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Abstract—The problem regarding the mass dimension D of mesogenic molecules as atomic clusters is formu-
lated and solved using computer simulation and analytical calculations. For a large number of compounds
belonging to different chemical classes, it is shown that the cores of discotic lacunar (rodlike, lathlike) mole-
cules forming nematic or columnar discotic (calamitic) phases have a fractional dimension 1 < Dc < 2 (Dc ≈ 1).
The dependences of the dimension Dc on the symmetry, the conformation, and the structural–chemical features
of the molecular core are determined. It is demonstrated that, in the region of side flexible chains in molecules
of both types, the dimension Dch can be either smaller or larger than unity, depending on the chain conforma-
tion. An analytical expression accounting for the results of numerical experiments is obtained for the dimension
Dch. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In recent years, considerable attention has been
focused on the physical and chemical properties of
nanoparticles and their clusters with a fractional mass
dimension D < 3 [1, 2]. In this respect, investigation
into the dimension of the molecules treated as atomic
clusters is an important problem. This problem is of
special interest for mesogenic molecules that consist of
tens or hundreds of atoms and are characterized by a
wide variety of chemical structures and shapes [3–9].
These factors are primarily responsible for the charac-
ter of molecular packing in the condensed state, the
anisotropy of the local coordination environment of
molecules, and the type of liquid crystals (calamitic,
discotic) and their mesophases (nematic, smectic,
columnar).

The shape of the molecules reflects the distribution
of force centers throughout the molecular volume and
affects the anisotropy of intermolecular interactions,
the intermolecular correlations, the degree of orienta-
tional ordering of the molecules in a liquid crystal, the
interrelation between the orientational and conforma-
tional degrees of freedom of the molecules, and the
character of phase transitions. For example, discotic
molecules, as a rule, have a planar central aromatic core
with radial, relatively long, flexible aliphatic chains [5,
10]. The loose (lacunar [1]) structure of discotic mole-
cules with the statistical symmetry axis Ck (k ≥ 2) is
characterized by large-sized lacunas (holes, cavities)
between the core fragments or side chains and a large
free volume per chain. It should be noted that the free
volume increases with an increase in the chain length.
This structure enhances the high conformational mobil-
ity of the chains. In turn, the high conformational
mobility manifests itself both in the temperature depen-
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dence of the orientational order parameter of molecules
S(T) for discotic nematic liquid crystals ND [11, 12] and
in a decrease in the orientational order parameter S in
the phases ND and NDre with an increase in the chain
length [13, 14].

The difference between the mass dimensions D of
discotic lacunar molecules in the regions of the molec-
ular core and side chains can account for the large dif-
ferences between the orientational order parameters S,
which are observed experimentally [11–14] and pre-
dicted by modern variants of the molecular-statistical
theory and computer simulation for discotic nematic
liquid crystals ND (see [14] and references therein). In a
recent paper [14], I analyzed these data, formulated a
problem regarding the dimension of real discotic mole-
cules, and made the assumption that the mass dimen-
sion D of these molecules is less than 2.

The purpose of this paper is to investigate both
numerically and analytically the mass dimension for a
representative set of known lathlike and lacunar
mesogenic molecules of different chemical classes and
to elucidate how the dimension of these molecules Dc

(in the core region) and Dch (in the region of side
chains) depends on the symmetry, the size, the struc-
tural–chemical features, the conformation of molecular
core fragments, and the length and conformation of the
chains. The specific features of the objects under inves-
tigation and the technique of their computer simulation
are considered in Section 2. The results of numerical
treatment of the dimension Dc are presented and ana-
lyzed in Section 3. The results of numerical and analyt-
ical investigations of the dimension Dch are discussed in
Section 4. The main results obtained in this work and
the conclusions drawn are briefly summarized in Sec-
tion 5.
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Objects of investigation.
2. OBJECTS OF INVESTIGATION
AND THEIR MODELS

The structural formulas of the studied compounds
are presented in Fig. 1. These are the symmetrical
molecules NPh [4, 7], nNPh [4, 15], and nONPh; mol-
ecules 1 and 7 [15] with rodlike or lathlike cores, which
are abundant among calamitic liquid crystals; discotic
molecules 2 [3, 16] and 3 [3, 4, 6]; model molecule 4
(for comparison with molecules 1–3); and well-known
molecules 5, 6, 8, 9a–9d, and 10a–10c [3–7, 10], which
form nematic and (or) columnar liquid-crystal phases.
The orientational ordering of the usual, reentrant, or
inverse nematic liquid-crystal phases was investigated
for a number of homologs of compounds 8 [11, 12], 9c
[14], and 10b [12, 13]. The chosen set include com-
pounds with discotic molecules that have twofold (3,
5), threefold (2, 9, 10), and sixfold (4, 6, 8) statistical
PHYSICS OF THE SOLID STATE      Vol. 47      No. 2      200
symmetry axes Ck. It should be noted that, in each of the
three core fragments related by the symmetry axis C3 in
molecules 10a–10c, two Φ fragments occupy symmet-
rically nonequivalent positions. The discotic molecules
under consideration differ both in the structure, size,
and lacunarity of the central core fragment and in the
structure of the Φ1–Φ5 fragments whose attachment
differently increases the transverse size of the core and
the degree of its lacunarity.

In order to avoid details that are immaterial for the
qualitative and quantitative results of the analysis, each
molecule is simulated by a cluster consisting of identi-
cal spherical atoms of radius r whose centers coincide
with the centers of carbon and oxygen atoms in the core
and alkyl (alkyloxy) chains of the molecule without
regard for the differences between the van der Waals
radii of the carbon and oxygen atoms and the CH, CH2,
5
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Fig. 2. Conformers of the side molecular fragments in the studied compounds.
and CH3 groups. The lengths of all the bonds C–C,
C≡C, C–O, and C=O are assumed to be l = 2r. All bond
angles in the molecular cores and in the Φk fragments
are taken to be equal to 120° (except for molecules
10a–10c with regular pentagons and hexagons in the
core), and the C–C–C bond angles in the alkyl chains
are assumed to be equal to a tetrahedral angle of
109.47°. Hereafter, all the linear sizes will be given in
conventional units that correspond to r = 3.5.

The main conformations of the Φk fragments with
six (five) carbon atoms in the alkyl (alkyloxy) chains
are shown in Fig. 2. The other conformations obtained
from the main conformations by varying either the
angle ϕ1 between the planes of the C(O)O group and
the O-phenyl ring of the core or the angle ϕ2 between
the plane of the carbon backbone of the side alkyl (alky-
loxy) chain in the trans conformation and the plane of
the phenyl ring or the C(O)O group bonded to this
chain are listed in Table 1. For all the conformers con-
taining the Φ4 fragment, the plane of the C(O)O group
P

coincides with the plane of the C-phenyl ring bound to
this group. In what follows, we will use designations of
the type 9b(1/3). This designation means that, in each
of the three core fragments in molecule 9b, one Φ3 frag-
ment has conformation 9b(1) and another Φ3 fragment
has conformation 9b(3); in this case, identical conform-
ers in each core fragment are related by the molecular
symmetry axis C3. It should be noted that the results
given below do not depend on the angle ϕ1(ϕ2) for mol-
ecules 1–6 [nNPh, nOPh, 7, 8, conformers 9b(1), 9b(2),
9c(1), 9c(2)] or on the dihedral angles between the phe-
nyl rings for molecules NPh, nNPh, and nOPh.

The number N(R) of spherical atoms inside the
sphere of radius R whose center coincides with the cen-
ter of the molecular core is counted in the numerical
experiment. Since the atoms have identical mass, the
mass M(R) of the part of the molecule within the sphere
varies as M(R) ~ N(R). For the Φ3 (Φ4, Φ5) fragments,
it is assumed that the C(O)O group (phenyl ring) enters
into the composition of the molecular core. The core
HYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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radii Rc and the numbers of atoms in the cores Nc =
N(Rc) for the conformers of the compounds under con-
sideration are presented in Table 2.

3. DIMENSION OF MOLECULES
IN THE CORE REGION

The dependences of logN(R) on logR are character-
ized by the derivative

(1)

For all the compounds and their conformers under
investigation, the dependences of logN(R) on logR

D R( ) d N R( )ln
d Rln

----------------------.=
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Fig. 3. Dependence N(R) for NPh molecules. The inset
shows the dependences of the parameters ρc and Dc on the
number N of phenyl rings in the same molecules.
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exhibit two linear portions with different derivatives
D(R) ≈ const in the core region (R ≤ Rc) and the region
of side chains (R > Rc). In the core region, these depen-
dences in all the cases are described well by the rela-
tionship

(2)

with constant coefficients ac and Dc. The observed devi-
ations of a number of points from this dependence are
primarily caused by the inclusion of the values of R for
which the quantity N(R) changes by an integral number
of atoms. The use of a continuous function M(R) leads
to a smoothing of these deviations. In the range R ≤ Rc,

N R( )log ac Dc Rlog+=
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Fig. 4. Dependences N(R) for compounds 1–8. The inset
shows the dependences of the parameter Dc on the number
q of radial core fragments for molecules 1–8.
Table 1.  Dihedral angles of the conformers under investigation

Conformer 2(1) 2(2) 6(1) 6(2) 9a 9b(1) 9b(2)

ϕ1 0–2π 0–2π – 0

ϕ2 0 ±π 0 ±π 0 0 ±π
Conformer 9b(3) 9b(4) 9c(1) 9c(2) 9c(3) 9c(4) 9d(1)

ϕ1 ±π 0 ±π –

ϕ2 0 ±π 0 ±π 0 ±π 0

Conformer 9d(2) 10a(1) 10a(2) 10a(3) 10a(4) 10b(1) 10b(2)

ϕ1 – – 0

ϕ2 ±π 0 ±π 0 ±π 0 ±π
Conformer 10b(3) 10b(4) 10b(5) 10b(6) 10b(7) 10b(8) 10c(1)

ϕ1 ±π 0 ±π 0

ϕ2 ±π 0 0 ±π ±π 0 0

Conformer 10c(2) 10c(3) 10c(4) 10c(5) 10c(6) 10c(7) 10c(8)

ϕ1 0 ±π 0 ±π
ϕ2 ±π ±π 0 0 ±π ±π 0
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the dependence N(R) can be approximated by the
expression

(3)

with the fractional dimension D = Dc. The prefactor ρc

characterizes the density of infill of the molecular core
with atoms and depends on the shape and chemical
structure of the core. The coefficients of relationship (2)
were determined using the option of the Statistics (Lin-
ear Regression) of the Sigma Plot 8.0 software pack-
age. The parameters ρc and Dc for the compounds under
investigation are given in Table 2. The parameters Dc

for molecules NPh, nNPh, and nONPh with N ≥ 3 are
obtained by ignoring the data at R = 7 and N = 2.

It can be seen from Fig. 3 and the data presented in
Table 2 that the values of Dc for molecules NPh, nNPh,
nONPh (N ≥ 3), and 1 are close to unity. This is consis-
tent with the linear shape of these molecules. A
decrease in the width of molecule 7 (the appearance of
lacunas) between the central and terminal phenyl rings
of the core results in a decrease in the parameter Dc to
0.885, whereas the presence of two adjacent planar
phenyl rings in the cores of molecules 2Ph, n2Ph, and
nO2Ph leads to a considerable increase in the parame-
ter Dc. As a result, the cores of these molecules become
similar to the cores of discotic molecules. The even–
odd alternation of the parameters ρc(N) and Dc(N) for
molecules NPh with a variation in the number N of phe-
nyl rings (see inset to Fig. 3) indicates a difference
between the properties of the first compounds with even
and odd values of N in this series and also a high sensi-
tivity of the parameters ρc and Dc to similar structural
features of the core.

Judging from the parameters 1 < Dc < 2 obtained for
the discotic compounds, the disklike shape acceptable
in the literature for their molecules does not correspond
to the actual shape, because the disklike (disk-shaped)
molecules should be described by expression (3) at
Dc = 2. It seems likely that the loose structure of dis-

N R( ) ρc R/r( )
Dc=

0.8

1.0

ρ c

Dc

1.2 1.4 1.6

1.2

1.6

2.0

2Ph

4Ph

6Ph

Fig. 5. Correlation between the parameters ρc and Dc in
expression (3) for the studied compounds.
P

cotic molecules can be more precisely defined as a lacu-
nar structure.

Let us consider the dependence of the parameter Dc

on the number q of radial core fragments and the
parameters Rc and Nc. At Rc = const, an increase in the
parameter Nc and the number q of Φ4 fragments in the
series of compounds 1–2–3–4 leads to an almost linear
increase in the parameter Dc(q) and an irregular change
in the index k of the symmetry axis Ck of the molecule.
A similar increase in the parameter Dc is observed with
an increase in the number of Φ5 (Φ3) fragments from
two (four) to six upon transition 7  8 (5  6).
Note that the slopes of the curves Dc(q) in the above
three cases are close to each other (see inset to Fig. 4).
Owing to the denser infill of the circle of radius R with
core fragments due to an increase in their number q, the
parameter Dc tends to 2.

For q = const, an increase in the parameter Rc in the
series 6–4–8 (5–3) is accompanied by an increase in the
size of lacunas between the core fragments and a
decrease in the parameter Dc. A similar situation is
observed in the series 9b(1, 2)–9c(1, 2)–9d(1, 2). An
increase in the lacuna size and the corresponding
decrease in the parameter Dc also occur upon transition
9a  10a (9b  10b, 9c  10c) for molecules
containing identical substituting fragments Φ due to the
larger parameters Rc and the greater looseness of the
unsubstituted core of molecule 10 as compared to the
core of unsubstituted molecule 9. However, the transi-
tion from conformer 10b to conformer 10c or 9c leads
to an increase in the parameter Dc, because the relative
increase in Nc is larger than that in Rc.

For Nc = const and q = const, the parameters Rc and
Dc can depend on the conformation of the substituting
side fragments Φ. The transitions 9b(1, 2)  9b(3, 4),
9c(1, 2)  9c(1/3, 2/3, 1/4, 2/4), 10b(1/5, 2/6) 
10b(1/8, 2/7), and 10c(1/5, 2/6)  10c(1/8, 2/7) are
accompanied by an increase in the parameter Rc and a
decrease in the quantity Dc. On the other hand, the tran-
sitions 9b(3, 4)  9b(1/3, 2/3, 1/4, 2/4) and 10b(1/8,
2/7)  10b(3/6, 4/5) result in an increase in the
parameter Dc for the former transitions and in a
decrease in this parameter for the latter transitions at the
same values of Rc. In these cases, when the parameter
Rc varies insignificantly, the quantity Dc is predomi-
nantly determined by the density of infill of the core
area with atoms of the substituting fragments Φ.

The correlation between the parameters ρc and Dc in
expression (3) for all the studied compounds and their
conformers is illustrated in Fig. 5. Without regard for
the molecules NPh (N = 2, 4, 6), the dependence shown
in Fig. 5 can be approximated by the relationship

(4)

with parameters b = 3.186 and f = 1.378 and a correla-
tion coefficient of 0.985. At Dc = 1, the density ρc =

ρc b f Dc–=
HYSICS OF THE SOLID STATE      Vol. 47      No. 2      2005
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1.808 exceeds ρc = 1 for a linear chain of spheres and
reflects the specific features of the chemical structure of
the cores in lathlike mesogenic molecules of types 1
and 7 with planar bridging fragments and (or) phenyl
rings, which are responsible for the increase in the
parameter ρc. At Dc = 2, the atomic packing density in
the cores of the model molecules under consideration
ρc = 0.430 is half as high as the density ρc = π/(12)1/2 ≈
0.907 for a close hexagonal packing of spheres in the
plane at R @ r [2]. For molecules NPh (N = 2, 4, 6), the
dependence shown in Fig. 5 can be approximated by
relationship (4) with parameters b = 3.349 and f = 1.657
and a correlation coefficient of 0.999. According to this
dependence, the density ρc(Dc = 1) = 1.692 appears to
be close to that for the other compounds.

4. DIMENSION OF MOLECULES
IN THE REGION OF SIDE CHAINS

It can be seen from Figs. 4 and 6 that, for all the
studied compounds and their conformers, the depen-
dence of logN(R) on logR in the range R > Rc exhibits
an almost linear behavior and, to a first approximation,
can be represented in the form

(5)

with constant parameters ach and Dch. The effective
mass dimensions Dch of molecules in the chain region
were obtained by averaging over the length of the chain
containing 16 atoms (Table 2). As can be seen from
Table 2, the dimensions Dch < 1 and Dch > 1 are
observed for different compounds.

At Rc = const, an increase in the parameter Nc and
the number q of chains per molecule in the series of
compounds 1–2–3–4 leads to a monotonic increase in
the dimension Dch < 1. A similar increase in the param-
eter Dch is observed with an increase in the number of
chains from two (four) to six upon transition 7  8
(5  6). Therefore, owing to the denser infill of the
spherical layer between the spheres of radii Rc and R
with chains due to an increase in their number, the
dimension Dch tends to 1.

For molecules nNPh, an increase in the parameters N,
Nc, and Rc results in a monotonic decrease in the dimen-
sion Dch < 1. A similar regularity is observed upon tran-
sitions 6  4 (5  3) and 9b(1, 2)  9c(1, 2).
Upon transitions 9b(1/3, 2/3)  9c(1/3, 2/3),
9b(1/4, 2/4)  9c(1/4, 2/4), and 10b(3/6, 4/5) 
10c(3/6, 4/5), the inequality Dch > 1 is reversed. This
indicates that the dimension Dch depends strongly on
the parameters Nc and Rc. For effective dimensions
Dch < 1 (Dch > 1), the derivative D(R) [relationship (1)]
increases (decreases) insignificantly with an increase in
R and tends to unity.

N R( )log ach Dch Rlog+=
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In the range R > Rc, we introduce the derivative

(6)

The dependences of log[N(R) – Nc] on log(R – Rc) for a
number of compounds are plotted in Fig. 6. These
dependences for the homologs with n > 2 exhibit a
nearly linear behavior and are approximated well by the
expression

(7)

with constant parameters Cch and bch. The effective val-
ues of bch are presented in Table 2. For the majority of
compounds, the inequality bch ≤ 1 is satisfied and the
differences between the values of bch > 1 and unity are
within the error in determining bch. It is seen that the
studied compounds satisfy both inequalities Dch < bch

and Dch > bch and the equality Dch = bch [for molecules
9b(1), 9b(2)]. Using compounds n2Ph–n4Ph as an
example, it can be shown that the sensitivity of the
quantity bch to variations in the parameters Nc and Rc is
less than the sensitivity of the quantity Dch. At Rc =
const, an increase in the parameter Nc and in the num-
ber q of chains per molecule in the series of compounds
1–2–3–4 has no effect on the quantity bch, as is the case
with the transition 7  8 (5  6). For all the com-
pounds and their conformers, the dependence of the
quantity bch on the conformation of the side core frag-

bch R( )
d N R( ) Nc–[ ]ln

d R Rc–( )ln
---------------------------------------.=

N R( ) Nc–[ ]log Cch bch R Rc–( )log+=
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P

ments and chains is substantially more pronounced
than the corresponding dependence of the quantity Dch.

Now, we turn to the explanation of the features
revealed in the dependences of D(R), Dch, bch(R), and
bch. Let us consider a lacunar (lathlike) molecule with a
statistical symmetry axis Ck (k ≥ 2) that passes through
the center of the molecular core perpendicularly to the
core plane (i.e., normally to the longitudinal axis of the
core). We assume that each of q core fragments related
by the symmetry axis Ck has m side chains and each
chain adopts a specific conformation. Then, within the
cluster model for the molecule whose chains are
located in the region R > Rc, we can write the relation-
ship

(8)

The function σ(r) is defined by the expression

(9)

where the index i numbers the chains in a particular
core fragment and p is the parity index of the C atoms

in the chain. The function (R), whose properties
will be considered below, depends on the chain confor-
mation and the angle between the axis of the chain in a

trans conformation and the radius vector  that con-
nects the center of the core to the center of the C0 atom
to which the chain is bonded. From expression (8), we
obtain the relationship

(10)

which can be conveniently used for determining the
function σ(R) from the results of the computer simula-
tion.

From formula (6) with due regard for expression (8),
we find

(11)

As will be shown below, for chains that adopt a trans
conformation and do not make very large angles with

the radius vector , the decreasing function σ(R) is
weakly pronounced and tends to a limiting value with
an increase in the parameter R. Therefore, we have the
inequality bch(R) ≤ 1 and find that the quantity bch(R)
tends to unity with an increase in R. For the homologs
with n in the range 2 ≤ n ≤ 16, the increase in the differ-
ence (R – Rc) with an increase in n in formula (11) com-
pensates for the decrease in the quantity σ(R). This
explains the approximate equality bch(R) ≈ bch and the
observed dependence described by relationship (7).

N R( ) Nc
q
2r
----- R Rc–( )σ R( ).+=

σ R( ) κ p
i( )

R( ),
i 1=

m

∑=

κ p
i( )

Rc
0( )

σ R( )
2r N R( ) Nc–[ ]

q R Rc–( )
------------------------------------,=

bch R( ) 1 R Rc–( )d σ R( )ln
dR

---------------------.+=

Rc
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Table 2.  Parameters Nc, Rc, ρc, Dc, Dch, and bch determined from computer simulation of molecules of the compounds under
consideration for different conformations of side fragments

Compound n2Ph n3Ph n4Ph 1(1) 1(2) 2(1) 2(2) 3(1)

Nc(Rc) 12(21) 18(31.5) 24(42) 24(42.8) 33(42.8) 42(42.8)

ρc 0.679 1.793 1.463 1.833 1.452 1.233

Dc 1.612 1.025 1.128 0.998 1.224 1.391

Dch 0.814 0.786 0.769 0.770 0.780 0.813 0.821 0.837

bch 0.973 0.973 0.977 0.993 0.959 0.993 0.959 0.993

Compound 3(2) 4(1) 4(2) 5(1) 5(2) 6(1) 6(2) 8

Nc(Rc) 42(42.8) 60(42.8) 20(22) 24(22) 54(45.5)

ρc 1.233 0.989 1.026 0.799 1.090

Dc 1.391 1.634 1.582 1.788 1.489

Dch 0.844 0.862 0.868 0.904 0.879 0.995 0.959 0.933

bch 0.959 0.993 0.959 1.011 0.923 1.011 0.923 0.967

Compound 9a
9b(1)
9b(2)

9b(3) 9b(4)
9b(1/3)
9b(2/3)

9b(1/4)
9b(2/4)

9c(1)
9c(2)

9c(1/3)
9c(2/3)

Nc(Rc) 18(22) 36(31.5) 36(34.3) 36(34.3) 72(53.2) 72(54.5)

ρc 1.186 0.944 1.166 1.122 1.050 1.116

Dc 1.464 1.630 1.472 1.503 1.561 1.503

Dch 1.109 0.973 1.005 1.018 1.009 1.017 0.890 0.899

bch 1.011 0.973 0.983 0.914 0.999 0.971 0.970 1.010

Compound
9c(1/4)
9c(2/4)

9d(1) 9d(2) 10a(1/4, 2/3, 
2/4) 10b(1/5) 10b(2/6) 10b(2/7) 10b(1/8)

Nc(Rc) 72.(54.5) 66(56.7) 27(31.5) 45(41.6) 45(43.1)

ρc 1.116 1.334 1.389 1.133 1.188

Dc 1.503 1.367 1.339 1.466 1.438

Dch 0.922 0.966 0.984 1 < Dch ≤ Dc 0.988 0.984 0.973 1.009

bch 0.975 0.983 0.949 0.993* 0.930 0.874 0.892 0.931

Compound 10b(3/6) 10b(4/5) 10c(1/5) 10c(2/6) 10c(2/7) 10c(1/8) 10c(3/6) 10c(4/5)

Nc(Rc) 45(43.1) 81(62.8) 81(63.7) 81(62.8)

ρc 1.299 1.052 1.077 1.098

Dc 1.377 1.506 1.491 1.466

Dch 1.016 1 < Dch ≤ Dc 0.891 0.895 0.881 0.906 0.901 0.931

bch 0.995 0.913 0.955 0.853 0.908 0.932 1.011 0.956

* For molecules 10a(2/3) and 10a(2/4), bch = 0.914.
Substituting expression (8) into formula (1) gives
the relationship

(12)

At R @ Rc and N(R) @ Nc, we have D0(R) ≈ 1 and
D(R) ≈ bch(R). By disregarding the dependence σ(R),
from formula (10), we obtain the relationship [N(R) –
Nc] ~ (R – Rc) and the equality D(R) = D0(R). Setting

D R( )
R N R( ) Nc–[ ]
N R( ) R Rc–( )
----------------------------------bch R( ) D0 R( )bch R( ).≡=
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[N(R) – Nc]/(R – Rc) ≡  and N(R)/R ≡ , we
can write the expression for D0(R) in the form

(13)

At α < θ(R), the inequality D0(R) < 1 is satisfied for the
majority of the studied compounds. At α > θ(R), we
have the inequality D0(R) > 1 for molecules 9a, 9b(3, 4,
1/3, 2/4), 10a(1/4, 2/3, 2/4), and 10b(1/8, 3/6, 4/5). At
α < θ(R) [α > θ(R)], an increase in R leads to a slow
decrease (increase) in the angle θ(R) tending to the

αtan θ R( )tan

D0 R( ) α / θ R( ).tantan=
5
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angle α and an increase (decrease) in the quantity D0(R)
tending to unity. The dependence D0(R) can be well
pronounced for molecules with small values of Nc and
Rc. This is actually observed for compounds n2Ph, 5(1,
2), 9a, and 10a(1/4, 2/3, 2/4).

At D0(R) < 1, the insignificant decrease in the func-
tion lnσ(R) with an increase in R in relationships (11)
and (12) partially compensates for the increase in D0(R)
with an increase in the chain length and is responsible
for the observed approximate equality D(R) ≈ Dch < 1.
By contrast, at D0(R) > 1, the decrease in the function
lnσ(R) with an increase in R in relationships (11) and
(12) enhances the decrease in D(R) with an increase in
the chain length. This is characteristic of molecules 9a
and 10b(4/5) and can be seen in Fig. 6c for molecules
10a(1/4, 2/3, 2/4).

The same limiting value Dch(n  ∞) = 1 obtained
for lathlike and lacunar nematic molecules with long
side chains suggests that, in the limit, these molecules
are isomorphic with respect to the quantity Dch. This
explains the close limiting temperatures Tl = Tc(n 
∞) of the ND–I phase transition with an increase in the
length of only one chain in molecule 8 or all chains in
molecule 9c [17].
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R

Fig. 8. Dependences κp(R) for the studied compounds with
(a) γ = 0 and (b) different values of β – γ. For explanation,
see the text.
P

Let us analyze the basic properties of the function

(R) for even and odd homologs with the chains in
the trans conformation. For simplicity, we assume that

the carbon backbone of the chain, the vector , and

the vector  ( ) connecting the core center to
the center of the even (odd) atom in the chain lie in the
same plane. The arrangement of these vectors is sche-
matically depicted in Fig. 7. For the even atoms in the
chain, we have the exact expression

(14)

where r2n = 2nlcosβ is the distance between the centers
of the C0 and C2n atoms. The signs “+” and “–” ahead
of γ corresponds to the schemes shown in Figs. 7a and
7b, which differ from each other by the rotation of the
chain around the C0–C1 bond through an angle of 180°.

With due regard for the inequality  +
r2n]2 ≤ 1/2 at γ = 0, we have cosβ = (2/3)1/2 and (1 –
cosβ) ≈ 0.184. Then, expression (14) can be reduced to
the approximate relationship

(15)

which is better satisfied at large differences between r2n

and  and also at [1 – cos(β – γ)] ! 1. Making allow-

ance for the expressions R2n = r + , Rc = r + ,
and 2r = l and formula (15), from the relationship

(16)

we obtain 

(17)

From relationship (17) for cosβ = (2/3)1/2, we find that
the inequalities κ2n ≥ (3/2)1/2 ≈ 1.225 and κ2n < 3/2 at
γ = 0 are satisfied, κ2n monotonically decreases and
tends to (3/2)1/2 with an increase in n or a decrease
in the difference (β – γ) at fixed n, and κ2n increases

with an increase in the sum (β + γ) or the ratio /l.
At β – γ = 0, all the even atoms in the chain lie in the

extension of the vector  and κ2n = (3/2)1/2. There-
fore, at 0 ≤ (β – γ) ≤ β, the function κ2n(R) is a decreas-
ing function and the values of κ2n(R) fall in a narrow

κ p
i( )

Rc
0( )

R2n
0( ) R2n 1+

0( )

R2n
0( )

=  Rc
0( )

r2n+[ ] 1
2r2nRc

0( )
1 β γ±( )cos–[ ]

Rc
0( )

r2n+[ ]
2

------------------------------------------------------------–
 
 
 

1/2

,

2r2nRc
0( )

/[Rc
0( )

R2n
0( )

Rc
0( )

r2n

2nl βcos Rc
0( ) β γ±( )cos+

2nl βcos Rc
0( )

+
---------------------------------------------------------------,+=

Rc
0( )

R2n
0( )

Rc
0( )

2n κ2n R2n Rc–( )/l=

κ2n

2nl βcos Rc
0( )

+

β 2nl βcos Rc
0( ) β γ±( )cos+[ ]cos

--------------------------------------------------------------------------------=

n 1≥( ).

Rc
0( )

Rc
0( )
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range; hence, the dependence κ2n(R) in expression (9)
can be ignored.

For odd atoms in the chain, we first consider the
case where γ = 0. In the same approximation as for for-
mula (15), we can write the relationship

(18)

which differs from formula (15) at γ = 0 in the substitu-

tion of  + l =  for . With allowance made

for the equality R2n + 1 = r +  and expression (18),
from relationship

(19)

we obtain

(20)

For n = 0, we have κ1 = 1. This explains the deviation
of  – Nc] from the linear dependence
[described by formula (7)] in Figs. 6a–6c for the first
homologs of compounds having conformers with γ = 0.
In relationship (20), the fractional expression in brack-
ets varies in the range from 1 to (3/2)1/2 and, at n @ 1,
relationship (20) is reduced to the following formula:

(21)

For 2n(2/3)1/2 @ [1 + /l], the function κ2n + 1 tends
to (3/2)1/2. In the case of the reverse inequality [1 +

/l] @ 2n, according to relationship (20), the func-
tion κ2n + 1 = 3(2n + 1)/(4n + 3) monotonically increases

R2n 1+
0( )

Rc
0( )

l r2n β
2n 1+( )l Rc

0( )
+

2nl βcos Rc
0( )

l+ +
--------------------------------------------,cos+ +=

Rc
0( )

R1
0( )

Rc
0( )

R2n 1+
0( )

2n 1+ κ2n 1+ R2n 1+ Rc–( )/l=

=  κ2n 1+ R2n 1+ R1–( )/l 1+[ ]

κ2n 1+

=  2n 1+( ) 1 2n βcos
2( )

2n 1+( )l Rc
0( )

+

2nl βcos l Rc
0( )

+ +
--------------------------------------------+

1–

.

[N(R)log

κ2n 1+ 3/2( )
2n 2/3( )1/2

1+[ ] l Rc
0( )

+

2n 1+( )l Rc
0( )

+
--------------------------------------------------------.=

Rc
0( )

Rc
0( )
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with an increase in n. In particular, we have κ3 = 9/7 ≈
1.286 > (3/2)1/2. This indicates that the function κ2n + 1
[relationship (20)] varies nonmonotonically with an
increase in n (i.e., it has a maximum).

For γ ≠ 0, it can be seen from the scheme shown in
Fig. 7c that α2n + 1 = π – (β ± γ) + β2n + 1. As a result, at
[1 – cos(β ± γ – β2n + 1)] ! 1, we obtain

(22)

Substituting this expression into formula (19) gives the
relationship

(23)

For n = γ = 0, we have r1 = l, β1 = β, and κ1 = 1. At n =

β – γ = 0 and  @ l, we obtain κ1 = (3/2)1/2. In the
case of n > 1, the following relationships are satisfied to
a high accuracy:

(24)

With allowance made for relationships (24) at
4(2n + 1)2 @ 1 (this inequality is valid even at n = 1),
formula (23) takes the form

R2n 1+
0( )

=  Rc
0( )

r2n 1+

r2n 1+ Rc
0( ) β γ± β2n 1+–( )cos+

r2n 1+ Rc
0( )

+
--------------------------------------------------------------------------.+

κ2n 1+

=  
l 2n 1+( )

r2n 1+
----------------------

r2n 1+ Rc
0( )

+

r2n 1+ Rc
0( ) β γ± β2n 1+–( )cos+

-------------------------------------------------------------------------- .

Rc
0( )

r2n 1+ l 2n 1+( ) β 1 β/ 2n 1+( )2
tan

2
+[ ]

1/2
cos=

≈ l 2n 1+( ) 2/3( )1/2
1 1/4( )/ 2n 1+( )2

+[ ] ,

β γ± β2n 1+–( )cos
l 2n 1+( ) βcos

r2n 1+
----------------------------------- β γ±( )cos[=

+
βtan

2n 1+( )
-------------------- β γ±( )sin 1 1/4( )/ 2n 1+( )2

+[ ]
1–

≈

× β γ±( )cos
1

2n 1+( ) 2
---------------------------- β γ±( )sin+ .
(25)κ2n 1+

2n 1+( )l βcos Rc
0( )

+

β 2n 1+( )l βcos Rc
0( ) β γ±( )cos β γ±( )/ 2 2n 1+( )sin+[ ]+{ }cos

-------------------------------------------------------------------------------------------------------------------------------------------------------------------.=
For larger values of n satisfying the inequality (2n +
1)  @ 1, formula (25) differs from formula (17) in the
substitution of (2n + 1) for 2n and all the results
obtained for formula (17) are valid for formula (25). In
particular, for these values of n and cosβ = (2/3)1/2, the
inequality κ2n + 1 ≥ (3/2)1/2 is satisfied, while at (β – γ) =
0, we have κ2n + 1 = (3/2)1/2. By ignoring the term
~sin(β ± γ) in the denominator of formula (25), i.e., by
using the overestimated value of κ2n + 1 and comparing
it with formula (17), it can be shown that κ2n + 1 < κ2n.
The branch of the κ2n + 1 values lies below the branch of
the κ2n values at all n. Therefore, at n ≥ 1 and 0 ≤ (β –
γ) ≤ β, the nonmonotonic function κ2n + 1(R) varies in a
narrow range and the dependence κ2n + 1(R) in expres-
sion (9) can be ignored with a high accuracy.

Figure 8 depicts the exact dependences κp(R) calcu-
lated from relationships (16) and (19) for a number of
molecules and their conformers at different values of
5
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(β ± γ). It can be seen from Fig. 8 that all the aforemen-
tioned qualitative and quantitative results obtained
from expressions (17), (20), (21), (23), and (25) are
valid for molecules n2Ph, n4Ph, and 10c(6) with γ = 0

and the parameters λ = /l = 2.5, 5.5, and 8.5,
respectively; conformers 10a(1) and 10b(3) with β –
γ ≈ 0 and λ = 3.7 and 5.5, respectively; and conformer
10c(3) with β – γ > 0 and λ = 8.2. Note that we have i =
1 and κp(R) = σ(R) in formula (9) for molecules nNPh.

In the above case where 0 ≤ (β – γ) ≤ β, the depen-
dence σ(R) described by relationship (9) is also weak
and can be disregarded. This explains the good agree-
ment between the effective parameters Dch obtained
from relationship (5) and the values of 〈D0(R)〉  calcu-
lated from expression (12) and averaged over all
homologs of the studied molecules and conformers sat-
isfying the condition 0 ≤ (β – γ) ≤ β.

The quantitative results of the analytical treatment
performed are not applicable to conformers 10a(2) and
10b(4) with β + γ ≈ 2β. It can be seen from Fig. 8b that,
for these conformers, the values of κp(R) considerably
increase for the first homologs and the values of κ2n(R)
[κ2n + 1(R)] decrease monotonically [nonmonotonically,
with passing through a maximum] more rapidly than
those in Fig. 8a with an increase in n and R. The pres-
ence of such conformers in molecules favors a leading
increase in the values of N(R) represented by expres-
sion (8) for the first homologs and results in an
increase in the parameters D0(R) and D(R) described
by formula (12). This explains the results of the numer-
ical experiment for molecules 10a(2/3, 2/4) (Fig. 6c)
and 10b(4/5) involving these conformers, for which the
dependence of logN(R) on logR is hump-shaped with
D(R) ≈ Dc for the first chain homologs and exhibits a
rapid decrease in the parameters D(R) with an increase
in the chain length. For molecule 10c(4/5) including
conformer 10c(4) with smaller values of γ and (β + γ) <
2β, the dependence of logN(R) on logR is also hump-
shaped, but it is less pronounced.

The ignored thermal conformational mobility of
chains should lead to an increase in the values of σ(R),
bch(R), and D(R) due to the smearing of the region of
location of chain atoms in the directions perpendicular

to the vectors  and the leading increase in N(R) as
compared to R in formula (10). This situation is quali-
tatively similar to the above situation associated with
the increase in the sum (β + γ) for the chain in the trans
conformation. For molecules of type 1 and 7, the pres-
ence of the chains in the ortho positions of the terminal
phenyl rings [with respect to the –C(O)O– and –C≡C–
bridging fragments] should assist the filing of lacunas
of the core and the increase in the dimension Dc. This is
important from the standpoint of the design of biaxial
molecules capable of forming a biaxial thermotropic
nematic phase Nb.

Rc
0( )

Rp
0( )
P

Now, we consider the mean density of atoms (R) =
N(R)/V(R) in the volume of a sphere V(R) = 4πR3/3 and
the differential (local) density of atoms ρ(R) =
dN(R)/dV(R) in the volume of a spherical layer dV(R) =
4πR2dR. These densities are related by the expression

(26)

and coincide with each other at D(R) = const = 3. In the
region of molecular cores, when relationship (3) is sat-
isfied and at 1 < Dc < 2, the densities ρ(R) ~ (R) ~

 decrease with an increase in R (R ≤ Rc). In the
region of side chains, with due regard for formula (8),
we have

. (27)

According to expression (27), the densities (R) and
ρ(R) decrease even more rapidly with an increase in R
due the weak dependence σ(R). Therefore, the mass
density of an isolated lacunar molecule ρM ~
M(RM)/V(RM) ~ (RM) rapidly decreases with an
increase in the radius RM of the sphere containing the
molecule. However, the density ρ = m/v  (m is the
molecular weight, v  is the molar volume) of discotic
nematic phases ND is identical to the density of calam-
itic nematic liquid crystals with a relatively close pack-
ing of lathlike molecules. This implies that, in the ND

phase, molecules should mutually penetrate into each
other and lacunas of a particular molecule should be
filled with side chains of neighboring molecules (simi-
lar to engaged gears). As a consequence, discotic nem-
atic liquid crystals should possess a high viscosity
which is actually one or two orders of magnitude higher
than the viscosity of calamitic nematic liquid crystals
[18, 19].

5. CONCLUSIONS

Thus, the results obtained in this work have demon-
strated that, for a large number of lathlike and lacunar
mesogenic molecules (and their conformers) with dif-
ferent chemical structures, the dependence of logN(R)
on logR exhibits two linear portions that correspond to
the core region (R ≤ Rc) and the region of side chains
(Rc < R ≤ RM). Moreover, these portions correspond to
the mass dimensions 1 < Dc < 2 and Dch ≤ 1 or Dch ≥ 1,
depending on the chain conformation. The difference
between the dimensions Dc and Dch accounts for the
fact that, at R ≤ RM, the molecules under consideration
are not self-similar objects and the topological dimen-
sion DT = 3 for these molecules as physical bodies
(rather than molecular graphs, i.e., systems of valence
bonds connecting the points of atomic positions) is
larger than the dimensions Dc and Dch. Therefore, the
molecules studied are not fractals for which D > DT by

ρ

ρ R( ) D R( )ρ R( )/3=

ρ

R
Dc 3–

ρ R( ) 3
4π
------ qσ R( )

2rR
2

----------------
1

R
3

------ Nc qRcσ R( )/2r–[ ]+
 
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definition [1] but belong to a particular class of lacunar
objects with a nonuniform (on their size scale) frac-
tional mass dimension D < DT. On the other hand, it can
be expected that mesogenic molecules of the monoden-
dron and dendrimer types [6, 7] (not discussed in this
work), as well as amphiphilic starlike and dendritic
molecules [8, 9] with a branching structure of side frag-
ments, which are characterized by a rather close pack-
ing in the three-dimensional space, should have by
dimensions D ≤ 3.

It was established how the main molecular charac-
teristics (molecular symmetry, the number and size of
core fragments, their structural–chemical features and
conformation, the length and conformation of side
chains) affect the values of Dc and ρc and the depen-
dence bch(R). The proposed analytical approach to the
analysis of the dependences D(R) and bch(R) made it
possible to explain all the main results of the numerical
simulation of the compounds under investigation. The
high sensitivity of the parameters Dc and ρc to varia-
tions in the fine features of the molecular structure indi-
cates that the use of these parameters as descriptors for
identifying and predicting the mesogenic properties of
molecules in addition to the descriptors already serving
for these purposes [16] holds considerable promise.
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