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Abstract—The effect of one- (1D) and three-dimensional (3D) inhomogeneities on the high-frequency mag-
netic susceptibility at the boundary of the first Brillouin zone of a ferromagnetic superlattice is studied. The
study is performed with an earlier developed method of random spatial modulation (RSM) of the superlattice
period. In this method, structural inhomogeneities are described in terms of the random-phase model, in which
the phase depends on three coordinates in the general case. The frequency spacing ∆νm between two peaks in
the imaginary part of the averaged Green’s function, which characterizes the gap width in the frequency spec-
trum at the boundary of the Brillouin zone, is calculated as a function of both the root-mean-square fluctuations
γi and the correlation wavenumbers ηi of phase inhomogeneities (i = 1 and 3 for 1D and 3D inhomogeneities,
respectively). The function ∆νm(γ1, η1) for 1D inhomogeneities is shown to be symmetric with respect to inter-

changing the variables  and η1, whereas the function ∆νm(γ3, η3) for 3D inhomogeneities is strongly asym-

metric with respect to interchanging  and η3. This effect is associated with the difference in form between
the correlation functions of 1D and 3D inhomogeneities and can be used to determine the dimensionality of
inhomogeneities from the results of spectral studies of such superlattices. © 2005 Pleiades Publishing, Inc.
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1. INTRODUCTION

One-dimensional periodic structures (superlattices)
have been extensively applied in various devices.
Despite the progress made in the production of such
structures, their characteristics are still far from ideal in
many cases. This is caused by the fact that the proper-
ties of real superlattices depend on technological fac-
tors, such as random scatter of the layer thicknesses
(one-dimensional structural inhomogeneities) and ran-
domly strained interfaces between layers (two- and
three-dimensional inhomogeneities). Therefore, it is
challenging to theoretically study the effect of random
structural inhomogeneities on the physical properties of
superlattices and, in particular, on the characteristics of
waves propagating in such materials. Apart from the
applied aspects of such studies, it should be noted that
partly randomized superlattices are convenient objects
for the development of new methods in theoretical
physics to investigate media without translational sym-
metry. At present, different-type models and methods
are being used to develop a theory of randomized
superlattices. In initially sinusoidal superlattices, one-
dimensional randomization is taken into account by
introducing a random phase [1, 2]. In superlattices with
a rectangular profile of the coordinate dependence of a
1063-7834/05/4703- $26.000587
material parameter along the superlattice axis, random-
ization is modeled by a disturbance in the sequence of
layers of two different materials [3–9] or by random
deviations of the layer–layer interfaces from their ini-
tial arrangement [10–12]. There are also methods based
on the superlattice correlation functions of a postulated
shape [13, 14], applications of the geometrical-optics
approach [15], and the development of a dynamic the-
ory of elastic composite media [16].

In [17], we proposed another method for investigat-
ing the effect of superlattice inhomogeneities on the
wave spectrum, which we called the method of random
spatial modulation (RSM) of the superlattice period.
Let us briefly review this method. The spectral proper-
ties of any inhomogeneous medium are known to be
best described in terms of averaged Green’s functions.
The only characteristic that describes a random
medium and enters into an expression for an averaged
Green’s function is the correlation function K(r), which
depends on the distance r = x – x' between two points
in the medium. Therefore, the first part of the problem
reduces to finding the function K(r) for a superlattice
that contains certain structural inhomogeneities. The
second part of the problem consists in extracting spec-
tral characteristics from the Green’s function that con-
tains this correlation function by using standard
 © 2005 Pleiades Publishing, Inc.
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approximate methods. To describe structural inhomo-
geneities in a sinusoidal superlattice, we used the
model of a random phase, which was considered a ran-
dom function of all three coordinates with an arbitrary
correlation radius (the authors of [1, 2] considered only
a one-dimensional δ-correlated random function). To
find the correlation function K(r) of the superlattice, we
have developed a method which is a generalization of
the well-known method of determining the time corre-
lation function for a randomly frequency-(phase-)mod-
ulated radio signal [18, 19] to the case of spatial (in
general, three-dimensional) modulation of the superlat-
tice period (phase). This method is advantageous in that
the shape of the correlation function of a superlattice is
derived under general assumptions about the character
of random spatial modulation of the superlattice period
rather than being postulated. It has been shown that, in
general, this function has a complex form, which
depends on the inhomogeneity dimensionality, the
structure of the interface between layers, etc. Knowl-
edge of the correlation functions corresponding to dif-
ferent types and dimensionalities of inhomogeneities
allowed us to use the averaged Green’s functions to find
the eigenfrequencies, damping, and other wave charac-
teristics of superlattices [17, 20–28]. The RSM method
allowed us to consider inhomogeneities of different
dimensionalities in terms of a single model. The effect
of one- (1D) and three-dimensional (3D) inhomogene-
ities on a wave spectrum has been studied for sinusoidal
superlattices and superlattices with zero and arbitrary
thicknesses of the interfaces between layers. We have
also studied the effect of a mixture of 1D and 3D inho-
mogeneities [26, 27] and the effect of the anisotropy of
a correlation function [28]. However, some important
problems have not been solved. For example, the
authors of [25–28] showed how the difference in form
between correlation functions for 1D and 3D inhomo-
geneities manifests itself in the characteristics of the
wave spectrum of a superlattice when the root-mean-
square phase modulation varies in magnitude. In this
work, we study the dependences of the wave-spectrum
characteristics on both the root-mean-square phase
fluctuations and the correlation radii of inhomogene-
ities and demonstrate radical differences in character
between these dependences for 1D and 3D inhomoge-
neities. We use the true correlation functions obtained
by us earlier in [17]. With these functions, we deter-
mined the range of applicability of the approximate
analytical expressions for the correlation functions of
3D inhomogeneities that were used in [25–28] to sim-
plify computations.

2. CALCULATION PROCEDURE

Let us recall, in brief, the main features of the RSM
method, which was developed in [17] to find the corre-
lation functions of a superlattice having 1D, 2D, or 3D
inhomogeneities of its period. The coordinate depen-
P

dence of the uniaxial magnetic anisotropy of a ferro-
magnetic superlattice was taken to be

 (1)

where β0 is the mean value of the anisotropy, ∆β is its
root-mean-square deviation, and ρ(x) is a centered
(〈ρ〉  = 0) and normalized (〈ρ2〉  = 1) function. The func-
tion ρ(x) describes the periodic variation in the mag-
netic-anisotropy parameter along the z axis, as well as
random spatial modulations of this parameter. Angle
brackets mean averaging over an ensemble of random
realizations. In [17], this function was taken in the form

 (2)

where q = 2π/l is the wavenumber of the superlattice
and l is its period. Inhomogeneities are characterized by
a random spatial phase modulation u(x), which in gen-
eral is a function of all three coordinates: x = {x, y, z}.
By introducing the function χ(x, r) = q[u(x + r) – u(x)]
and averaging the product ρ(x)ρ(x + r) over χ with a
Gaussian distribution and over the coordinate-indepen-
dent phase ψ with a uniform distribution (see [17] for
more details), we obtain the correlation function of the
superlattice in the form

 (3)

where the structure function Qi(r) has the form

 (4)

 (5)

for 1D and 3D inhomogeneities, respectively. Here, k||
and k0 are the correlation wavenumbers of 1D and 3D

inhomogeneities, respectively (r|| =  and r0 =  are
the correlation radii of inhomogeneities), and

 (6)

where σ1 and σ3 are the root-mean-square fluctuations
of the gradients of the functions u1(z) and u3(x).

We consider the situation where an external mag-
netic field H0, the static part of the magnetization M0,
and the magnetic-anisotropy axis are directed along the
superlattice axis (z axis). By linearizing the Landau–
Lifshitz equation for the magnetization (Mx, My ! M0,
Mz ≈ M0) and introducing circular projections for the
resonance (positive) components of the magnetization
and the external magnetic field, we obtain an equation
for spin waves in the form [20]

 (7)

Here, m = Mx + iMy, h = Hx + iHy, Λ = ∆β/α, and the
frequency ν (measured in wave-vector units) is equal to
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 (8)

where ω0 is the frequency of uniform ferromagnetic
resonance, g is the gyromagnetic ratio, and α is the
exchange constant.

The high-frequency spin-wave susceptibility χ(ν, k)
is proportional to the averaged Green’s function G(ν, k)
of Eq. (7):

 (9)

where h0 is the high-frequency field amplitude. The
proportionality coefficient a(k) for the case of a spin-
wave resonance in a thin magnetic film was analyzed in
detail in [20]. The averaged Green’s function for Eq. (7)
has the form

 (10)

where M(ν, k) is the classical analog of the mass oper-
ator. It was shown in [23] that, using an approximation
similar to the Bourret approximation [29], this quantity
can be represented in general in the form

 (11)

where the correlation function K(r) for a sinusoidal
superlattice is determined by Eq. (3).

For 1D and isotropic 3D inhomogeneities, integration
over angles in Eq. (11) can be preformed exactly. As a
result, the following expressions were obtained in [23]:

 (12)

for 1D inhomogeneities and

 (13)

for 3D inhomogeneities. (Note that in [23] there is a
misprint in the expression corresponding to Eq. (12).)
Further integration in these expressions with the true
functions Q1(rz) and Q3(r) specified by Eqs. (4) and (5)
cannot be conducted analytically. Therefore, the disper-
sion, damping, and susceptibility were studied in our
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previous papers by using the following approximating
correlation functions:

 (14)

for 1D inhomogeneities and

 (15)

for 3D inhomogeneities, where L = exp(–3 ) is the
asymptotic expression of K3(r) at r  ∞. The approx-
imate expressions (14) for K1(rz) were grounded in
[17], whereas the range of applicability of approxima-
tion (15) for K3(r) has not been determined. We will
return to this problem later.

3. SPIN-WAVE SPECTRUM 
AND THE HIGH-FREQUENCY SUSCEPTIBILITY 

OF A SUPERLATTICE

The dispersion and damping of spin waves are spec-
ified by a transcendental equation for the complex fre-
quency ν = ν' + iν''; this equation is obtained by equat-
ing the denominator of Green’s function (10) to zero:

 (16)

The high-frequency susceptibility of a ferromagnet is
proportional to the complex Green’s function G(ν, k) =
G '(ν, k) + iG ''(ν, k), which depends on the real fre-
quency ν of the external high-frequency field and the
real wave vector k. The wave spectrum ν = ν(k) in a
superlattice is known to have a band structure. At the
value k = nq/2 corresponding to the boundary of the nth
Brillouin zone, a gap (forbidden band) forms in the fre-
quency spectrum. For sinusoidal superlattices, the
boundary of the first Brillouin zone is of special inter-
est, since the widths of the subsequent band gaps
decrease rapidly with increasing zone number [22]. In
superlattices with sharper interfaces between layers,
the decrease in the band-gap width with an increase in
n is less pronounced (such situations were considered
in [22, 24, 25]). Here, we restrict ourselves to the study
of the magnetic susceptibility of a sinusoidal superlat-
tice at the boundary of the first Brillouin zone: k = kr ≡
q/2. In the case where there are no inhomogeneities and
natural wave attenuation can be neglected, the gap
width in the spectrum at k = kr is equal to Λ [this is the
distance between the split-spectrum levels ν+(kr) and
ν−(kr)]. The G ''(ν) dependence at k = kr exhibits two δ
peaks spaced Λ apart. As the root-mean-square fluctua-
tion γ of inhomogeneities increases, the spacing  –

 between the spectrum levels decreases and the gap
in the spectrum closes at a certain critical γ value. An
increase in γ is accompanied by an increase in the
damping ν''(k); this function of k reaches a maximum at
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k = kr. As γ increases, the peaks in the G ''(ν) depen-
dence weaken and approach each other until merging at
a certain value of γ. Qualitatively, the variation in the
spacing between the peak maxima ∆νm corresponds to

the variation in the difference  –  between the
eigenfrequencies; however, there is no exact quantita-
tive relation between these quantities at γ ≠ 0 [20]. This
qualitative description of the variation in the spectral
gap width and in the spacing between the G ''(ν) max-
ima with increasing root-mean-square fluctuations is
valid for both 1D and 3D inhomogeneities. However,
the quantitative differences between the effects of 1D
and 3D inhomogeneities are very substantial. For
example, in the presence of 1D inhomogeneities, the
band gap is closed (or two G ''(ν) maxima merge) at a
critical value of γ1, which is well below the correspond-
ing critical value γ3 for 3D inhomogeneities [23].

As noted above, approximate correlation functions
(14) and (15) were used in [17, 20–28] to analyze the
eigenfrequencies, damping, and magnetic susceptibil-
ity of a superlattice. These approximations make it pos-
sible to study the ν(k) spectrum; otherwise, transcen-
dental equation (16) for ν(k) cannot be represented in
an explicit form without integrating in Eqs. (12) and
(13) for the mass operator. However, the susceptibility
can be studied without making assumptions regarding
K(r), since numerical integration can be performed for
each value of ν in Eqs. (12) and (13) to construct the
G(ν) dependence. Therefore, to calculate the depen-
dences of G ''(ν) on γi and ηi, we use both approximate
expressions and true expressions (4) and (5) for the
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Fig. 1. Effect of  and η1 on the spacing between peaks in

the imaginary part (ν) of the Green’s function at the

boundary of the first Brillouin zone of a superlattice with
1D inhomogeneities.
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structure functions of 1D and 3D inhomogeneities in
Eqs. (12) and (13) for the mass operator, respectively.

3.1. 1D Inhomogeneities

With the approximate expression for K1(rz) in

Eq. (14) corresponding to the condition  ! 1, the
integral in Eq. (12) for M1 can easily be calculated. At
the boundary of the first Brillouin zone (k = kr), we thus
obtain a simple expression for the Green’s function in
the two-wave approximation under the condition Λ,

 ! ν:

 (17)

where X = (ν – )/Λ is the dimensionless frequency

detuning from the value ν =  and η1 = k||q/Λ is the
dimensionless correlation wavenumber. By equating
the denominator of this function to zero, we obtain a
quadratic equation for the complex frequency ν, from
which we find

 (18)

As follows from this expression, the spectral gap ∆ν =
 –  is closed at  ≥ 1. From Eq. (17) with the

real frequency ν, we find that the function (ν) has
two peaks; the spacing ∆νm between them decreases

with increasing γ1 and η1, and at  ≥ 1/ , these
peaks merge to form one peak.

Figure 1 shows the dependence of ∆νm on  and η1

calculated by substituting exact structure function (4)
into Eq. (12) for the mass operator and performing the
integration numerically. As is seen from Fig. 1, the
function ∆νm is symmetric with respect to interchanging

the variables  and η1 and is a function of their product
with a rather high accuracy. This symmetry is clearly vis-
ible for approximate analytical expressions (17) and (18)
and is due to the fact that the effective correlation radius

of a one-dimensional sinusoidal superlattice at  ! 1

is equal to ( k||)–1, i.e., is inversely proportional to the

product η1. This symmetry is not so obvious for the

∆νm(η1, ) dependence calculated with the exact cor-

relation function. At small values of the product η1,
the spacing ∆νm between the peaks is slightly in excess
of Λ, which agrees with the analogous effect obtained
for the gap width in the wave spectrum in [17]. In that
work, this effect was explained in terms of Gaussian
correlations, which correspond to the lower line in
Eq. (14).
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3.2. 3D Inhomogeneities

With approximate expression (15) for the correla-
tion function of 3D inhomogeneities, the integral in
Eq. (13) for M3 can be calculated exactly. At the bound-
ary of the first Brillouin zone, the Green’s function in
the two-wave approximation and under the condition

Λ,  ! ν takes the form

 (19)

where η3 = k0q/Λ is the dimensionless wavenumber of
3D inhomogeneities.

By equating the denominator of this function to
zero, we obtain a cubic equation for the complex fre-

quency; the dependence of the frequency on  was
analyzed numerically in [25]. As follows from Eq. (19),
the Green’s function is not symmetric with respect to

interchanging the parameters  and η3 in the case of
3D inhomogeneities. Indeed, unlike function (17),

which contains only the product η1, function (19)

contains not only the product η3 but also the asymp-
totic value L of the correlation function, which depends

on  alone.
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Fig. 2. Frequency dependence of the imaginary part (ν)
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line).

G3''

γ3
2

γ3
2

PHYSICS OF THE SOLID STATE      Vol. 47      No. 3      2005
Figure 2 shows the frequency dependence of the

function  at the boundary of the first Brillouin zone
of the superlattice (k = kr) calculated numerically with
exact structure function (5) in Eq. (13) for the mass

operator. Both curves in Fig. 2 correspond to η3 = 4.

However, the solid line was plotted at  = 1 and η3 =

4, whereas the dashed line was plotted at  = 4 and

η3 = 1. In the first case, the function (ν) is seen to
have two pronounced peaks (i.e., there is a gap in the
wave spectrum), whereas in the second case both peaks
merge to form one broad peak (the gap in the spectrum
is closed). Figure 3 shows the dependence of the spac-

ing between the peaks ∆νm on  and η3 calculated
using exact structure function (5). This dependence dif-

fers radically from the ∆νm( , η1) dependence for the
1D inhomogeneities shown in Fig. 1: the function ∆νm

for 3D inhomogeneities is asymmetric with respect to

interchanging  and η3. The difference between the
spectral characteristics of superlattices with 1D and 3D
inhomogeneities is due to the radically different corre-
lation functions of 1D and 3D inhomogeneities. This
difference can clearly be illustrated using approximate
analytical expressions (14) and (15), whose asymptotic
behavior coincides with that of the exact functions
K1(rz) and K3(r). For 1D inhomogeneities, the correla-
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tion function tends to zero at rz  ∞, whereas the
descending portion of K3(r) at r  ∞, tends to a non-

zero asymptotic value L, which depends on  and is
independent of η3.

In this work, the magnetic susceptibility of a partly
randomized sinusoidal superlattice is calculated for the
first time using the exact correlation functions K1(rz)
and K3(r). This allowed us to compare the exact results
and the results calculated with approximate correlation

γ3
2

20 4 6
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γ 32

Fig. 4. Ranges of applicability of approximate expres-
sion (15) for the correlation function and approximate
expression (19) for the Green’s function. The differences
between Eq. (19) and the Green’s function as calculated
using the exact correlation function do not exceed 10% in
the region between the solid lines and 20% in the region
between the dashed lines.
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γ 32

Fig. 5. Ranges of applicability of approximate expres-
sions (20) for the correlation function and (21) for the
Green’s function. The differences between Eq. (21) and the
Green’s function as calculated using the exact correlation
function do not exceed 10% in the region restricted by solid
lines and 20% in the region restricted by dashed lines.
P

functions (14) and (15) and determine the range of
applicability of the latter functions. For 3D inhomoge-
neities, the range of applicability of approximate
expression (15) for the correlation function and approx-
imate expression (19) for the Green’s function is shown
in Fig. 4. To find this range, we compared both the spac-
ing between the peaks in the imaginary part of the
Green’s function and the peak widths obtained using
the approximate and exact correlation functions. Then,

on the ( , η3) parametric plane, we determined the
region where the difference between these characteris-
tics did not exceed 10% (solid lines) or 20% (dashed
lines). It should be noted that the peak width was found
to be a critical characteristic in most cases. The spacing
between the peaks is described by approximate expres-
sion (19) with a much higher accuracy than is the peak
width. As is seen from Fig. 4, there is a rather broad

region of parameters  and η3 in which the approxi-
mate analytical expression for the Green’s function (19)
is valid. The fact that this expression gives bad results

for small values of  came as a surprise.

For this reason, we calculated the Green’s function
for 3D inhomogeneities using another approximating
correlation function,

 (20)

This function differs from Eq. (15) in that it falls off as
a Gaussian rather than exponentially, as is the case in
Eq. (15). With Eq. (20), the integral in Eq. (13) for M3
can also be calculated exactly. In the two-wave approx-

imation and under the conditions used above (Λ,  !
ν), the Green’s function at the boundary of the first Bril-
louin zone can be found to be
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quency dependence of the function (ν) as described

by Eq. (21) is compared with (ν) calculated using
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comparison were the same as above, namely, the spac-
ing between the peaks and the peak width. As a result,
we obtained the range of applicability of Eq. (21) and
approximate correlation function (20) of a superlattice
(Fig. 5). It is seen that this region overlaps only partially
with the region shown in Fig. 4. A comparison of these
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regions shows that, e.g., at small values of η3 and  ≈
0.3–0.5, the approximation of the correlation function
by Eq. (15) is more exact as compared to Eq. (20). At

small values of  and η3 ≈ 2–5, the situation is
reversed and Eq. (20) is more exact. Thus, approxima-
tions (15) and (20) complement each other.

4. CONCLUSIONS

We have studied the effect of the correlation proper-
ties of 1D and 3D structural inhomogeneities of an ini-
tially sinusoidal ferromagnetic superlattice on its high-
frequency magnetic susceptibility. To describe the sto-
chastic properties of inhomogeneities, we used correla-
tion functions derived earlier using the method of ran-
dom spatial modulation of the superlattice period [17].
In this method, structural inhomogeneities in a super-
lattice are described in terms of the model of a random
phase, which is assumed to depend on the z coordinate
in the case of 1D inhomogeneities and on all three coor-
dinates (x, y, z) for 3D inhomogeneities. The random
phase is characterized by a monotonically decreasing
correlation function with arbitrary values of the relative
root-mean-square fluctuations γi and normalized corre-
lation wavenumbers ηi, where i = 1 and 3 for 1D and 3D
inhomogeneities, respectively. As shown earlier in [17],
the form of the correlation functions Ki(r) of the super-
lattice obtained using this model and the RSM method
depends only weakly on the form of the correlation
functions characterizing the stochastic properties of the
random phase. However, this form depends strongly on
the dimensionality of inhomogeneities: for 1D inhomo-
geneities, we have K1(rz)  0 as rz  ∞, whereas
for 3D inhomogeneities K3(r) tends to a nonzero

asymptotic value L = exp(–3 ) as r  ∞.

These correlation functions have been used to calcu-
late the averaged Green’s function Gi(ν, k) from which
the high-frequency susceptibility is determined in the
case of 1D and 3D inhomogeneities. The mass operator
of the Green’s function was found in the Bourret
approximation by performing numerical integration of
expressions containing the exact correlation functions
K1(rz) and K3(r) for the 1D and 3D cases, respectively.
The frequency dependence of the imaginary part G ''(ν)
of the Green’s function was studied at a fixed value of
the wave vector k corresponding to the boundary of the
first Brillouin zone of the superlattice (experimentally,
the wavenumber can be fixed due to the size effect in
the situation corresponding to a spin-wave resonance in

a superlattice film [20]). In this case, the (ν) depen-
dence exhibits two peaks and the spacing between the
peaks ∆νm approximately corresponds to the gap width
in the wave spectrum at the boundary of the Brillouin
zone. The dependence of ∆νm on γi was studied earlier
in [20, 23] using approximate expressions for K1(rz)

γ3
2

γ3
2

γ3
2

Gi''
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and K3(r). In this work, we have studied the depen-
dences of ∆νm on both γi and ηi using exact expressions
for K1(rz) and K3(r). For 1D inhomogeneities, the two-
dimensional function ∆νm(γ1, η1) was shown to be sym-

metric with respect to interchanging the variables 
and η1 (Fig. 1), whereas in the case of 3D inhomogene-
ities the function ∆νm(γ3, η3) is strongly asymmetric

with respect to interchanging  and η3 (Fig. 3). This
effect is associated with the difference in form between
the correlation functions for 1D and 3D inhomogene-
ities. For the correlation function K1(rz), the correlation

radius is inversely proportional to the product η1,
which causes the function ∆νm to be symmetric with

respect to interchanging  and η1. The correlation
radius of the function K3(r) is inversely proportional to

the analogous product η3. However, the function
K3(r) differs from K1(rz) in terms of the asymptotic
value L, which divides the entire correlation volume
into two parts, one of which is characterized by a finite
correlation radius (above the asymptotic value L) and
the other by an infinite correlation radius (below L).

This asymptotic value depends on  and is indepen-
dent of η3, which leads to asymmetry of the function

∆νm(γ3, η3) with respect to interchanging  and η3.
This effect can be used to determine the dimensionality
of structural inhomogeneities in a superlattice by spec-

tral methods if independent changes in the values of 
and ηi can be controlled technologically.

We have also compared the functions ∆νm(γ3, η3) as
calculated using either the exact correlation function
K3(r) or approximate analytical expressions for this
function. This comparison allowed us to construct dia-
grams in the ( , η3) plane (Figs. 4, 5) that determine
the range of applicability of the approximate analytical
expressions for K3(r), namely, Eq. (15), which was used
earlier in [25–28], and Eq. (20), which was derived in
this work. These diagrams also specify the range of
applicability of approximate analytical expressions (19)
and (21) for the Green’s function.
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