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Abstract—The magnetization curve and magnetization correlation function are calculated for a ferromagnetic
chain of single-domain nanoparticles with a randomly oriented anisotropy axis for different ratios between the
exchange correlation and anisotropy energies. It is shown that the coercive force decreases as the exchange cor-
relations increase. For strong exchange correlations, the magnetization curve is described by the following three
successive magnetization processes as the applied field is increased: (i) nonuniform rotation of the magnetiza-
tion of stochastic domains, (ii) collapse of the magnetic solitons, and (iii) nonuniform rotation of exchange-cor-
related magnetization vectors of the nanoparticles. For high fields, the calculated correlation function of the
transverse magnetization components coincides with that predicted from linear theory. At low and zero fields,
the main parameters of the correlation function (the variance and correlation radius) tend to certain finite values
rather than diverge (as is the case in linear theory). The irreversible variation in the magnetization at low fields
(the hysteresis loop) and the hysteresis of the main parameters of the correlation function are calculated. © 2005
Pleiades Publishing, Inc.
1. INTRODUCTION

The interest in simulating model systems with ran-
domly oriented magnetic anisotropy is related to gain-
ing a detailed understanding of the mechanisms of for-
mation of unique magnetic properties of amorphous
and nanocrystalline magnets. One of the main reasons
giving rise to these properties of amorphous and nanoc-
rystalline magnetic alloys is the randomly oriented
local magnetic anisotropy coexisting with a strong
exchange correlation of magnetic moments [1, 2]. Ori-
entational randomness of anisotropy in these materials
generates a specific magnetic microstructure, which
can be described as an ensemble of stochastic magnetic
domains. It was found that the average self-consistent
characteristics of these domains (anisotropy and size)
determine the main integral properties (coercivity and
permeability) of amorphous and nanocrystalline mag-
nets [3]. The stochastic magnetic domain is defined as
follows. In [4], it was shown that a randomly oriented
local magnetic field destroys the long-range magnetic
order in a disordered ferromagnet. However, ferromag-
netic ordering (correlations) is still preserved on a finite
scale: due to exchange interaction, the magnetic order
extends over distances that are large in comparison with
interatomic distances. This ferromagnetically ordered
region is a stochastic domain. To describe the magnetic
structure of such systems with “intermediate” magnetic
order, it is necessary to study the magnetization corre-
lation function Km(r) [5].

The correlation function Km(r) can be directly
reconstructed from experimental studies of small-angle
neutron scattering in nanostructured ferromagnets [6,
1063-7834/05/4703- $26.00 0495
7]. One of the main parameters of this function, vari-
ance Km(0), can be determined from the magnetization
curve near saturation [8]. Recent studies have shown
that the correlation radius Rm can also be determined
from the magnetization curve [9, 10]. However, in the
low-field region, perturbation theory does not apply and
a linear analytical theory of the magnetization curve
cannot be developed. At the same time, this region has
been intensively studied experimentally and the interest
in applying simulation methods to the description of
nanomagnets has increased. We note a general fact: the
importance of simulation experiments increases in con-
nection with the possible description of new physical
effects.

The published micromagnetic simulations deal with
some applied problems of magnetism [11–16] (numer-
ical studies of magnetization curves of a specific nar-
row class of materials) and some fundamental problems
[17–22]. Those studies have shown that both the shape
of the magnetization curve and the form of the magne-
tization correlation function are determined by the
grain size and the fundamental magnetic constants. We
believe that, in those studies, insufficient attention was
paid to establishing the relation of the magnetic struc-
ture in various fields and at different relative magni-
tudes of exchange correlations and anisotropy to the
magnetization curve of a model system, i.e., to work
aimed at solving the main problem in magnetic material
science of nanomagnets. Indeed, it has now become
clear that the form of the magnetization correlation
function Km(r) (which characterizes the spin structure)
is related to the shape of the magnetization curve, M(H)
© 2005 Pleiades Publishing, Inc.
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(which is a magnetic property of a nanomagnet). The
aim of this study is to investigate simultaneously both
the correlation function and the magnetization curve for
a simple model system, namely, a chain of exchange-
coupled nanoparticles with randomly oriented anisot-
ropy. Our simulation is intended to provide answers to
the following questions.

(1) How does the form of the magnetization curve
change in the intermediate regime between weak (rela-
tive to the exchange correlation energy) and strong
anisotropy?

(2) What are the features of the magnetization curve
at low fields in the case of weak anisotropy?

(3) What is the character of the behavior of the cor-
relation function of a nanostructured magnet at low
fields?

The model considered is a special case of the model
of a nanomagnet with one-dimensional inhomogene-
ities of magnetic anisotropy. However, it will be shown
that this model exhibits the general laws characterizing
nanomagnets. Furthermore, it is known that significant
research attention has been recently turned to a new
class of magnetic materials, one like magnetic nanow-
ires. It was found that these materials are most often in
the form of nanochains of exchange-bound nanoparti-
cles [23, 24]. Therefore, our model can also be applied
to describe experimental results on the magnetization
of nanowires.
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Fig. 1. Dependence of the calculated total energy of the
chain on the number of iterations. The inset shows the
dependence of the number of iterations required to attain the
energy minimum on the parameter Rc/δ.
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2. METHOD AND MODEL

A discrete analog of our model is a one-dimensional
chain of spins s with random anisotropy at each site i
with a constant nearest neighbor exchange interaction
J. It is known that the energy of such a chain can be
written as a sum over the sites of the chain:

 (1)

Likewise, for a nanochain of ferromagnetic grains,
we can write the energy as
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Fig. 2. Magnetization curves calculated at different values
of the parameter 2Rc/δ.
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where the direction of the local magnetization vector is
characterized by the angle θi measured from the direc-
tion of the field H; the distance between the neighbor-
ing sites is equal to the nanoparticle size 2Rc (in this
case, Rc is the correlation radius of random anisotropy);
A ≡ J(2Rc)2 is the exchange interaction constant; Ms is
the saturation magnetization; K = HaMs/2 is the local
magnetic anisotropy energy density, related to the

anisotropy field Ha;  is the angle of the easy magne-
tization axis (a random function); and H is the external
magnetic field. Since we are interested only in the states
corresponding to the minimum energy, it is convenient
to write Eq. (2) as

(3)

where δ/Rc =  is a dimensionless parameter
characterizing the ratio between the exchange correla-
tion and anisotropy energies and h = H/Ha. In our case
(the anisotropy is random at each site), we have Rc = 1/2
(see, e.g., [20]). We intentionally retained the quantity
Rc in Eqs. (2) and (3) in order to use, when interpreting
the results, the important concept of scaling (the direct
dependence of the minima of the total energy on the
dimensionless parameters δ/Rc and h) in systems with
random anisotropy.
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Fig. 3. The coercive force as a function of the reduced cor-
relation radius of local anisotropy. The dashed line is the
function Hc = kHa(2Rc/δ)2/3.
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In this study, we disregard the contribution of
dipole–dipole interaction to the total energy for several
reasons. First, in earlier simulations of similar systems
[11, 12], it has been shown that the magnetic structure
and the magnetization curve of nanomagnets only
weakly depend on the magnetic dipole interactions, in
contrast to those of large-grain and single-crystal ferro-
magnets. This result is qualitatively clear, since only
exchange correlations and magnetic anisotropy partici-
pate in the formation of the basic unit of the spin struc-
ture, the stochastic magnetic domain. Second, the
inclusion of long-range magnetic dipole forces
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Fig. 4. Magnetization curve starting from the demagnetized
state of the nanochain for the case of Rc/δ ≈ 0.28.
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Fig. 5. Magnetization curve in the first field range
(Rc /δ ≈ 0.28).
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increases the amount of computational time required
(which is long even if we disregard these forces) by
orders of magnitude.

There are two different methods for solving our prob-
lem numerically: (i) numerical solution of the differ-
ential equation obtained by minimizing functional (2)
or (3) [18–20] and (ii) a straightforward choice of the
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Fig. 6. (a) Magnetic structure of a fragment of the chain at
different values of the external field in the second range.
(b) Dependence of magnetization on the number of mag-
netic solitons in the second field range.
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Fig. 7. Dependence of the correlation function for the trans-
verse magnetization components on the external field (from
top to bottom: h = 0, 0.1, 0.2, 0.3, 0.4) for 2Rc/δ = 0.35.
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spin distribution corresponding to the minimum of total
energy (2) or (3) (see, e.g., [17]). The advantage of the
first method in the case of Rc/δ ! 1 (strong exchange
correlations, weak anisotropy) is that the computation
speed is high, in contrast to the second method, where
the computation time increases sharply with decreasing
ratio Rc/δ (see inset to Fig. 1). In the case where Rc/δ is
of the order of unity or larger (strong anisotropy, weak
exchange correlations), the first method fails, since the
system becomes strongly nonlinear and divergences
appear when the differential equation is solved numer-
ically. Moreover, the solution to the differential equa-
tion is assumed to be unique and, therefore, cannot be
used at low fields, where hysteresis arises. In this case,
the problem is solved using the second method.

A procedure for calculating the magnetization curve
using the first method was suggested and described in
[18, 19]. With the second method, the magnetization
curve can be found as follows: for a certain field (e.g.,
H = 0), “relaxation” of the system is performed (by
choosing the magnetization distribution that corre-
sponds to the minimum energy), then the field is varied
slightly and relaxation from the previous state is per-
formed. We assume that this procedure allows one to
reach the local energy minima responsible for hystere-
sis.

The relaxation is performed as follows. The angle θi
at site i is changed by ∆, and the energy at this site is
calculated. If the energy increases as compared to the
previous state, the state is not stored in memory and the
angle is changed by –∆; this procedure is repeated with
a subsequent decrease in the step to ±0.0001 rad. This
procedure is performed successively for each site.

Due to the coupling between the nearest neighbors,
the state at site i is changed when minimizing the
energy at site i + 1. Therefore, to minimize the energy,
we have to come back and perform the relaxation at site
i again. By performing such iterations for the entire
chain, we found that the total energy first decreases and
then ceases to vary at a certain stage (Fig. 1). We
assume that this state corresponds to the energy mini-
mum. We note that the choice of another sequence of
step-by-step spin relaxation can result in a different
random distribution of magnetization; however, for a
sufficiently long chain, the average characteristics do
not change. In the calculations, we used chains 1000- to
5000-spins long and periodic boundary conditions.
Since the energy of a nanochain is invariant under rota-
tions in the plane normal to the external field, we aver-
aged over the angle in this plane when averaging the
projection of the magnetization onto the field axis.

3. RESULTS AND DISCUSSION

Figure 2 shows the magnetization curves calculated
for different values of the parameter 2Rc/δ characteriz-
ing the ratio between the anisotropy and exchange cor-
relation energies. The curve in Fig. 2a corresponds to
YSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
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zero exchange correlation energy and reproduces the
classical result of Stoner and Wohlfarth for a system of
noninteracting single-domain particles (or very large
crystallites, with Rc @ δ) with random easy-axis anisot-
ropy [25]. In this case, the coercive field is hc = 1/2 (Hc =
Ha/2) and the residual magnetization is Mr = (1/2)Ms.
The coercive force decreases with decreasing 2Rc/δ, i.e.,
as exchange correlations are included (Figs. 2b, 2c). The
dependence of Hc on 2Rc/δ obtained from the calcu-
lated magnetization curves is plotted in Fig. 3. In the
region of 2Rc/δ < 1, the calculated dependence of the
coercive force becomes close to the analytical depen-
dence of the average anisotropy field of a one-dimen-
sional magnetic block (stochastic magnetic domain)
[18, 26, 27]:

 (4)

By comparing the curves in Fig. 3, we see that Hc as a
function of 2Rc/δ follows the same power law as does
〈Ha〉  and that these quantities differ by a constant factor,
Hc = k〈Ha〉 . In our case, k ≈ 0.48. This correlation
between the dependences of Hc and 〈Ha〉 corresponds to
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Fig. 8. Field dependence of the magnetization correlation
radius Rm on (a) a linear and (b) a logarithmic scale (for
2Rc/δ = 0.35).
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a model in which the magnetic structure of the
nanochain is considered a system of exchange-uncou-
pled magnetic blocks with randomly oriented anisot-
ropy axes averaged over each block.

For strong exchange correlations, a steplike feature
arises on the magnetization curve (Figs. 2c, 4). This
feature appears at 2Rc/δ ≈ 0.4 and becomes more pro-
nounced at stronger exchange correlations (2Rc/δ ! 1).
In Fig. 4, we show the calculated magnetization curve
starting from the demagnetized state of the nanochain
for the case of 2Rc/δ ≈ 0.28. We see that this magneti-
zation curve can be divided into three parts, corre-
sponding to three field ranges.

In the first range, the magnetization increases with
field due to nonuniform rotation of the magnetizations
of stochastic domains. This interpretation is confirmed
by the fact that the M ~ H–2 dependence is satisfied in
this region (Fig. 5). We note that this dependence was
predicted and observed experimentally in [10]. The
average anisotropy field 〈Ha〉  of a block determined
from the Akulov low-field dependence agrees well with
the value of 〈Ha〉  calculated from Eq. (3).
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In the second field range of the M(h) curve, the mag-
netic structure proves to be an ensemble of magnetic
blocks with the average magnetizations oriented along
the field and an additional ensemble of localized
regions in which the magnetization is not reversed;
these regions are topological magnetic solitons whose
structure and size do not depend on the external field
within the second range (Fig. 6a). As the field increases,
the magnetization of magnetic solitons is reversed in a
jumplike manner and the solitons decrease in number
and disappear in fields above Ha (h > 1). Figure 6b
shows the dependence of the magnetization on the
number of magnetic solitons in the second field range.
The linear dependence indicates that the magnetization
reversal in each soliton provides an equal contribution
to the increase in magnetization. Since the solitons do
not differ in size or magnetization in the second range,
we may consider them as a sort of magnetization
quanta.

The magnetic structure of the nanochain in the third
field range of the reversible M(h) dependence is a sto-
chastic magnetic structure or “magnetization ripples”
(see, e.g., [28]). This structure is described well by the
one-dimensional linear theory of reversible processes
of inhomogeneous magnetization rotation [29].

We calculated the correlation function for the trans-
verse components of magnetization for each magnetic
state of the nanochain corresponding to a point on the
calculated hysteresis loop (for 2Rc/δ ≈ 0.35). Figure 7
shows the Km(r) dependence calculated for different
fields. The main parameters of the function Km(r) are
the variance dm = Km(0) and the correlation radius Rm.
We see that both the variance Km(0) and the magnetic
correlation length 2Rm decrease with increasing exter-
nal field. For our simple model, the field dependences
of dm = Km(0) and Rm(h) can be calculated in the entire
field range.

Figures 8 and 9 show the calculated field depen-
dences of the correlation radius Rm(h) and the variance of
the transverse components of magnetization dm(h) plot-
ted on both linear and logarithmic scales. We see that the
h dependences of the main parameters of the correlation
function Km(r), as well as the M(h) dependence, are char-
acterized by a region of reversible variation and a region
of irreversible changes (hysteresis). The reversible varia-
tions in Rm(h) and dm(h) are the simplest to explain. At
high fields, the calculated Rm and dm are identical to
those predicted from linear theory (Figs. 8b, 9b).
Indeed, according to linear theory [29], in fields below

HR = 2A/Ms , we have Rm =  ≡ δh–1/2 and

dm = (aHa)2  = a2(Rc/δ)h–3/2. In fields above
HR, Rm tends to a constant value, which is approxi-
mately equal to the correlation radius of random mag-
netic anisotropy (Rc = 1/2 in our case), and the variance
of magnetization behaves as dm = (aHa)2H–2 = a2h–2. It
is seen in Figs. 8b and 9b that the calculated functions

Rc
2

2A/MsH

HR
1/2–

H
3/2–
P

Rm(h) and dm(h) exhibit similar behavior. We note that
these results were obtained both by directly minimizing
the total energy (in the present work) and by solving the
corresponding differential equation (in [30]).

The irreversible variations in Rm(h) and dm(h) are
most difficult to explain. We see that, as the field
approaches zero, the quantities Rm and dm do not
diverge (contrary to the predictions from linear theory)
but rather tend to finite values. The variations in Rm(h)
and dm(h) with field are hysteretic. We point out specific
features of this hysteresis. First, we see that Rm(0) in the
demagnetized state is smaller than Rm(0) in the state
with residual magnetization (the opposite is true for
dm(0)). Second, we see that there is a field range (close
to h = 1) where Rm(h) increases with H, in disagreement
with the prediction from linear theory. We note that this
field range coincides with the region where magnetic
solitons exist and a specific feature arises on the mag-
netization curve (the second range).

The behavior of Rm(h) and dm(h) in the field range
h < 1 (H < Ha) allows us to assert that the quantitative
characteristics of a stochastic domain (its size and aver-
age anisotropy) are fairly arbitrary in many respects (at
least, in the one-dimensional case). Therefore, these
quantities can only be evaluated by order of magnitude.

Thus, in our simulation we succeeded in providing
answers to all three questions stated in Section 1.
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