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1. The development of new methods for controlling
optical properties of a medium and the time shape of
laser pulses is an important physical problem of funda-
mental and applied significance. The solution of this
problem is urgently required in the areas of spectros-
copy of fast processes, quantum control of atoms and
molecules, optoelectronics and optical communication,
etc. From this standpoint, the phenomenon of electro-
magnetically induced transparency (EIT) presents
extremely interesting and rather unique opportunities
[1–3]. Although the majority of studies on EIT have
been carried out for atomic media (see reviews [3–6]
and references therein), the relevant ideas have also
undergone further development in the context of solid-
state systems [7].

EIT is a quantum-interferential phenomenon arising
as a result of the interaction between two laser fields
and a three-level quantum system. The essence of the
phenomenon is that one of the fields, called the control-
ling field, modifies the optical state of a medium at the
frequency of the other (probe) field. In the general case,
the intensity of the probe field may be comparable with
that of the controlling field. Under conditions of EIT,
the substance turns out to be in a coherent state with
unusual properties [3–6]. For example, an optically
dense medium becomes transparent for the probe field
in the single-photon resonance region, whereas the dis-
persion of the refractive index strongly increases.
Under these conditions, optical pulses can run to dis-
tances significantly exceeding the resonance length of
the single-photon absorption (see, e.g., [8, 9]). The con-
trolling field can control the group velocity of the
probe-pulse propagation and can even reduce this
velocity down to zero or to a negative value [5]. At
group velocities on the order of 1–100 m s–1, a spatial
compression of the probe pulse occurs. As a result, it is
completely localized in a medium. This phenomenon
makes it possible to write down, store, and read out
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optical pulses [5, 6, 10] and opens the door to new
approaches to the development of quantum memory [6].

EIT is used for controlling characteristics of optical
radiation, for example, the generation of femtosecond
and subfemtosecond pulses (see, e.g., [11]). At present,
methods of controlling femtosecond pulses are devel-
oped sufficiently well and are applied in spectroscopy,
microscopy, and optical monitoring [12]. However, the
situation is not so good in the case of picosecond and
nanosecond pulses.

In this paper, we discuss a new possibility for con-
trolling the shape and duration of laser pulses on the
basis of the EIT phenomenon. Using as an example the
time compression of pulses, we now consider the prin-
cipal concept of the control. Let the probe pulse propa-
gate inside a three-level medium in the presence of a
coupling pulse interacting with the adjacent transition
(Fig. 1). The envelope of the latter pulse varies with
time according to a certain law. Since, in the case of
EIT, the propagation velocity of the probe pulse
depends on the coupling-pulse intensity at a given
instant of time, different parts of the probe pulse move
at different velocities. It is important that one can con-
trol this velocity by variation of the coupling-pulse
shape. For example, the envelope of the coupling pulse
at the boundary of the medium can be chosen in a man-
ner such that the propagation velocity of the trailing
edge of the probe pulse will be higher than the velocity
of its leading edge. As a result, the pulse is compressed
with time. Varying the shape of the coupling pulse, it is
possible to obtain various shapes for the probe-pulse
envelope.

Thus, we here propose an efficient method for con-
trolling the shape and duration of laser pulses, which is
based on employing additional controlling radiation
that interacts with the adjacent transition under condi-
tions of EIT.

2. We now consider the interaction between a three-
level medium and two optical pulses possessing enve-
lopes Ep(t) and Ec(t) (Fig. 1). These pulses propagate
in the same direction along the z axis. Probe pulse Ep

resonantly interacts with the transition between the
ground |0〉  and excited |1〉  states, whereas coupling
pulse Ec interacts with levels |2〉 and |1〉. The dipole |2〉–|0〉
© 2005 Pleiades Publishing, Inc.
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transition is forbidden. Further, we suggest that pulse
durations Tp and Tc are much shorter than all relaxation
times and that Tp < Tc .

The evolution of the probe and coupling pulses is
described by the usual self-consistent set of Maxwell–
Schrödinger equations. In the coordinate system with

the local time τ = t – , this set is of the form

(1)

(2)

Here, a0, 1, 2 are the amplitudes of atomic-state probabil-

ities; 2Gp =  2Gc =  are Rabi frequencies;

Kp = πωp|d10 |2 , Kc = πωc|d12|2  are the propagation

coefficients; dij are the matrix elements of the electric
dipole moment for the |i〉–|j〉 transition (i, j = 0, 1, 2);
ωp, c and kp, c are the carrier frequencies and wave num-
bers (in vacuum), respectively; N is the atomic concen-
tration; and c is the speed of light in vacuum.

Equations (1) for probability amplitudes are written
for zero single-photon detunings ω10 – ωp = ω12 – ωc = 0.
We consider all atoms to be in the ground state |0〉  at the
initial instant of time; i.e., a0 (–∞, z) = 1, a1 (–∞, z) = a2
(–∞, z) = 0, and the fields Ep, c(t) being given at the
medium boundary z = 0: Ep, c(t, z = 0) = E0p, 0c(t).

Equations (1) and (2) must be solved by a self-con-
sistent method. In the general case, this procedure can
be realized numerically. An essential simplification is
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Fig. 1. Energy diagram for a three-level atom resonantly
interacting with a probe (ωp) and coupling (ωc) pulse.
attained in the adiabatic approximation [13]. In this
case, the solution to set (1) can be represented in the
form (see, e.g., [8, 9])

(3)

The displacement angle θ is defined by the expression

 = , where G(τ) =  is the

generalized Rabi frequency. The dot from above
denotes differentiation with respect to the local time τ:

 = , etc. In the general case, envelopes Gp and Gc

depend on the z coordinate.
The criterion of applicability for the adiabatic

approximation can be written as

(4)

A detailed analysis of the adiabaticity condition with
allowance for pulse propagation has been performed
in [9].

It follows from formulas (3) and (4) that, in the adi-
abatic limit, the population of the intermediate state in
the interaction process is close to zero, (|a1| ! 1). This
implies that for transitions |0〉–|1〉  and |2〉–|1〉  the
absorption is small. Therefore, the pulses run to a dis-
tance that considerably exceeds the length of the reso-
nance linear absorption of probe radiation. This phe-
nomenon is also interpreted in terms of coherent popu-
lation trapping (CPT): atoms are excited into a coherent
superposition of lower states |0〉  and |2〉 , which is called
the CPT state, or dark state [14]. In this state, atoms
cease to interact with optical pulses. The EIT phenom-
enon arises as a result of this process.

Using expression (3), we can represent Eq. (2) in the
form

(5)

In the general case, the set of Eqs. (5) can be solved
only numerically.

For Kp = Kc, it is easy to show from (5) that the gen-
eralized Rabi frequency G is independent of the z coor-
dinate:

(6)

From this, it follows that arbitrary variations occurring
in the probe field are compensated by corresponding
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ĠcGp ĠpGc–
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Fig. 2. Time profile of normalized Rabi frequencies for the probe pulse gp =  (Gmax is the maximum value of the effective

Rabi frequency) and coupling pulse gc =  (dashed curve) in the case of different values of z coordinates inside the medium:

(a) at the input of the medium, z = 0, Gp(τ = 0, z = 0) Tp = 20; (b) at a certain distance z; and (c) at the output of the medium, z = L.

Gp τ( )
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---------------

Gc τ( )
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--------------
changes in the controlling field. In this case, the set of
Eqs. (5) is reduced to one equation for θ(τ, z):

(7)

The solution to Eq. (7) can be written as

θ(τ, z) = θ0(Z–1(Z(τ) – z)) = 0, (8)

where Z(τ) = K–1 (τ', 0)dτ', Z–1 is the function

inverse to Z, and θ0 = θ(τ, z = 0).
The function θ(τ, z) allows us to find

(9)

Analysis of Eqs. (9) [with allowance for (8)] shows
that the evolution of the probe pulse depends on the
time shape of the coupling pulse at the boundary z = 0
of the medium. Figure 2 displays the evolution
[described by solution (9)] of the Rabi frequency for the
probe and coupling pulses as a function of the z coordi-
nate. The shape of the pulses at the boundary z = 0 of
the medium is shown in Fig. 2a. As is seen, a time com-
pression of the probe pulse occurs under the conditions
indicated. The probe-pulse duration significantly
decreases at the output of the medium compared to the
input duration. From a physical standpoint, this behav-
ior is associated with the fact that under the indicated
conditions in the medium, the propagation velocity of
the probe-pulse trailing edge is higher than that of the
leading edge. The constraints for the compression are
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stipulated by the finite width of the transparency win-
dow in which the probe pulse can propagate without
absorption and also by the adiabaticity conditions.

The pattern of the space–time pulse evolution is
similar to the propagation of adiabatons [8]. However,
in our case, the pulse duration and the pulse shape vary
with pulse propagation, the envelopes of both pulses
changing consistently. Therefore, they may be called
quasi-adiabatons. Thus, we can speak on the coherent
control of the probe-pulse shape by the coupling pulse
under the EIT conditions.

It is worth noting that the compression effect does
not depend on details of the coupling-pulse time struc-
ture. It is sufficient to have a region in which the pulse
amplitude (adiabatically) increases. The narrowing
effect also arises in the case of a linear variation law for
the coupling-pulse envelope. If the coupling-pulse
amplitude becomes constant (with respect to time),
then, as in [8], we have adiabatons at the output of the
medium.

The results obtained are highly consistent with data
obtained by the numerical solution of the self-consis-
tent set of Maxwell–Schrödinger equations (1), (2) for
the region of parameter in which the adiabaticity condi-
tion is fulfilled.

The compression of the probe pulse, which was
demonstrated above, is a specific case in which coher-
ent control of the probe pulse shape was achieved by
means of EIT. Choosing the time shape of a coupling
pulse, it is possible, e.g., to broaden the probe pulse and
to form its flat-top or two-bump shape, etc.

3. Thus, it has been theoretically demonstrated that
it is possible to control the envelope and duration of a
probe pulse on the basis of the EIT phenomenon. This
method is applicable to the control of pulses in a wide
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duration region and in a broad range of spectral wave-
length.

The method proposed for the coherent control of
laser-pulse time shape can be useful in optical-commu-
nication technologies, in processing optical signals, and
in nonlinear optics.
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