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We consider two electricRLC resonance networks that are equivalent to quantum billiards. In a network of
inductors grounded by capacitors, the eigenvalues of the quantum billiard correspond to the squared resonant
frequencies. In a network of capacitors grounded by inductors, the eigenvalues of the billiard are given by the
inverse of the squared resonant frequencies. In both cases, the local voltages play the role of the wave function
of the quantum billiard. However, unlike for quantum billiards, there is a heat power because of the resistance
of the inductors. In the equivalent chaotic billiards, we derive a distribution of the heat power which describes
well the numerical statistics.
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I. INTRODUCTION

Electric circuit models representing a quantum particle in
the one-dimensional potential

−
"2

2m

]2csxd
]x2 + Vsxdcsxd = Ecsxd s1d

were considered first by Kron in 1945f1g. Here, three
equivalent circuits were treated. The first one contained posi-
tive and negative resistors, and in each state the currents and
voltages were constant in time. The second and third circuits
were similar to one another. They consisted of inductors and
capacitors, and the currents and voltages were sinusoidal in
time. In the same year 1945, Carter and Kronf2g performed
tests of one-dimensional circuits. Measurements were made
of eigenvalues and eigenfunctions for the particular cases of
the harmonic oscillator, the rectangular potential well, the
double rectangular barrier, the single barrier, and the rigid
rotator. Recently large randomRLCnetworks with a random
mixture of capacitances and inductancesf3g were intensively
studied with application to many physical phenomenassee
f4g and references thered. In particular, it was shown that
fluctuations in the spectra are described well by the random
matrix theoryf4g.

Here we consider the stationary Schrödinger equation in
two-dimensional billiards in the hard wall approximation,

− ¹2csx,yd = ecsx,yd, s2d

where the Dirchlet boundary condition is implied at the
boundaryC of the billiard:

cC = 0. s3d

We use Cartesian coordinatesx,y which are dimensionless
via a characteristic sizeL of the billiard. Furthere=E/E0,
E0="2/2mL2.

Real quantum billiards might been realized as quantum
dots. However, studies are difficult to perform because of
many experimental demands. First, one has to manufacture
the billiards as quantum dots, which is hard but possible.
Second, the studies might be obscured by Coulomb and

electron-phonon interactions. Third, there is an error in the
measurements of the eigenfunctions by the scanning tunnel-
ing microscopy technique. Fortunately, nowadays there are
physical systems which are mathematically equivalent or
similar to quantum billiards. First, there is a complete
equivalence of the two-dimensional Schrödinger equation for
a particle in the quantum billiard to the microwave billiards
f5g. The wave function corresponds exactly to the electric
field component of the TM mode of electromagnetic field:
csx,yd↔Ezsx,yd with the same Dirichlet boundary condi-
tions. This equivalence turned out to be very fruitful and
allowed one to test a lot of predictions in the quantum me-
chanics of billiardsf6–8g. Second, we refer to experiments
on elastomechanical wave functions in chaotic platesf9–11g,
which present an acoustic wave analog for quantum billiards.

On the other hand, there are models for the equivalent
RLC circuit of a resonant microwave cavity which establish
an analogy near an eigenfrequencyf12g. Manolache and
Sanduf13g proposed a model for a resonant cavity that is
associated with an equivalent circuit consisting of an infinite
set of coupledRLC oscillators. Therefore, there is a bridge
between quantum billiards and a set of coupledRLCoscilla-
tors f14g. In fact, we show here that, at least, two models of
electric resonance circuitssERCsd can be proposed. In the
first model shown in Fig. 1, the eigenfunctions correspond to
voltages and the eigenenergies to the squared eigenfrequen-
cies of the ERC. In the second model shown in Fig. 2 the
eigenenergies of the quantum billiard correspond to the in-
verse of the squared eigenfrequencies of the electric network.
The electric network analog systems allow us to measure not
only typical quantum variables such as the probability distri-
bution and probability current but also the distribution of the
heat power in chaotic billiards. Moreover, the intrinsic resis-
tances of theRLC circuit allow one to model decoherence
processes.

II. EQUIVALENCE BETWEEN ELECTRIC RESONANCE
CIRCUITS AND QUANTUM BILLIARDS

In order to map the two-dimensional Schrödinger equa-
tion onto the numerical gridsx,yd⇒a0si , jd, i =1,2,…Nx, j
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=1,2,…Ny with a0 as the elementary unit length of the grid,
we write the operator¹2 in the finite difference element ap-
proximationf15g

¹2ci j <
ci,j+1 + ci,j−1 + ci+1,j + ci−1,j − 4ci,j

a0
2 .

Then the the Schrödinger equations2d takes the following
form:

ci,j+1 + ci,j−1 + ci+1,j + ci−1,j + sa0
2E − 4dci,j = 0. s4d

Let us consider the electric resonance circuit shown in
Fig. 1. Each link of the two-dimensional network is given by
the inductorL with the impedance

zL = ivL + R s5d

whereR is the resistance of the inductor andv is the fre-
quency. Each site of the network is grounded via the capaci-
tor C with the impedance

zC =
1

ivC
. s6d

Kirchhoff’s current law at each site of the network gives

1

zL
fVi,j+1 − Vi,j + Vi,j−1 − Vi,j + Vi+1,j − Vi,j + Vi−1,j − Vi,jg

−
1

zC
Vi,j = 0, s7d

whereVi,j is the voltage at the sitesi , jd. One can see that this
equation coincides with the discretized version of the
Schrödinger equations4d with Vi,j asci,j and the eigenener-
gies as

a0
2k2 = −

zL

zC
= LCv2 − iRCv =

v2

v0
2 − i

gv

v0
2 , s8d

wherev0=1/ÎLC and g=R/L are, respectively, the eigen-
frequency and the linewidth of each resonance circuit.

For the second network of electric resonance circuits
shown in Fig. 2 we obtain

1

zC
fVi,j+1 − Vi,j + Vi,j−1 − Vi,j + Vi+1,j − Vi,j + Vi−1,j − Vi,jg

−
1

zL
Vi,j = 0. s9d

Comparing this equation with Eq.s4d we have

a0
2k2 = −

zC

zL
=

1

LCv2 +
iR

Lv
=

v0
2

v2 + i
gv0

2

v
s10d

where g=RC. It is surprising, that the eigenvalues of the
quantum billiard are the inverse of the resonant frequencies
of the equivalent electric network that is shown in Fig. 2.
This network opens therefore the interesting possibility of
studying the high eigenvalues of the quantum billiard by
applying a low frequency ac voltage. There is, however, a
limit for the frequencyv@v0 because of the coarseness of
the network’s grid.

There are many ways to define the boundary conditions
sBCsd. Let siC, jCd be the sites that belong to the boundary of
the network. If these sites are grounded, we obtain obviously
the Dirichlet BCss3d VuC=0. If they are shunted through
capacitors we obtain the free BCssthe Neumann BCsd.
Moreover, if the boundary sites are shunted through resistive
inductors, the BCs correspond to mixed ones.

III. ANALOG TO THE CHAOTIC BUNIMOVICH
BILLIARD

A real electric circuit network has three features which
cause it to have some differences from a quantum billiard.
These features ares1d the discreteness of the resonance cir-
cuits, s2d the tolerance of the electric elements, ands3d the
resistance of the inductors. In practice the discreteness does
not have any effect forlù10a0

wherel is the characteristic
wavelength of the wave function, anda0 is the elementary
unit of the network.

Numerically we consider an electric network with the
shape of a quarter of the Bunimovich billiard. The distribu-

FIG. 1. The first model of resonanceRLC circuits.

FIG. 2. The second model of resonanceRLC circuits.
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tion of the real part of the wave function of the billiard
mapped onto the electric circuit network witha0=1/100 is
shown in Fig. 3sad. The wavelength isl=2pa0v0/v
=0.115 with the parameters given in the caption of Fig. 3.
We take the width of the billiard to be 1. One sees a distinct
deviation of the distribution from the Gaussian one which
results from multiple interferences on the discrete elements
of the network.

It is known that noise, for example, temperature, smooths
the fluctuations of the transmission through quantum bil-
liards f16,17g. In the present case the tolerance of the circuit
elements, the capacity and inductance, plays the role of
noise. We expect therefore that, by increasing the tolerance,
we can suppress the fluctuations in the distribution of the
wave function of the discrete electric circuit network. In fact,
even a 1% tolerance smooths substantially the distribution of
the wave function as shown in Figs. 3sbd–3sdd. We consider
that the fluctuations of capacitors and inductors are not cor-
related at different sites.

Finally we consider the distribution of the wave function
of the electric RLC resonance circuit network when the
damping is caused by the resistance of the inductors. In order
to excite the network we apply an external ac current at a
single site of the network. Figure 4 shows the probability
density for two values of the resistanceR in a quarter of the
Bunimovich billiard. We see a localization effectfFig. 4

srightdg that is caused by the damping of the probability den-
sity flowing from the ac sourcessee also Fig. 7 belowd. The
characteristic localization length can be easily estimated
from Eq. s8d:

lR <
4pa0

R
ÎL

C
. s11d

The distributions of the probability densityr= uVu2 for
open quantum chaotic billiards have been considered in
many articlesf18–22g for the case of zero damping. Here we
follow f22,24g and perform the phase transformationV
→V expsiud=p+ iq by which the real and imaginary parts of
the wave functionV become statistically independent. Intro-
ducing a parameter for the openness of the billiardf24g,

e2 =
sq

2

sp
2 , s12d

wheresp
2=kp2l, sq

2=kq2l, we can write the distribution of the
probability density asf22g

fsrd = m exps− m2rdI0smnrd s13d

with the following notations:

FIG. 3. The distribution of the real part of the wave function of the quarter Bunimovich billiard mapped onto the resonanceRLCcircuit
with the elementary unita0=0.01,v=1.722 MHz,L=0.1 mH,C=1 nF,R=0. sad There is no tolerance of the electric circuit elements; the
tolerance equalssbd 1%, scd 3%, andsdd 5%. Each distribution insbd–sdd is averaged over 100 realizations of the electric network.
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m =
1

2
S1

e
+ eD, n =

1

2
S1

e
− eD . s14d

Here, I0sxd is the modified Bessel function of zeroth order.
This distribution is shown in Fig. 5 by solid lines while the
Rayleigh distribution fsrd=exps−rd is shown by dashed
lines. The Rayleigh distribution specifies the distribution of
the completely opened system. One can see from Figs. 5sad
and 5sbd that the statistics of the probability density follows
the distributions13d irrespective of the resistanceR. How-
ever with growing resistance, the distributions13d tends to
the Rayleigh distributionfFigs. 5scd and 5sddg. This tendency
in the statistics of the probability density can be understood
since the quantum system is more open when the resistance
is larger.

IV. THE HEAT POWER

In open systems the probability current density corre-
sponds to the Poynting vector. This equivalence allows to
test, in particular, the universal current statistics in chaotic
billiards f23,24g. However, in the electric resonance circuit
there are heat losses because of the resistance. The local
power of the heat losses is defined byf25g

P =
R

2
fResIxd2 + ImsIxd2 + ResIyd2 + ImsIyd2g =

R

2
fuIxu2 + uIyu2g,

s15d

where Ix,Iy are the local components of the electric current
that flows between the sites of the electric network:

RIxsi, jd = Vi+1,j − Vi,j, RIysi, jd = Vi,j+1 − Vi,j . s16d

The peculiar property of large electric networks to disperse
electric power, was first noticed by Dykhnef26g. We ap-
proximate the true state with the Berry conjecture

Vsx,yd = o
j

aj expfisk · r + f jdg s17d

whereaj andf j are independent random real variables andkj
are randomly oriented wave vectors of equal length. ThenV
is a complex random Gaussian fieldsRGFd in the chaotic
Bunimovich billiard. The derivatives ofV are also indepen-
dent complex RGFs. The componentsIx,Iy form two com-
plex RGFs with the probability density of these fields

fsIx8,Iy8,Ix9,Iy9d =
1

4p2sr
2si

2expH−
1

2
S Ix8

2 + Iy8
2

sr
2 +

Ix9
2 + Iy9

2

si
2 DJ

s18d

where Ix8=ResIxd, Iy8=ResIyd, Ix9=ImsIxd, Iy9=ResIyd, sr
2

=kIx8
2l ,kIy8

2l, si
2=kIx9

2l ,kIy9
2l. In numerical computations we

use the fact that the average over the billiard area

k¯l =
1

A
E d2x ¯ , s19d

is equivalent to the average over the three complex RGFs

k¯l =E d2V d2Ixd
2Iyf„ResVd,ImsVd…fsIx8,Iy8,Ix9,Iy9d ¯ .

s20d

An example for the distribution of the real part ofIx is pre-
sented in Fig. 6sad which shows that numerically this value
is, in fact, a RGF. The definition of the probability distribu-
tion s18d relies on the assumption that the Berry function
s17d is isotropic in space:kIx8

2l=kIy8
2l, kIx9

2l=kIy9
2l. The space

anisotropy of the shape of the billiard affects the statistical
anisotropy. However this effect is caused by the boundary
condition and is of the order ofLPl /A,l. HereLP is the
length of the billiard perimeter, andl is the characteristic
wavelength of the wave function in terms of the width of the
billiard. Therefore, for the excitation of the eigenfunction
with sufficiently high frequency we can use the distribution
function s18d. The numerically computed mean values, given
in Table I, confirm this conclusin.

FIG. 4. Views of the probability density in the quarter Bunimov-
ich billiard that is mapped onto the resonanceRLC circuit with the
elementary unita0=0.005,v=0.8611 MHz,L=0.1 mH, C=1 nF.
Left R=0.5 V, right R=1 V. The point of connection of the exter-
nal ac current is at the maximum of the probability density.
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To find the distribution of the heat powers15d it is con-
venient to begin with the characteristic function

Qsad = kexpsiaPdl

=E d2Ixd
2IyfsIx8,Iy8,Ix9,Iy9dexpsiaRfuIxu2 + uIyu2g/2d.

s21d

Substituting Eq.s18d, we obtain

Qsad = −
ssr

2 + si
2d2

sr
2si

2

1

fa + issr
2 + si

2d/sr
2gfa + issr

2 + si
2d/si

2g
.

s22d

The knowledge of the characteristic function allows us to
find the heat power distribution function

fsPd =
1

2p
E

−`

`

da Qsadexps− iaPd

=
2m

nkPl
exps− mP/kPldsinhsnP/kPld, s23d

where the formulass14d take the following form:

m =
ssr

2 + si
2d2

2sr
2si

2 , n =
ssr

2 − si
2d2

2sr
2si

2 . s24d

For sr
2<si

2 the distribution takes the very simple form

fsPd =
4P

kPl2exps− 2P/kPld. s25d

Even for this case the distribution of the heat power differs
from the distribution of the probability currentf24g. The pa-
rameters12d of the degree of openness of the billiard can be
written as

FIG. 5. sColor onlined Distri-
bution of the probability density
of the quarter Bunimovich billiard
mapped onto the resonanceRLC
circuit with the same parameters
as in Fig. 4. sad R=0.1 V, Q
=3162, e=0.2488; sbd R=0.3 V,
Q=1054,e=0.5308;scd R=0.5 V,
Q=632, e=0.6996; and sdd R
=1 V, Q=316, e=0.9164. The
distribution s13d is shown by the
solid line, the Rayleigh distribu-
tion fsrd=exps−rd is shown by
the dashed line.

FIG. 6. sColor onlined sad Sta-
tistics of the real part of thex
component of the electric current
Ix compared to the Gaussian dis-
tribution ssolid lined. sbd Statistics
of the heat power compared to the
distribution s27d ssolid lined. Here
the quarter Bunimovich billiard is
taken with v=1.163 MHz, R
=0.1 V, L=0.1 mH,C=1 nF.
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e2 =
si

2

sr
2 . s26d

This expression follows from the Schrödinger equation
which gives 2sr

2=Esp
2, 2si

2=Esq
2.

Then the heat power distribution functions23d can be
written as

fsPd =
1 + e2

1 − e2HexpS−
s1 + e2dP

kPl
D − expS−

s1 + e2dP
e2kPl

DJ .

s27d

The parametere in Eq. s26d is closely related to the phase
rigidity of the wave function, introduced by van Langenet
al. f27g,

r =
skp2l − kq2ld2

skp2l + kq2ld2 = S1 − e2

1 + e2D2

. s28d

In terms of the phase rigidity the power distribution takes the
more elegant form

fsPd =
1

r1/2HexpS−
2

1 + r1/2

P

kPlD − expS−
2

1 − r1/2

P

e2kPlDJ .

s29d

This distribution is shown in Fig. 6sbd. As can be seen, it
nicely describes the numerically computed statistics of the
heat power. Introducing the value

sP
2 =

ŠsP − kPld2
‹

kPl2 , s30d

one can derive the relation between this parameter and the
parameters26d of the degree of openness

sP
2 =

e4 + 1

se2 + 1d2 . s31d

If the quantum system is fully open,e=1, and we have from
Eq. s31d that sP

2 =1/2. For theother limit of a closed quan-
tum system we obtainsP

2 =1.

V. SUMMARY AND CONCLUSIONS

We considered two types of electric circuit networks con-
sisting of RLC resonant oscillators, in which the voltages
play the role of the quantum wave function. In detail, we
considered electric networks with Dirichlet boundary condi-
tions which are equivalent to a quarter of a Bunimovich
quantum billiard. However, the electric circuit network has
three features that can cause some difference from quantum

billiards. These differences are thediscreteness of the reso-
nance circuits, the tolerance of the electric elements, and the
resistance of the inductors. We showed numerically that the
first two features conceal each other. The resistance of the
electric network gives rise to heat that can be described lo-
cally by the heat currents. Assuming that the wave function
in the billiard can be given as a complex random Gaussian
field we derived the distribution of the heat power that de-
scribes well the numerical statistics.

The third feature of the electric network, the resistance, is
of principal importance. The resistance of the electric net-
work originates from inelastic interactions of electrons with
phonons and other electrons. These interactions give rise to
irreversible decoherence processes. With growing resistance,
the wave function becomes localized. We studied how the
probability density and the probability currents evolve with
increasing resistance. As a result, we can conclude that the
resistance causes a violation of the equation= · j=0. Indeed,
Fig. 7 demonstrates an unusual behavior of the quantum
streamlinesf28,29g with growing resistance. The quantum
streamlines terminate at vortex cores. The vortices serve as
sinks for the probability density shown in Fig. 7stopd as
spots. Thus, the resistance of the inductors in the equivalent
electric networks is a simple mechanism of the deterioration
of the ballistic transport in a manner that is similar to the
Büttiker mechanismf30g.

TABLE I. Numerically computed mean values.

v
sMHzd

Wavelengthl in terms
of the billiard’s width

kIx8
2l−kIy8

2l

kIx8
2l+kIy8

2l

kIx9
2l−kIy9

2l

kIx9
2l+kIy9

2l
e

0.8611 0.1154 0.095 −0.128 0.2488

1.1623 0.0854 0.056 0.050 0.6103

FIG. 7. Top: quantum streamlines in the quarter of the Buni-
movich billiard which flow from the pointsshown by a stard at
which the external ac current is applied. Bottom: zoomed part of top
figure. Solid lines show the streamline, and dashed and dotted lines
are the nodal lines of the real and imaginary parts of the wave
function, respectively. The points at which the nodal lines intersect
are centers of vorticesf29g. The wave function corresponds to Fig.
4 srightd with the same parameters.
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