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Electric circuit networks equivalent to chaotic quantum billiards
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We consider two electriRLC resonance networks that are equivalent to quantum billiards. In a network of
inductors grounded by capacitors, the eigenvalues of the quantum billiard correspond to the squared resonant
frequencies. In a network of capacitors grounded by inductors, the eigenvalues of the billiard are given by the
inverse of the squared resonant frequencies. In both cases, the local voltages play the role of the wave function
of the quantum billiard. However, unlike for quantum billiards, there is a heat power because of the resistance
of the inductors. In the equivalent chaotic billiards, we derive a distribution of the heat power which describes
well the numerical statistics.
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[. INTRODUCTION electron-phonon interactions. Third, there is an error in the
Electric circuit models representing a quantum particle inmeasgrements of the 'elgenfuncnons by the scanning tunnel-
the one-dimensional potential ing microscopy techn_lque. Fortunately, _nowadays_ there are
physical systems which are mathematically equivalent or
12 Py(x) similar to quantum billiards. First, there is a complete
Tom a2 V(X)ih(x) = Ei(x) (1) equivalence of the two-dimensional Schrédinger equation for
a particle in the quantum billiard to the microwave billiards
were considered first by Kron in 194Bl]. Here, three [5]. The wave function corresponds exactly to the electric
equivalent circuits were treated. The first one contained posfield component of the TM mode of electromagnetic field:
tive and negative resistors, and in each state the currents agx,y) < E,(x,y) with the same Dirichlet boundary condi-
voltages were constant in time. The second and third circuitgons. This equivalence turned out to be very fruitful and
were similar to one another. They consisted of inductors angllowed one to test a lot of predictions in the quantum me-
capacitors, and the currents and voltages were sinusoidal ghanics of billiard{6—8]. Second, we refer to experiments
time. In the same year 1945, Carter and Kf@hperformed  on elastomechanical wave functions in chaotic pla@ed 1],
tests of one-dimensional circuits. Measurements were madghich present an acoustic wave analog for quantum billiards.
of eigenvalues and eigenfunctions for the particular cases of On the other hand, there are models for the equivalent
the harmonic oscillator, the rectangular potential well, therLC circuit of a resonant microwave cavity which establish
double rectangular barrier, the single barrier, and the I’igi(hn ana|ogy near an eigenfrequenm]. Manolache and
rotator. Recently large randoRLC networks with a random Sandu[13] proposed a model for a resonant cavity that is
mixture of capacitances and inductanf&kwere intensively  associated with an equivalent circuit consisting of an infinite
studied with application to many physical phenomésee  set of coupledRLC oscillators. Therefore, there is a bridge
[4] and references thexeln particular, it was shown that petween quantum billiards and a set of cougRicC oscilla-
fluctuations in the spectra are described well by the randorfors[14]. In fact, we show here that, at least, two models of
matrix theory[4]. electric resonance circuitERC9 can be proposed. In the
Here we consider the stationary Schrodinger equation ifirst model shown in Fig. 1, the eigenfunctions correspond to
two-dimensional billiards in the hard wall approximation, voltages and the eigenenergies to the squared eigenfrequen-
_v2 - cies of the ERC. In the second model shown in Fig. 2 the
Vigxy) = epixy), @ eigenenergies of the quantum billiard correspond to the in-
where the Dirchlet boundary condition is implied at the verse of the squared eigenfrequencies of the electric network.
boundaryC of the billiard: The electric network analog systems allow us to measure not
Ye=0 3) only typical quantum variables such as the probability distri-
c— bution and probability current but also the distribution of the
We use Cartesian coordinatesy which are dimensionless heat power in chaotic billiards. Moreover, the intrinsic resis-
via a characteristic size of the billiard. Furthere=E/E,,  tances of theRLC circuit allow one to model decoherence
Ep=%2/2mL2. processes.
Real quantum billiards might been realized as quantum
dots. Hoc\]/vever, studies are 3ifficult to perform be(?ause of !l- EQUIVALENCE BETWEEN ELECTRIC RESONANCE
many experimental demands. First, one has to manufacture CIRCUITS AND QUANTUM BILLIARDS
the billiards as quantum dots, which is hard but possible. In order to map the two-dimensional Schrédinger equa-
Second, the studies might be obscured by Coulomb antion onto the numerical gridx,y)d ay(i,j), 1I=1,2,...N,, |

1539-3755/2005/7%)/04620%7)/$23.00 046205-1 ©2005 The American Physical Society



BULGAKOV, MAKSIMOV, AND SADREEV PHYSICAL REVIEW E 71, 046205(2005
Kirchhoff’'s current law at each site of the network gives

1
Z[Vi,j+1 =Vij*Vijc1i=Vij+ Viej—Vij+ Vi — Vil

1
Gij#1) AR @
whereV, | is the voltage at the sit@, ). One can see that this
equation coincides with the discretized version of the
Schrédinger equatiot¥) with V;; as ¢ ; and the eigenener-

gies as
2
e¢=-L=-1cw?-iRCo= 5115, (9
ZC wo (,l)o

where wozllv“ﬁ and y=R/L are, respectively, the eigen-
FIG. 1. The first model of resonan®.C circuits. frequency and the linewidth of each resonance cwcun._ _
For the second network of electric resonance circuits

=1,2,...N, with g, as the elementary unit length of the grid, shown in Fig. 2 we obtain

we write the operato¥? in the finite difference element ap- 1
proximation[15] Z[Vi,jﬂ =Vij* Vi1~ Vij+ Vieg = Vij+ Vieg — Vil
it W i Y il — A 1
Vzlﬂij ~ ¢|,J+1 ‘//l,] 1 1M+21,J ‘/’l 1) ‘/’l,] ] _ _Vi j =0. (9)
2N 7z

Then the the Schrodinger equati¢®) takes the following Comparing this equation with Eg4) we have
form:

, 2 2
kf=—-—= +—=—+i— 10
lﬁi,j+1+¢i,j—1+¢i+1,j+lﬁi—l,j*‘(agE‘AfWi,j:O- (4) % 7z LCw? Lo o o (10)

Let us consider the electric resonance circuit shown inyhere y=RC. It is surprising, that the eigenvalues of the
Fig. 1. Each link of the two-dimensional network is given by quantum billiard are the inverse of the resonant frequencies
the inductorL with the impedance of the equivalent electric network that is shown in Fig. 2.

) This network opens therefore the interesting possibility of

7 =1L +R (5 studying the high eigenvalues of the quantum billiard by
whereR is the resistance of the inductor andis the fre-  @PPlying a low frequency ac voltage. There is, however, a
quency. Each site of the network is grounded via the capacfimit for the frequencyw> w, because of the coarseness of

tor C with the impedance the network’s grid. _ o
There are many ways to define the boundary conditions
1 (BC9. Let (ic,jc) be the sites that belong to the boundary of
Zc= iwC’ (6) the network. If these sites are grounded, we obtain obviously

the Dirichlet BCs(3) V|c=0. If they are shunted through
capacitors we obtain the free BQghe Neumann BQs
Moreover, if the boundary sites are shunted through resistive
| | . .

———| —=—| inductors, the BCs correspond to mixed ones.

| Ill. ANALOG TO THE CHAOTIC BUNIMOVICH
B (i) T (ij+1) BILLIARD

7= 1 ——| A real electric circuit network has three features which

[] cause it to have some differences from a quantum billiard.
These features ar@d) the discreteness of the resonance cir-
cuits, (2) the tolerance of the electric elements, 48 the
resistance of the inductors. In practice the discreteness does
[ =—| not have any effect fox = 1an where\ is the characteristic
wavelength of the wave function, argg is the elementary
unit of the network.
Numerically we consider an electric network with the
FIG. 2. The second model of resonarREC circuits. shape of a quarter of the Bunimovich billiard. The distribu-
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FIG. 3. The distribution of the real part of the wave function of the quarter Bunimovich billiard mapped onto the redRb&muieuit
with the elementary unig;=0.01,w=1.722 MHz,L=0.1 mH,C=1 nF,R=0. (a) There is no tolerance of the electric circuit elements; the
tolerance equal&h) 1%, (c) 3%, and(d) 5%. Each distribution irfb)—(d) is averaged over 100 realizations of the electric network.

tion of the real part of the wave function of the billiard (right)] that is caused by the damping of the probability den-

mapped onto the electric circuit network widg=1/100 is  sity flowing from the ac sourcésee also Fig. 7 belowThe

shown in Fig. 8a). The wavelength is\=2majwy/w characteristic localization length can be easily estimated

=0.115 with the parameters given in the caption of Fig. 3from Eq.(8):

We take the width of the billiard to be 1. One sees a distinct

deviation of the distribution from the Gaussian one which 477a0\/f

results from multiple interferences on the discrete elements A=\ R
R C

of the network.

It is known that noise, for example, temperature, smooths The distributions of the probability density=|V|?> for
the fluctuations of the transmission through quantum bil-open quantum chaotic billiards have been considered in
liards[16,17]. In the present case the tolerance of the circuitmany articleg 18—22 for the case of zero damping. Here we
elements, the capacity and inductance, plays the role dbllow [22,24 and perform the phase transformatidh
noise. We expect therefore that, by increasing the tolerance,>V exp(i ) =p+ig by which the real and imaginary parts of
we can suppress the fluctuations in the distribution of thehe wave functionv become statistically independent. Intro-
wave function of the discrete electric circuit network. In fact, ducing a parameter for the openness of the billjz],
even a 1% tolerance smooths substantially the distribution of
the wave function as shown in Figsih3-3(d). We consider
that the fluctuations of capacitors and inductors are not cor- €=
related at different sites.

Finally we consider the distribution of the wave function . .
of the electric RLC resonance circuit network when the whereoﬁ:<p2>, 0§:<q2>’ we can write the distribution of the
damping is caused by the resistance of the inductors. In ordéfobability density a$22]
to excite the network we apply an external ac current at a
single site of the network. Figure 4 shows the probability f(p) = w exp(— u?p)lo(uvp) (13
density for two values of the resistanRan a quarter of the
Bunimovich billiard. We see a localization effeffig. 4  with the following notations:

(11

: (12
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IV. THE HEAT POWER

(a)

In open systems the probability current density corre-
sponds to the Poynting vector. This equivalence allows to
test, in particular, the universal current statistics in chaotic
billiards [23,24]. However, in the electric resonance circuit
there are heat losses because of the resistance. The local
power of the heat losses is defined [2p]

P= %{[Re(lx)2 +1m(1,)? + Relly)? +Im(1,)?] = g[“X'Z *Ih

(15

wherel,,l, are the local components of the electric current
that flows between the sites of the electric network:

RIL(i,)) =Visj— Vi), RG] =Vij—Vij. (16

The peculiar property of large electric networks to disperse
(b) electric power, was first noticed by Dykhn@6]. We ap-
proximate the true state with the Berry conjecture

V(X,y) = 2 a exdi(k -1+ ¢l (17)
j

wherea; and ¢; are independent random real variables gnd
are randomly oriented wave vectors of equal length. TWien
is a complex random Gaussian figl@GF in the chaotic
Bunimovich billiard. The derivatives o¥ are also indepen-
dent complex RGFs. The componeisl, form two com-
plex RGFs with the probability density of these fields

12 12 "2 n2
f(lr,|r1|r/1|rr): 1 ex _}(IX +IY + IX +IY )
VYT dntotol 2\ of of
(18

where I,=Rel,), 1)=Rely), 17=Im(l,), 1;=Rely), o7
=12, (5%, of=(1;% (173 In numerical computations we
use the fact that the average over the billiard area

FIG. 4. Views of the probability density in the quarter Bunimov- 1
ich billiard that is mapped onto the resonariieC circuit with the (- y=— J d? -, (19
elementary unitag=0.005, »=0.8611 MHz,L=0.1 mH, C=1 nF. A

Left R=0.5Q, right R=1 Q. The point of connection of the exter-

) . . _ is equivalent to the average over the three complex RGFs
nal ac current is at the maximum of the probability density.

() :f d?V 1,1 F(Re(V), IM(V)) F(15, 15, 15,15) -+ .

11 11
/_L—E ;+E, V—é ;—6. (14) (20)

An example for the distribution of the real part lgfis pre-

sented in Fig. @) which shows that numerically this value
Here, 14(x) is the modified Bessel function of zeroth order. is, in fact, a RGF. The definition of the probability distribu-
This distribution is shown in Fig. 5 by solid lines while the tion (18) relies on the assumption that the Berry function
Rayleigh distributionf(p)=exn(-p) is shown by dashed (17) is isotropic in spacefl;?)=(1;%), (I, =(I;?. The space
lines. The Rayleigh distribution specifies the distribution ofanisotropy of the shape of the billiard affects the statistical
the completely opened system. One can see from Fi@s. 5 anisotropy. However this effect is caused by the boundary
and §b) that the statistics of the probability density follows condition and is of the order dfiph/A~\. HereLp is the
the distribution(13) irrespective of the resistand® How-  length of the billiard perimeter, andl is the characteristic
ever with growing resistance, the distributi¢h3) tends to  wavelength of the wave function in terms of the width of the
the Rayleigh distributiofiFigs. 5c) and %d)]. This tendency billiard. Therefore, for the excitation of the eigenfunction
in the statistics of the probability density can be understoodvith sufficiently high frequency we can use the distribution
since the quantum system is more open when the resistanéenction (18). The numerically computed mean values, given
is larger. in Table I, confirm this conclusin.
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-2

In[f(p)]
Inff(p)]
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FIG. 5. (Color online Distri-

bution of the probability density
of the quarter Bunimovich billiard
mapped onto the resonan&.C

-6

(a)_so 2 4 6 8 ) "o 2 4 6 8 circuit with the same parameters
as in Fig. 4.(a R=0.1Q, Q
plip) Pl =3162, €=0.2488; (b) R=0.30),
Q=1054,6=0.5308;(c) R=0.5(),
0 Q=632, €=0.6996; and(d) R
=1, Q=316, €=0.9164. The
_ ) distribution (13) is shown by the
a = solid line, the Rayleigh distribu-
= s tion f(p)=exp—p) is shown by
- the dashed line.
-6
— -8 .
(© @ o 2 4 6 8
p/p) pKp)
To find the distribution of the heat powét5) it is con- 1 (~ .
venient to begin with the characteristic function f(P) = ZJ da®(a)exp-iaP)
. 2
0(a) = (expliaP)) = <—‘F’;>exp(— uPI(P)sSinh(vPI(PY),  (23)
14
—_ 2 2 royr oo B 2 2
‘f dl,d 'yf(lx"y'lx'ly)eXp('aR[|lx| + ||y| 12). where the formula$l14) take the following form:
() _(@+ad? (o= oD
~= 2 2 + V= 2 2 - (24)
20707 2070

Substituting Eq(18), we obtain
For o2~ o? the distribution takes the very simple form

o= o’ L 4p
@="" 22 Tasi(Z+ Diohari(ort DA H(P) = py2@XP= 2PKP)). 25

22
(22 Even for this case the distribution of the heat power differs

from the distribution of the probability currefi24]. The pa-
The knowledge of the characteristic function allows us torameter(12) of the degree of openness of the billiard can be

find the heat power distribution function written as
0.5 1
04 08 FIG. 6. (Color online (a) Sta-

' ' tistics of the real part of the
=.03 06 component of the electric current
T i I, compared to the Gaussian dis-
T oo = 04 tribution (solid line). (b) Statistics

of the heat power compared to the
0.1 02 distribution (27) (solid line). Here
the quarter Bunimovich billiard is

0 0 taken with »=1.163 MHz, R

- R N ¢ o 1 2 3 4 5 =0.10Q, L=0.1 mH,C=1 nF.

(a) Re(lRe(l) (b) P/(P)
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TABLE I. Numerically computed mean values. (a) @

w  Wavelengthk in terms (1/2)-(1/%) (13- (1?)

P €
(MHz) of the billiard’s width (I)’(2>+<I)’,2> <|,x,2>+<|;2>

0.8611 0.1154 0.095 -0.128  0.2488
1.1623 0.0854 0.056 0.050 0.6103
2
a;
é=—. (26)
o

This expression follows from the Schrddinger equation
which gives 27=Eo?, 207=Eo?.

Then the heat power distribution functiq23) can be
written as

(o= 1t p(w) _M)
P=1"5]8 P) A "ap /|

(27)
The parametek in Eq. (26) is closely related to the phase
rigidity of the wave function, introduced by van Langeh FIG. 7. Top: quantum streamlines in the quarter of the Buni-
al. [27], movich billiard which flow from the pointshown by a starat
2 12 2\2 which the external ac current is applied. Bottom: zoomed part of top
r= (P = (o) = (1 — ) ) (28) figure. Solid lines show the streamline, and dashed and dotted lines
(P +(g))? \1+é€ are the nodal lines of the real and imaginary parts of the wave

function, respectively. The points at which the nodal lines intersect

In terms of the phase rigidity the power distribution takes the, o centers of vorticei29]. The wave function corresponds to Fig.
more elegant form

4 (right) with the same parameters.
iP) 1ep( 2 P)ep< 2 P)
=—\exp-——5— | -exXp—-——5>5— (.
r1/2 1+ r1/2<P> 1- I.1/2 62<P>

(29) billiards. These differences are thediscreteness of the reso-
nance circuits, the tolerance of the electric elements, and the
This distribution is shown in Fig.(6). As can be seen, it resistance of the inductors. We showed numerically that the
nicely describes the numerically computed statistics of thdirst two features conceal each other. The resistance of the

heat power. Introducing the value electric network gives rise to heat that can be described lo-
cally by the heat currents. Assuming that the wave function

P-(P))? . o : .
0"2:,: M (30 in the billiard can be given as a complex random Gaussian
P field we derived the distribution of the heat power that de-
one can derive the relation between this parameter and tH€ribes well the numerical statistics.
parametel26) of the degree of openness The third feature of the electric network, the resistance, is
of principal importance. The resistance of the electric net-
é+1 o : L : :
aﬁ, = - (31) work originates from inelastic interactions of electrons with
(€+1)7? phonons and other electrons. These interactions give rise to

irreversible decoherence processes. With growing resistance,
the wave function becomes localized. We studied how the
probability density and the probability currents evolve with
increasing resistance. As a result, we can conclude that the
resistance causes a violation of the equa¥on=0. Indeed,

Fig. 7 demonstrates an unusual behavior of the quantum
We considered two types of electric circuit networks con-streamlines28,29 with growing resistance. The quantum
sisting of RLC resonant oscillators, in which the voltages streamlines terminate at vortex cores. The vortices serve as

play the role of the quantum wave function. In detail, wesinks for the probability density shown in Fig. (fop) as
considered electric networks with Dirichlet boundary condi-spots. Thus, the resistance of the inductors in the equivalent
tions which are equivalent to a quarter of a Bunimovichelectric networks is a simple mechanism of the deterioration
quantum billiard. However, the electric circuit network hasof the ballistic transport in a manner that is similar to the
three features that can cause some difference from quantuBiittiker mechanisni30].

If the quantum system is fully opee=1, and we have from
Eq. (31) that 63=1/2. For theother limit of a closed quan-
tum system we obtain3=1.

V. SUMMARY AND CONCLUSIONS
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