They are of second order since it is
utsEdu,ut1sEdu2 in the vicinity of the energyE=E0. It follows
thereforetsEd,sE−E0d2 nearE0; see Fig. 3sad. The energy
evolution of the real and imaginary parts of the transmission
amplitude is shown in Fig. 3scd. In the inset of the figure, the
evolution of Restd, Imstd at the origin of the coordinate sys-
tem is shown in zoomed resolution. It has a cusplike behav-
ior, and there is no phase jump at all. We present in Fig. 3sad
the phase behavior of the transmission amplitudet that is a
combination of two jumps with opposite sign, resulting in a
zero phase jump at the pointE=E0. This result agrees with
the general statement given in Ref.f6g, that phase jumps do
not appear whenudtsEd /dEuE0

=0 sas in our cased at the en-
ergy E=E0.

Thus zeros of second order in the single-channel transmis-
sion of a double QD are given by zeros of first order in the
transmission of the single QDssthat constitute the double
QDd when they are identical. If these two single QDs have
eachN energy levels thenN−1 transmission zeros of second
order will appear in the double QD. A numerical computa-
tion for the particular caseN=5 confirms this conclusion
sFig. 4d. Furthermore, there are no phase jumps at the trans-
mission zeros of second order, as can be seen from Fig. 4sbd,
in complete agreement with the theory.

We consider now the evolution of the modules of the
transmission amplitude and the corresponding phase shifts
when the decay width of one of the states approaches zero.
The results shown in Fig. 5 are performed for the double QD
the transmission of which is shown in Fig. 2 together with
the eigenvalueszk of the effective HamiltonianHeff as a
function ofL. The latter ones are related to the poles of theS
matrix; see Ref.f12g. At L=2.75, the third eigenstate crosses
the energy of the transmission zero, and its decay width
Imsz3d /2 approaches zero. As long asLÞ2.75 and Imsz3d
Þ0, the phase of the transmission amplitude varies byp
more or less smoothly, according to the phase shift caused by
a resonance state with a finite decay width. WhenL→2.75
and Imsz3d→0, the phase jumps byp due to the vanishing
decay width of the resonance state. Therefore we have also
in this case a phase jump of the transmission amplitude byp.

Correspondingly, the transmission zero becomes of first or-
der atL=2.75; see Fig. 2sbd. That means the resonance state
whose decay width vanishes when crossing the energy of the
transmission zero, restores the first order of the transmission
zero as well as the phase jump byp.

We mention here that resonance states with vanishing de-
cay width are considered also by other authors. In Ref.f7g,
they are called “ghost” Fano resonances that appear in a
double QD attached to leads. In Ref.f17g, the appearance of
discrete levels in the continuum is shown to correspond to
the occurrence of special localized electron states that appear
due to a “collapse” of Fano resonances. In atomic physics,
the phenomena related to resonance states with vanishing
decay width are known as population trappingf18g. They
result from the interplay of the direct coupling of the states
and their coupling via the continuum under the influence of,
e.g., a strong laser field. In the case considered in the present
paper, they appear due to some constraint onto the system as

FIG. 4. sad The transmission through a double QD consisting of two identical single QDs withd=5 states that are connected by a wire,
versus energy and length of the wire. The eigenvalues ofHB are shown by thin lines while the energyesLd=5/2−2L /3 of the mode in the
wire is shown by the dashed line.sbd Energy dependence of the modulesssolid lined and of the phase argstd /p sdashed lined of the
transmission amplitude forL=4. «n=−1.75 cosspn/6d, n=1,2, . . . ,5,v=0.5, u=0.2. There are 11 resonance states in the double dot, 4
transmission zeros of second order, and no phase jumps.

FIG. 5. The energy dependence of the modulesutsEdu sbottomd
and of the phase argftsEdg /p stopd of the transmission amplitude for
L=2.25,2.5,2.75,3.0,3.25. The other parameters are the same as
those in Fig. 2. The transmission zeros are denoted by stars. They
are of second order. The ordinate is shifted every time by 0.1 when
L is changed by 0.25. All phases are shifted byp.
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a consequence of the unitarity of theS matrix. On the one
hand, the position of the transmission zeros is determined by
the spectroscopic properties of the single dots. On the other
hand, however, the transmission is resonant and related to the
spectroscopic properties of the double QD. These two facts
cause some nontrivial constraint onto the system in order to
fulfill the condition of unitarity of theSmatrix for the double
QD as a whole.

IV. DOUBLE DOT WITH TWO DIFFERENT SINGLE
DOTS COUPLED BY A WIRE

Now we will consider the transmission through a double
QD consisting of two different single QDs coupled to the
wire and to the leads as shown in Fig. 1. The single QDs
have each two states,«iL

Þ«iR
, i =1,2; seeFig. 6.

In contrast to the foregoing case, the width of the state in
the middle of the spectrum does not approach zero; see Fig.
6sdd. It remains different from zero for allL. This result

illustrates very nicely that the transmission zeros originate
from the interference between neighboring resonances. In
Fig. 2, the two single dots have the same spectrum, and the
transmission zero appears at the energys«1+«2d /2. At this
energy, the interference between the two pairs of outer states
of the double dot is destructive and gives a vanishing contri-
bution to the transmission. In order to achieve the transmis-
sion zero of the double dot, the width of the state in the
middle of the spectrum has to vanish when it crosses the
energy of the transmission zero as a function of the lengthL
of the wire; see Fig. 2sdd. In Fig. 6, however, the spectra of
the two single QDs are different. The constraint onto the
middle state is therefore reduced: the width of this state re-
mains different from zero at allL. It is reduced only in such
a manner that the state with this value of the width is able to
interfere destructively with the other four states in order to
achieve the two transmission zeros.

These results show that the interference between neigh-
boring states is basic for the transmission zeros that appear in
double QDs, as well as for the corresponding phase jumps

FIG. 7. sad The transmission lnuTsE,Ldu through a double QD with different single QDs connected by a wire, andsbd the energy
dependence of the modulesssolid lined and of the phase argstd /p sdashed lined of the transmission amplitude for this double QD system at
a fixed lengthL=4 of the wire. The energy levels of the left single QD are«kL

=−1.6,−1.1,−0.6, while those of the right single QD are
«kR

=−1.4,−0.9,−0.4. Further,esLd=1−L /2, v=0.3,u=0.2. The full lines insad are the eigenvalues ofHB while the dashed line is the energy
esLd. There are seven resonance states of the double dot, four transmission zeros of first order, and the corresponding four phase jumps.

FIG. 6. The same as Fig. 2, but with two dif-
ferent single QDs:«1L

=−1.7, «2L
=−1.4, «1R

=
−1.6, «2R

=−1.3.
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sFig. 3d. Additionally, the system has the freedom to vary the
widths of the resonance states in order to satisfy the unitarity
of the S matrix.

When each single QD hasN states, the number of zeros in
the transmission through the double QD is 2sN−1d when the
spectra of the two single dots are different from one another.
This conclusion is demonstrated by the results of numerical
calculations shown in Fig. 7. We see four transmission zeros
of first order. At each of these transmission zeros, the phase
jumps by −p scompare Fig. 3d.

V. SUMMARY

The results presented in the present paper have shown that
transmission zeros in double QDs show some nontrivial be-
havior since two conditions for their appearance have to be
fulfilled which are independent from one another. On the one
hand, the transmission zeros are related to the spectroscopic
features of the single dots due to the fact that full reflection is
determined by the area of attachment, and the leads are at-
tached to the single dots. On the other hand, however, the
resonance states of the system are characteristic of the
double QD as a whole. As a consequence, even the number
of transmission zeros differs, as a rule, from the number of
resonance states. This result does not agree with the simple
Fano interference picture where each resonance state creates
a zero in the reaction cross section due to its interference
with the smooth background. The origin of the zeros in the
transmission through a double QD is rather strongly related
to the interferences between neighboring resonance states. A
similar result has been obtained for single dots in Ref.f6g.

Moreover, in double dots it may happen that the interfer-
ences between neighboring resonances cannot provide the
transmission zero due to some symmetries in the system. In
such a case, the width of one of the resonance states ap-
proaches zero when crossing, as a function of a certain pa-
rameter, the energy at which the transmission vanishes. Due
to this constraint, the width of at least one of the resonance
states is strongly parameter dependent, and the system as a
whole is unstable against parameter variations.

The relation between transmission zeros and phase jumps
can be seen in the following manner. When the two single
dots have different spectra, the transmission zeros of the
double QD are of first order. Transmission zeros of first order
cause phase jumps byp as shown by means of numerical
examples for both single and double dots. When, however,
the two single dots are identical, the transmission zeros of
the double dot are of second order and there is no phase
jump related to them. When there is a resonance state at this
energy the phase of the amplitude of the transmission

through the double dot jumps byp also in this case since the
width of the resonance state that crosses the transmission
zero at a certain lengthL=L0 of the wire vanishes atL0.
Resonance states with vanishing width may be called ghost
Fano resonances according to Ref.f7g.

WhenM identical quantum dots are connected to a string,
higher-order transmission zeros may arise. An odd number
M causes a phase jump byp, while no phase jump is related
to the transmission zeros for evenM. The transmission
through such a string of quantum dots jumps, however, byp
in any case due to the appearance of resonance states with
zero width, as discussed above for the double dot.

In our numerical studies, we considered the appearance of
transmission zeros in double QDs with the structure shown
in Fig. 1 and with the coupling matrix elementss7d. Since the
leads are attached to the single dots, the transmission zeros
are determined by the requirement of the unitarity of theS
matrix with account of the resonance states of the single
dots. This means that transmission zeros in the double dot
appear only when at least one of the single dots has at least
two levels. Some further examples may illustrate this behav-
ior. When, e.g., one of the single QDs loses its 2D character
by the manner it is integrated in the double QD system, only
transmission zeros of first order appear in the double QD.
When both single QDs are included as 1D dots, the double
QD has no transmission zero at all. In this case, the whole
system behaves as a 1D chain of sites without any transmis-
sion zeros. This last result is in agreement with that obtained
in Ref. f3g by using another method.

We underline that the results presented in the present pa-
per are received in theS matrix formalism by using the ei-
genvalues and eigenfunctions of the effective Hamiltonian
Heff of the open QD. One of the characteristic features of this
approach is the strong parametersand energyd dependence of
the decay widths of the resonance states. This strong param-
eter dependence ensures the unitarity of theS matrix at all
energiesf16g and causes, e.g., the existence of resonance
states with zero widthsFigs. 2, 5, and 6d.

As a summary of the results obtained in the present paper
we state the following. The interferences between neighbor-
ing resonance states as well as the parameter dependence of
the widths of the states achieve the transmission zeros of
double QDs in the single-channel case. At the transmission
zeros the phases jump by mostlysbut not alwaysd p.
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