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Zeros in single-channel transmission through double quantum dots
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By using a simple model we consider single-channel transmission through a double quantum dot that
consists of two single dots coupled by a wire of finite lenigttEach of the two single dots is characterized by
a few energy levels only, and the wire is assumed to have only one level whose energy depends on the length
L. The transmission is described by usi@gnatrix theory and the effective non-Hermitian Hamilton operator
Hesr Of the system. The decay widths of the eigenstatddgfdepend strongly on energy. The model explains
the origin of the transmission zeros of the double dot that is considered by us. Mostly, they are caused by
(destructive interferences between neighboring levels and are of first order. When, however, both single dots
are identical and their transmission zeros are of first order, those of the double dot are of second order.
First-order transmission zeros cause phase jumps of the transmission amplitatde/tiije there are no phase
jumps related to second-order transmission zeros. In this latter case, a phase jump occurs due to the fact that
the width of one of the states vanishes when crossing the energy of the transmission zero. The parameter
dependence of the widths of the resonance states is determined by the spectral properties of the two single dots.
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I. INTRODUCTION changes observed in Rdfl] are the result of interference
o _ processes not only between a narrow Fano resonance and the
Some years ago, the phase of the transmission amp"tucgmooth background but also between neighboring reso-
has been measured in a double-slit interference experimefpinces.
[1]. The results showed phase jumps bybetween reso- In a preceding papell2], we studied the transmission
nances which raised intensive theoretical work for an explaproperties of a double QD system when one lead is attached
nation[2—7]. Most of these calculations associate the shargo the first single QD, another one to the second single QD,
phase drops with the occurrence of transmission zeros arghd both single QDs are connected by a wire of finite length
relate them to the interference zeros of Fano resonances. kn Also in this system, transmission zeros appear when there
Ref.[6], it was shown, however, that the existence of a transare more than one state in each single dot. The special situ-
mission zero is, indeed, a necessary condition for the phagdion of a double QD is such that, on the one hand, the
jump but not a sufficient one. The sharp phase change basdgnsmission zeros of the double dot are determined by the
according to Ref[6], on the destructive interference betweenZz€ros in the transmission through the single QDs to which
neighboring resonance states. Destructive interferences bi1€ leads are attached. The reason for this fact is that the total
tween neighbored resonances are considered also in Ref§flection (zero transmissionis determined by the overlap
[4,5]. Iintegrals betwee_n leads and smglg QDs. Orj the other hand,
The Fano resonance phenomenon characterizes the intdfl€ résonance picture as a whole is determined by the reso-

ference between a single resonance with a relaively smoof 8 S22 0 T8 CLAT G2 8 SESE e 1 e
background8]. The interference processes in the regime o P

overlapping resonances are, however, much more complgD are expected to be. more 'complicated .than those' for a
’ ' lsmgle QD. Since phase jumps in the transmission amplitudes

cated than those in the regime of isolated resonances. Thige" e|ated to the transmission zeros, they are related there-
has been demonstrated, e.g., in an experimental study of tI?Sre, first of all, to the resonances of the single QDs.

conductance through a quantum dQD) in an Aharonov- We will show in the present paper that transmission zeros

Bohm interferometef9] and in a theoretical studyL0]. The of a single two-dimensiondPD) QD cause phase jumps by
Fano parameter becomes complex when there are interfer-

. ) o in the amplitude of the transmission through this single
ences between short-lived resonances, long-lived resonancesy This situation corresponds to the usual Fano interfer-
and a smooth background. Numerical calculations with '

lex F ; ; d also i %nce picture between narrow resonances and background or
complex Fano parameter are performed also in IREf]. between neighboring resonance states. The situation in

These results are a hint to the conclusion that the sharp phaﬁ%uble QDs is, however, more complicated. It depends on
the spectral properties of both single QDs and on the manner
they are connected to the wire and to the leads, whether or

*Email address: rotter@mpipks-dresden.mpg.de not the transmission zeros of the single QDs cause transmis-
"Email address: almsa@ifm.liu.se sion zeros of the same type also in the double QD system.
*Email address: almas@tnp.krasn.ru When the single QDs remain true 2D systems in the double
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QD w QD The S matrix theory of single-channel transport through
‘o ] two QDs coupled by a variable wire is given in RgL3].
Different from the standar® matrix theory, the energies and
widths as well as the wave functions of the resonance states
are obtained, in this approach, by diagonalizing the effective
2 2 Hamiltonian of the open double QD. We will present here
only a few formulas of that theory which are important for
the study of the transmission zeros. We will neglect the Cou-
Yomb interaction although its influence can be taken into ac-
count[13]. The reason for doing this is that we are inter-
ested, in the present paper, in the discussion of the origin of
) o the transmission zeros in double QDs. We will not try to
QD and have different energy spectra, each transmission zefRyscribe quantitatively the results that can be obtained in a
of each single QD causes a transmission zero of the saM@ecial experimental device.
type in the double QD system. When the spectra of both " \when the double dot is a 1D chain or when the single dots
single QDs are however equal, the corresponding transmigsaye each only one level there do not appear any transmis-
sion zeros of the double QD system are of another type. Theyjony zeros. This result is obtained in different studies, e.g.,
give rise to two phase jumps, each hy that compensate Refs [3,13,14. We will not consider it here again.
each other. When a resonance state crosses this transmissioq:o”owing Ref.[13], the Hamiltonian of our closed double

zero at a certain length of the wire, its decay width vanishe@D consisting of the two single QDs and the wire is
and a phase jump appears now due to the extremely narrow

Ub L - - -=-4Y

reservoir
reservoir

FIG. 1. The double dot system is connected to the reservoirs b
the coupling constants. The single dots are coupled to the wire by
the coupling constants.

resonance. This mechanism differs completely from the
; . : g 0 u 0 O
simple Fano interference picture.
In Sec. Il, we sketch the formalism for describing the 0 & u 0 0
double QD in order to provide a minimum of necessary Hg=l u u €l) u u (1)
equations. The method used by us is 8matrix represented 0 0 g, 0

by means of the eigenvalues and eigenfunctions of the non-
Hermitian effective Hamilton operator of the open quantum

system. We will neglect the Coulomb interaction in and be- o )
tween the single dots although it can be taken into accourff® Simplicity we have assumed that all the coupling con-

[13]. The point is that we are interested in this paper in aStants between the wire and the single QD are the same and
study of the origin of the transmission zeros and of the phas@'® 9iven by the constant value The Coulomb interaction
jumps of the transmission amplitudes related to them, anéf ignored; see above. o o

not in the quantitative description of the results obtained in a WO €igenvalues of the Hamiltonidtg coincide with the
special experimental setup. In Sec. Ill, we study the trans€Nergiese; ande; of the single QDY 13]. The other three
mission zeros appearing in a double dot consisting of twdigenvalues of Eq) can be found by solving a cubic equa-
identical single dots coupled by a wire. We compare the relion- Also the finding of the eigenstates of Hd) is a for-
sults in Sec. IV with those obtained for a double dot with theMidable task. We consider therefore the transmission through
same structure, but with different spectra of the two single? SyStem with two states in each single QD numerically.
dots. The results show which role the parameter dependence "€ Hamiltonian(1) is written in the energy representa-
of the widths of the resonance states may play in order t§on- In order to specify the connection between the reser-
satisfy the unitarity condition. The width of one of the statesV0irs and the single QDs, we have, however, to know the

may even vanish at a certain value of the parameter. eigenstates of Eq(l) also in the site representation. The
Hamiltonian of the single QD in the site representation is

u
0 0 u 0 €1

II. BASIC EQUATIONS

The double dot system we will study in the following Hp= (80 ub). (2
consists of two single dots connected by a wire; see Fig. 1 Up &0

for illustration. The single dots have each two levels the ) ) o )
energies of which are denoted by, ¢; ,i=1,2whereL and  1h€ hopping matrix elements, are shown in Fig. 1 by thin

R stand for the left and right single dot. The enekgyf the solid lines. The eigenfunctions and eigenvalues are the fol-

wire depends on its length. The coupling strengthu be-  1OWINg:

tween single dot and wire is assumed to be the same for both

single dots. It characterizes the “internal” interaction of the (jlep) = i(l) (len = i(l )
double dot system. The coupling strengtbf the double dot ! \E 1)M12 \E -1/’
as a whole to the attached leads characterizes the openess of

the system. It may be called “external” interaction. The in-

terplay between internal and external interaction and its role €1,2= &g+ Up. 3
for the transmission through the double dot is studied in Ref.
[12]. We introduce the projection operators
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P =3 |8bL><8bL|a P, = L)L), Pr=> |8bR><8bR|1 case, always between every two states. As a consequence, no
b, be transmission zeros will appear when the single dots have
4 only one state each. The most important difference between
the casesN=1 andN=2 of the single QDs is therefore that
where b =1,2, bg=1,2, and|l,) is the one-dimensional the double dot as a whole is no longer necessarily one di-
eigenstate of the wire. Le,, and|m) with m=1,...,5 de- mensional in thdN=2 case. Therefore zeros in the transmis-
note the five eigenenergies and eigenstates of @&y. sion probability may appear in thé=2 case in contrast to
Hg/m)=E,|m). The elements of the left coupling matrix are the N=1 case.
We underline here once more that our approach differs

(LEIVIm) = (LEVPm) = X (L,E|V|ey Xep, [M) from the standards matrix theory. Although the resonance
b part of theS matrix has the standard view, there are differ-
= 2 SU(LE VIiu)en Xenm). (5)  ences between the two approaches which are important in the
jL=1.2 b, regime of overlapping resonancelb). In our approach

(i) the coupling matrix elements entering the numerator

Similar expressions can be derived for the right couplingy¢ Eq. (8) are calculated by means of the eigenfunctions of
matrix. Here we used the assumption that the left reservoir ig
connected only to the left single QD and the right reservoir efgii) the z are the eigenvalues

. . . . effs
only to the right smglg QD As preylously, the reservoirs are (i) the coupling matrix elements and tlag depend on
assumed to be semi-infinite one-dimensional wires. Next wey, o energyE (and other parameters

have to specify which sites of the lgftight) single QD are

connected to the leftright) reservoir. There are two possi- gjtions and widths of the resonances are determined by the
bilities. o __complex eigenvalues dfi.¢, and the poles of th& matrix

(i) Assume the left reservoir is connected only to the f|rstare not considered.
site j =1 of the left single QD. Then, with account of EQ. \ve ynderline furthermore that the Hamiltoniafy, of the

(3), Eq. (5) becomes closed system is diagonalized before it enters into the expres-
sink sion for the effective Hamilton operatét. and that theS
(L,E[Vim)=v 2—2 (ep, IM). (6)  matrix is unitary at all energiel also in the regime of over-
T b lapping resonancdg46].
A corresponding expression can be written down for the right

coupling matrix if the right reservoir is connected to the first Ill. DOUBLE DOT WITH TWO IDENTICAL SINGLE

site__of the right single QD. _ DOTS COUPLED BY A WIRE
(i) We can assume that the reservoirs are connected to

both sites of the single QDs with the same coupling constant We represent here the results of some calculations for the
v. Then the elements of the coupling matridé$ are the transmission through double quantum dots with altogether

(iv) the energyE of the incident particle is real. The po-

following: 2N+1 statesN states in each single QD and one state in the
Sink wire that connects the two single dots. The two single dots

(LEIVIm) =v | = (e,|m) (7)  are assumed here to be identical, i.e., the energies of the two

2m states of the left single dot are the same as those of the right

; ; ; . dot. The energy of the wire is assumed to depend linearly
ded that th I the | . . :
E:;)V(|3)e atthe energy level is the lowest in energy; see on the lengthL of the wire. This assumption does not play

any role for the study of the origin of transmission zeros in
double dots. Similar results are obtained with, e.g., a qua-
dratic dependence af on the lengthL [13]. One may con-
sider the dot considered by (Big. 1) also as a triple QD.
We keep, however, the notation “double QD” in order to
express the different nature of the wire and of the two single
dots.

Knowing the Hamiltonian(1) of the closed system and
the coupling matrix element$) and(7) to the reservoir, the
effective HamiltonianH.4 can be obtained13]. It is non-
Hermitian. Its complex eigenvalues provide the positions
in energy, Réz), as well as the widthd};/2=-Im(z), of the
resonance states. After diagonalizikigy, the transmission

through the double QD reads3,14 In Fig. 2, the transmission probability versus enefgy
_ o LVIVAIVIR and lengthL of a double QD is shown for the case that each
t=- 277'% E-z : (®) single dot has two states and that both sites of the single QD
are connected to the reservoir with the coupling matrix ele-
Here|\) and (\| are, respectively, the right and left eigen- ments(7). The figure shows a zero in the transmission prob-
functions ofHg¢. They are bi-orthogondll5]. The transmis-  ability, indeed; see Fig. (B). According to Figs. &) and
sion probability isT=|t/?. 2(d), the positions and decay widths of the eigenstates 2 and
In the double dot system, the leads are attached to thé of the effective Hamiltonian are independent of the length
single dots. The transmission zeros are determined therefote of the wire while those of the other states dependLon
by the spectroscopic properties of the single dots, and not b$tate 3, lying in the middle of the spectrum, crosses the
those of the double dot as a whole. Due to the unitarity of théransmission zero dt=2.75. Here, the decay width of this
S matrix, transmission zeros appear, in the single-channedtate approaches zero for all energies
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= \
' i
1
it .
_ 061 i ‘,‘_“ { FIG. 2. (a) The transmission through a double
g !t ! il \ QD with two identical single QDs that are con-
0.4 i'\ ," i "-. nected by a wire according to Fig. 1. The eigen-
0.2 ,= N i i '\\ values ofHg are shown by full linese;=-1.7,
! ' ,.' A% eg,=—1.4, and e(L)=—1-L/5 (dashed ling v
0 Lt ‘g === =0.3,u=0.1.(b) The modules of the transmission
(b) = -1E5 1 amplitude|t(E,L)| for the same double QD as in
(a) for fixed lengthsL=2.75 (solid line) and L
8 H =4 (dashed ling The energies of the two single
! QDs are shown by circles. The real pét and
6 ; imaginary part(d) of the five eigenvalueg, of
! the effective Hamiltonian as a function af for
| : E=-1.5. Thin solid linez;; dashed linez,; thick
N solid line: z;; dotted line: z;; and dash-dotted
2 . line: z5. At L=2.75 the imaginary part of the third
pod eigenvalue is equal to zero at all energies
-2 -1.5 -1 -8,04 -0.03 -002 -0.01 0
© Re(@) @ Im(z,)

In Fig. 3@, the transmission through a double QD with tween the energies of the single QD. It is caused by the
two identical single QDs is shown, while Fig(l3, shows unitarity of theS matrix[15] with account of the fact that the
the transmission through one of these single Qs lower leads are attached to the single QDs being the constituents of
curves correspond to the modules of the transmission amplthe double dot. Around the enerd, the transmission am-
tude and the upper curves to their phasksthe double QD,  plitude vanishest(Eq)=0. Here RE(E)]~(E-Ey? while
the two single QDs are connected to the leads and to the wikdn[t(E)] ~ {Ret(E)]}/dE~ (E-Ey). It holds therefore for
as shown in Fig. 1. Comparing the two figures, we see thathe modulus of the transmission amplituféE)|~ |E-E|
the transmission zero of the double QD coincides with thanearEy, see Fig. &), and dt(E)/dE|g # 0. Thus the phase
of the single QD. This result is in agreement with the factof the transmission amplitude &t¢F)] jumps by 7 at E,
that the leads are coupled to the single dots. However, ther@ccording to Ref[6]. The geometrical origin of this phase
is a difference between the zeros in both cases as will bpimp can clearly be seen in Fig(d@. By pathing through the
explained in the following. origin of the coordinates Re=0, Im(t)=0, the value ar()

Single QD[Figs. 3b) and 3d)]: The transmission zero of is not defined unambiguously. The phase jumps ky and
the single QD is due to the destructive interference of thehe sign of the phase jump is not observable. We can call
two neighboring resonance staf&s6,14 and is located be- such a zero a first order zero.

FIG. 3. (@ The modulest(E)| (lower curve
and the phase afg/ = (upper curveof the trans-
mission amplitude for a double QD with two
identical single QDs. The parameters are the
same as in Fig. 2, arid=4 as in Fig. 2b), dashed
line. (b) The moduleslt;(E)| (lower curve and
the phase afy)/ 7 (upper curvgof the transmis-
sion amplitude for one of the single QDs that is
part of the double QD considered (a). The en-
ergy positions of the single QD levels are shown

[AS IR 0% B G E «

[t], arg(t)/x

e S by circles in Fig. 2b). (c) Evolution of imaginary
0.8 o M N and real parts of the transmission amplitudef
02 the double QD with energy. At the upper right
*\él_ 0 corner, a zoomed fragment of the evolution is
= o2 shown which demonstrates that the evolution has
o4 cusplike behavior in the vicinity of the transmis-
’ : : sion zero.(d) The same asc) but for the single
_q B S S S S QD. Here, the evolution is of standard type.
-1 -05 0 05 A -1 -0.5 0
Re(t) Reft,)
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FIG. 4. (a) The transmission through a double QD consisting of two identical single QDsdwithstates that are connected by a wire,
versus energy and length of the wire. The eigenvaludsgo@re shown by thin lines while the energfl.)=5/2-2_/3 of the mode in the
wire is shown by the dashed liné) Energy dependence of the modulg®lid line) and of the phase afy/ = (dashed ling of the
transmission amplitude fdr=4. ¢,=-1.75 co$wn/6), n=1,2,...,5,v=0.5,u=0.2. There are 11 resonance states in the double dot, 4
transmission zeros of second order, and no phase jumps.

Double QDJ[Figs. 3a) and 3c)]: The zeros in the trans- Correspondingly, the transmission zero becomes of first or-
mission through the double QD with two identical single der atL=2.75; see Fig. @). That means the resonance state
QDs are of another type. They are of second order since it ihose decay width vanishes when crossing the energy of the
[t(E)| ~ [t(E)|? in the vicinity of the energfE=E,,. It follows  transmission zero, restores the first order of the transmission
thereforet(E) ~ (E-Ey)? nearE,, see Fig. 8). The energy zero as well as the phase jump by
evolution of the real and imaginary parts of the transmission We mention here that resonance states with vanishing de-
amplitude is shown in Fig.(8). In the inset of the figure, the cay width are considered also by other authors. In R&f.
evolution of Rét), Im(t) at the origin of the coordinate sys- they are called “ghost” Fano resonances that appear in a
tem is shown in zoomed resolution. It has a cusplike behavdouble QD attached to leads. In REE7], the appearance of
ior, and there is no phase jump at all. We present in Fig. 3 discrete levels in the continuum is shown to correspond to
the phase behavior of the transmission amplitudeat is a  the occurrence of special localized electron states that appear
combination of two jumps with opposite sign, resulting in adue to a “collapse” of Fano resonances. In atomic physics,
zero phase jump at the poifi=E,. This result agrees with the phenomena related to resonance states with vanishing
the general statement given in RES], that phase jumps do decay width are known as population trappifig]. They
not appear whendt(E)/dE|EO:0 (as in our caseat the en-  result frpm the.inter.play of thg direct coupling Qf the states
ergy E=E,, and their coupling via the continuum under the influence of,

Thus zeros of second order in the single-channel transmig-9-, @ strong laser field. In the case con§|dered in the present
sion of a double QD are given by zeros of first order in thePaper, they appear due to some constraint onto the system as
transmission of the single QD@hat constitute the double
QD) when they are identical. If these two single QDs have
eachN energy levels theiN-1 transmission zeros of second
order will appear in the double QD. A numerical computa-
tion for the particular casé&=5 confirms this conclusion
(Fig. 4). Furthermore, there are no phase jumps at the trans
mission zeros of second order, as can be seen from fy. 4
in complete agreement with the theory.

We consider now the evolution of the modules of the
transmission amplitude and the corresponding phase shiftzﬁ-
when the decay width of one of the states approaches zercz
The results shown in Fig. 5 are performed for the double QD
the transmission of which is shown in Fig. 2 together with
the eigenvalueg, of the effective HamiltoniarH as a
function ofL. The latter ones are related to the poles of$he a0
matrix; see Ref[12]. At L=2.75, the third eigenstate crosses ‘ ‘ ; 1-3.05 ‘ ‘
the energy of the transmission zero, and its decay width P2 Tie 158 156 184 152 15 148 146 144
Im(z;)/2 approaches zero. As long &s*2.75 and In(zs) E

#0, the phase of the transmission amplitude yaries#oy FIG. 5. The energy dependence of the mod(iés)| (bottom

more or less smoothly, according to the phase shift caused ynq of the phase digE)]/  (top) of the transmission amplitude for

a resonance state with a finite decay width. Wher2.75 | =225 2.5 2.75,3.0,3.25. The other parameters are the same as
and Im(z;) — 0, the phase jumps by due to the vanishing those in Fig. 2. The transmission zeros are denoted by stars. They
decay width of the resonance state. Therefore we have alswe of second order. The ordinate is shifted every time by 0.1 when
in this case a phase jump of the transmission amplitude.by L is changed by 0.25. All phases are shiftedsy

25 T T T

N
T

arg(t(E))/

L=2.25
L=2.5
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FIG. 6. The same as Fig. 2, but with two dif-
ferent single QDs:ey =-1.7, &5 =-1.4, g1 =
_1.6, 82R2—1.3.

(d) Im(zk)

a consequence of the unitarity of tisematrix. On the one illustrates very nicely that the transmission zeros originate
hand, the position of the transmission zeros is determined bifom the interference between neighboring resonances. In
the spectroscopic properties of the single dots. On the othdrig. 2, the two single dots have the same spectrum, and the
hand, however, the transmission is resonant and related to ti&nsmission zero appears at the eneligiy+e,)/2. At this
spectroscopic properties of the double QD. These two facténergy, the interference between the two pairs of outer states
cause some nontrivial constraint onto the system in order t6f the double dot is destructive and gives a vanishing contri-

fulfill the condition of unitarity of theS matrix for the double ~ bution to the transmission. In order to achieve the transmis-
QD as a whole. sion zero of the double dot, the width of the state in the

middle of the spectrum has to vanish when it crosses the
energy of the transmission zero as a function of the lehgth
IV. DOUBLE DOT WITH TWO DIFFERENT SINGLE of the wire; see Fig. @). In Fig. 6, however, the spectra of
DOTS COUPLED BY A WIRE the two single QDs are different. The constraint onto the
. . o middle state is therefore reduced: the width of this state re-
Now we .W'" c0n5|der_ the transmission through a OIO'“'blemains different from zero at all. It is reduced only in such
QD consisting of two different single QDs coupled to the 5 anner that the state with this value of the width is able to
wire and to the leads as shown in Fig. 1. The single QD§perfere destructively with the other four states in order to
have each two states, # e, i=1,2; seeFig. 6. achieve the two transmission zeros.
In contrast to the foregoing case, the width of the state in  These results show that the interference between neigh-
the middle of the spectrum does not approach zero; see Fi@oring states is basic for the transmission zeros that appear in
6(d). It remains different from zero for alL. This result double QDs, as well as for the corresponding phase jumps

1 T
i
4
05 A/
B 1 Ig (Jf
= ! i ‘
= ) ;
j=)] 0 ! LI |
® ittty o
= ] :n}’ [
= 1
08 0 WY
f
i

FIG. 7. (@ The transmission [T(E,L)| through a double QD with different single QDs connected by a wire, (@hdhe energy
dependence of the modulésolid line) and of the phase afg/ = (dashed ling of the transmission amplitude for this double QD system at
a fixed lengthL=4 of the wire. The energy levels of the left single QD afe=-1.6,-1.1,-0.6, while those of the right single QD are
e, =—1.4,-0.9,-0.4. Furtheg(L)=1-L/2,v=0.3,u=0.2. The full lines in(a) are the eigenvalues &fg while the dashed line is the energy
e(L). There are seven resonance states of the double dot, four transmission zeros of first order, and the corresponding four phase jumps.
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(Fig. 3). Additionally, the system has the freedom to vary thethrough the double dot jumps by also in this case since the
widths of the resonance states in order to satisfy the unitarityidth of the resonance state that crosses the transmission
of the S matrix. zero at a certain length=L, of the wire vanishes akt,,.
When each single QD hasstates, the number of zeros in Resonance states with vanishing width may be called ghost
the transmission through the double QD &2 1) when the = Fano resonances according to R&f.
spectra of the two single dots are different from one another. WhenM identical quantum dots are connected to a string,
This conclusion is demonstrated by the results of numericahigher-order transmission zeros may arise. An odd number
calculations shown in Fig. 7. We see four transmission zero®! causes a phase jump by while no phase jump is related
of first order. At each of these transmission zeros, the phage the transmission zeros for evevi. The transmission
jumps by -7 (compare Fig. B through such a string of quantum dots jumps, howevergrby
in any case due to the appearance of resonance states with
zero width, as discussed above for the double dot.
V. SUMMARY In our numerical studies, we considered the appearance of

The results presented in the present paper have shown tHﬁé@nsmiSSion zeros in double QDS with the structure shown
transmission zeros in double QDs show some nontrivial bel Fig. 1 and with the coupling matrix elemer®. Since the
havior since two conditions for their appearance have to bééads are attached to the single dots, the transmission zeros
fulfilled which are independent from one another. On the onéiré determined by the requirement of the unitarity of $e
hand, the transmission zeros are related to the spectroscopltatrix with account of the resonance states of the single
features of the single dots due to the fact that full reflection igots. This means that transmission zeros in the double dot
determined by the area of attachment, and the leads are @&Ppear only when at least one of the single dots has at least
tached to the single dots. On the other hand, however, thivo levels. Some further examples may illustrate this behav-
resonance states of the system are characteristic of tH@r When, e.g., one of the single QDs loses its 2D character
double QD as a whole. As a consequence, even the numbBY the manner it is integrated in the double QD system, only
of transmission zeros differs, as a rule, from the number off@nsmission zeros of first order appear in the double QD.
resonance states. This result does not agree with the simpy¢hen both single QDs are included as 1D dots, the double
Fano interference picture where each resonance state creaf@® has no transmission zero at all. In this case, the whole
a zero in the reaction cross section due to its interferencéystem behaves as a 1D chain of sites without any transmis-
with the smooth background. The origin of the zeros in theSion zeros. This last result is in agreement with that obtained
transmission through a double QD is rather strongly related? Ref.[3] by using another method. _
to the interferences between neighboring resonance states. A We underline that the results presented in the present pa-
similar result has been obtained for single dots in Rgf.  Per are received in th& matrix formalism by using the ei-

Moreover, in double dots it may happen that the interfer-genvalues and eigenfunctions of the effective Hamiltonian
ences between neighboring resonances cannot provide thks Of the open QD. One of the characteristic features of this
transmission zero due to some symmetries in the system. @PProach is the strong parametand energydependence of
such a case, the width of one of the resonance states afle decay widths of the resonance states. This strong param-
proaches zero when crossing, as a function of a certain p&fer dependence ensures the unitarity of $hmatrix at all
rameter, the energy at which the transmission vanishes. DuRhergies[16] and causes, e.g., the existence of resonance
to this constraint, the width of at least one of the resonancétates with zero widtiFigs. 2, 5, and 5
states is strongly parameter dependent, and the system as aAS & summary of the results obtained in the present paper
whole is unstable against parameter variations. we state the following. The interferences between neighbor-

The relation between transmission zeros and phase jumpd resonance states as well as the parameter dependence of
can be seen in the fo“owing manner. When the two Sing|éhe widths Of the Stgtes achieve the transmission Ze_rOS_ of
dots have different spectra, the transmission zeros of theouble QDs in the single-channel case. At the transmission
double QD are of first order. Transmission zeros of first orde€ros the phases jump by mostiyut not alway$ .
cause phase jumps by as shown by means of numerical
examples for both single and double dots. When, however, ACKNOWLEDGMENTS
the two single dots are identical, the transmission zeros of Valuable discussions with A. I. Magunov are gratefully
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