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Abstract—The singularities of the time autocorrelation functions (ACFs) for a heteronuclear spin system of a
crystal are investigated. Exact expressions are obtained for ten moments of the spectra of ACFs in the approx-
imation of a self-consistent fluctuating field (SCFF) with arbitrary axial symmetry. These expressions are
applied to determine the coordinate of the lowest singular point of these functions on the imaginary-time axis
for a spin system with a dipole–dipole interaction (DDI). The leading corrections to this coordinate due to the
correlation of local fields in real crystals are calculated. These corrections are determined by lattice sums with
triangles of four bonds and pairs of four bonds. Numerical values of the coordinate are obtained for a LiF crystal
in a magnetic field directed along three crystallographic axes. An increase in the coordinate of the singular
point, which follows from the theory and leads to a faster falloff of the wings of the ACF spectra, qualitatively
agrees with experiment. © 2005 Pleiades Publishing, Inc. 
1. INTRODUCTION

Nuclear magnetic systems with controllable states
whose variations can be observed by an NMR method
[1] are of great interest for nonequilibrium statistical
physics. Heteronuclear systems (i.e., systems that
consist of nuclei with different Larmor frequencies in
a strong magnetic field) open up new possibilities for
studying relaxation processes. This fact was demon-
strated in [2] with an example of cross relaxation
between subsystems. It is also important that hetero-
nuclear systems are encountered more frequently than
homonuclear systems and that there are many
methods developed for studying them; the informa-
tiveness of these methods depends on the development
level of the theory. Finally, systems consisting of nuclei
with different resonance frequencies have recently
attracted the attention of researchers in relation to
the problem of addressing spins in quantum computa-
tion [3].

The modern dynamic theory of dense spin systems
in solids is based on the concept of a time-fluctuating
random local magnetic field [4–9] whose properties are
close to those of a Gaussian random field. In heteronu-
clear systems, this field has several (according to the
number of different types of nuclei) components. This
fact complicates the construction of a theory. The use of
the self-consistency conditions [5] for the time correla-
tion functions of the field and the spins has made it pos-
sible to construct a theory [10, 11] that qualitatively
1063-7761/05/10004- $26.000775
explains many experimental data. This theory implies
that the spin correlation functions have singularities on
the imaginary-time axis that are responsible for the
exponential wings of the spectra of these functions,
which are observed by magnetic-resonance methods.
An important consequence of this result is that the
wings of the spectra of different types of nuclei are uni-
versal because the coordinates of the singular points of
the time correlation functions, which are coupled due to
the interaction, must coincide. A comparison with
experiment has shown that the correlation of local fields
weakens their fluctuation; in particular, it increases the
coordinate of the singular point. In [11], such a correla-
tion was taken into account phenomenologically.

In the present paper, we develop a microscopic
approach to the calculation of correlation phenomena
in the theory of a self-consistent fluctuating field
(SCFF). The validity of this approach has recently been
demonstrated by a simpler example of a homonuclear
system [12]. First of all, we obtain general expressions
for moments up to the tenth order inclusive after gen-
eralizing a diagrammatic series for the memory func-
tion [6] to the heteronuclear case. Then, based on these
moments, we calculate the coordinate of the lowest sin-
gular point of the correlation functions on the imagi-
nary-time axis. Finally, we determine a correction to
the moments due to the correlation of local fields and
apply them to calculate the corresponding shift in the
coordinate of the singular point.
 © 2005 Pleiades Publishing, Inc.
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2. EQUATIONS 
FOR AUTOCORRELATION FUNCTIONS

Equations for the autocorrelation functions (ACFs)
of a spin precessing in an anisotropic Gaussian random
field were derived in [6]. If we take into account that, in
the case of a heteronuclear spin system, such equations
should be written out for spins of each type, we arrive
at the system of integral equations

(1)

where the subscript α denotes the spin projections x, y,
and z and q enumerates the subsystems. The memory
functions Gαq(t) are represented as series in irreducible
dressed skeleton diagrams with increasing number of
vertices:

(2)

For the case of a field with arbitrary anisotropy in a
homonuclear system, all diagrams with 2, 4, 6, and
8 vertices are presented in [6]. In the heteronuclear
case, the form of a diagram remains the same; however,
in the explicit expressions for these diagrams, one
should associate with the zz lines (dashed lines) a sum
over contributions to the longitudinal field rather than a
single term:

(3)

The xx and yy lines correspond to a single contribution

d
dt1
-------Γαq t( ) Gαq t t1–( )Γαq t1( ) t,d

0

t

∫–=

Gαq t( ) Gαq
2m t( ).

m 1=
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∑=

gzq t( ) ∆qp
2 Γ zp t( ).

p

∑=
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as before, but this contribution is different for different
types of nuclei:

Here, we express the correlation functions of a Gauss-
ian random field in terms of the time-dependent spin
ACFs Γxq(t), Γyq(t), and Γzq(t) in a self-consistent way.
At high temperatures, the ACF of the α component of
the spin located at site i of the lattice is given by

(4)

where * is the Hamiltonian of the secular part of the
dipole–dipole interaction (DDI) [1, 2] in a strong mag-
netic field. The mean squares of different contributions
to the longitudinal field are

(5)

where θij is the angle between the internuclear vector rij

and the direction of the static magnetic field. In the axi-
ally symmetric case, we have

(6)

Each term of series (2) is expressed in terms of a multi-
ple time integral of the products of ACFs [6].

gxq t( ) ∆xq
2 Γ xq t( ), gyq t( ) ∆yq

2 Γ yq t( ).= =

Γαq t( )
Sp i*t( )Iiα

q( ) i*t–( )Iiα
q( )expexp{ }

Sp Iiα
q( )( )2{ }

--------------------------------------------------------------------------------,=

∆qp
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3
--- bik

qp( )2

,
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∑=

bij
qp( ) γqγp"

2rij
3

-------------- 1 3 θijcos
2
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∆xq
2 ∆yq

2 ∆qq
2 /4.= =
Table 1.  Exact values of the ACF moments in a LiF crystal in the SCFF approximation when the magnetic field is applied

along three crystallographic axes (  =  and  = )

H0 || [111] H0 || [110] H0 || [100]

F Li F Li F Li

X2 1.5565 0.243175 3.2059 0.573075 10.9709 2.126295

X4 7.2621246 0.2062389 30.122726 1.1550313 357.05369 14.396791

X6 60.240334 0.4462115 476.06509 5.7148923 19329.186 193.62608

X8 785.97935 2.6795506 10916.055 73.047633 1469814.4 5748.5288

X10 15296.507 36.221363 342734.27 2018.0911 144788238 429421.26

Z2 0.5 0.07275 0.5 0.07275 0.5 0.07275

Z4 1.9315 0.0433208 3.5809 0.0913213 11.3459 0.3173148

Z6 17.917389 0.0669163 67.435923 0.3356018 739.17481 4.1540520

Z8 277.83143 0.1998922 2104.5260 2.4024558 80039.257 96.558982

Z10 6249.6440 1.1415668 92520.012 31.813793 12125388 3612.1025

X2n
q( ) M2nX

q( ) ∆FF
2n– Z2n

q( ) M2nZ
q( ) ∆FF

2n–
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ACFs (4) can be expanded in power series,

(7)

It is well known [1] that  is a moment on the order
of 2n of the spectral density of the corresponding ACF.
From similar equations for the homonuclear case [6],
after appropriate modifications according to (3), we
obtained recurrence equations for the moments for the
heteronuclear case. Henceforth, we will assume for
definiteness that there are only two types of spins in the
system. In the Appendix, we present expressions for the
moments of the tenth order inclusive for a general axi-
ally symmetric case. As an example, we calculated the
moments for a LiF crystal (see Table 1); the contribu-

tions  (5) for this crystal were taken from Table 2.

Equations (1) were derived for an interaction with
arbitrary magnetic anisotropy. The application of an
axially symmetric Hamiltonian of the DDI essentially
improves the convergence of the series for the memory
function [10–15]. Therefore, it is expedient to trans-
form Eqs. (1) in order to maximally take into consider-
ation the longitudinal component of the local field and
minimally take into account the transverse component.
In this approximation, we obtain the following system
of nonlinear integral equations for the ACFs of a LiF
crystal:

(8)

Γαq t( )
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--------------------------------.
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where

(9)

is the ACF of a spin rotating in the local field that has
only a longitudinal component, similar to the function
used in Anderson’s model [4]. Unlike the previous
work [11], we introduce a renormalization parameter
for the longitudinal local field into Eq. (9). The value of

Γ AL t( ) λL
2 ∆LL

2 t' t''Γ zL t''( )dd

0
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∫
0
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– λF
2∆FF

2
t' t''Γ zF t''( )dd

0

t'

∫
0

t

∫ 



Table 2.  Mean squares of homo- and heteronuclear contri-
butions to the longitudinal local fields, renormalization
parameters, and the coordinates of the singular point of the
ACF in LiF for a magnetic field directed along three crystal-
lographic axes

H0 || [111] H0 || [110] H0 || [100]

, (rad/s)2 2838 · 106 2581 · 106 1809 · 106

0.3065 1.9559 9.7209

0.0613 0.3912 1.94442

0.1455 0.1455 0.1455

τ0(λq = 1)∆FF 2.372 1.843 1.127

τ0(  = 5/4)∆FF 2.263 1.783 1.113

λF 1.101 1.0911 1.0855

λL 1.099 1.0896 1.0850

τ0(λq)∆FF 2.33 1.82 1.12

τ0(λq) 3.72 3.74 3.87

δτc/τ0 0.158 0.215 0.161

τ0(λq) + δτc, µs 51 44 31

τc(λq) 4.31 4.53 4.50

∆FF
2

∆FL
2 /∆FF

2

∆LF
2 /∆FF

2

∆LL
2 /∆FF

2

λq
2

M2F

M2F
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this parameter is determined from the moments. The
correctness of the second moments is guaranteed by the
strict relation between the parameters kq and λq that
enter Eqs. (8) and (9):

Let us determine the fourth moment of the solution to
Eqs. (8) and (9):

From the equality of this moment to its exact value (A1),
we determine the parameters

(10)

where DF = /  and DL = / . The values of
the parameters calculated by formula (10) are presented
in Table 2.

The solutions of Eqs. (8) and (9) have singular
points on the imaginary-time axis. The principal parts

kq 5 4λq
2.–=
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∆qq
4

---------- 2λq
2 5
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---λq–

15
4
------+=

+
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2
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-------- 3λq
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4
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2
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-----------+ +
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 
 

3
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2
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2
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 
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2

.+
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15
6
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4
---------–

1
4
--- 9Dq

2 47
2
------Dq

161
16
---------+ + 

 
1/2

,+=

∆FL
2 ∆FF

2 ∆LF
2 ∆LL

2

2.5

0 0.1

τ0n

1/n

3.0

2.0

1.5

1.0

0.2 0.3 0.4 0.5

[111]

[110]

[100]

Ratios of moments (12) for the ACF of the x components of
the spins of fluorine (circles) and lithium (triangles) nuclei
in a LiF crystal when the magnetic field is applied along
three crystallographic axes indicated in the figure. The
results obtained by the moments of solutions to Eqs. (8) and
(9) are indicated by open symbols, and the results obtained
by the moments from Table 1 are indicated by closed sym-
bols connected by straight lines.
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of the ACFs in the neighborhoods of these points are
given by

(11)

The exponents were determined in [10] by the Painelvé
method for three orientations of a LiF crystal. For the F
nuclei, all exponents equal 2, whereas, for the Li nuclei,
only the exponents for the orientation [100] are equal to
2; for two other orientations, the exponents are as fol-
lows: δ = χ = 0.123 for [111] and δ = χ = 0.784 for [110]
(we do not need the exponent ζ).

For a known value of the exponent of the lowest sin-
gular point, its coordinate, equal to the convergence
radius with respect to moments (7), can be evaluated as
the limit of the sequence of relations

(12)

as n  ∞, where Γ(x) is the gamma function. These
sequences are shown in the figure. The calculations are
performed by the exact values of ten moments from
Table 1 and by 50 moments of the solutions to approx-
imate Eqs. (8) and (9) for the values of the parameters
λq given in Table 2. In the homonuclear case, the con-
vergence of the sequence of relations is better [6]; this
allowed us to determine τ0 by the first ten moments to a
sufficiently high degree of accuracy. In the heteronu-
clear case, the convergence deteriorates because the

interaction between lithium nuclei is weak (  =

0.15 ). Therefore, it takes some time for the system
of Li nuclei to adjust to the system of F nuclei. The fig-
ure shows that the first terms in the sequence of the
ratios of moments of the solution to system (8), (9) are
close to the ratios of exact moments. The approximate
equations have allowed us to follow up how the ratios
of moments pass to the limit (see Table 2). This
approach represents the development of the simple esti-
mate of [6]. Applying it to the homonuclear case for λ =
1.105, we arrive at the value τ0∆Z = 2.48, which was
determined earlier by ten moments. Note that an esti-
mate for τ0 was obtained in [10] by using Eqs. (8) and
(9) for λ = 1 (which is also shown in Table 2). The vari-
ation of λq from 1 to 1.1 leads to variation of the coor-
dinate τ0 by less than 2%, which is indicative of the
accuracy of its determination.

Γ zq t( )
Czq

τ0 it+( )
ζq

-----------------------, Γ xq t( )
Cxq

τ0 it+( )
χq

-----------------------,≈ ≈

Γ Aq t( )
CAq

τ0 it+( )
δq

----------------------- q F Li,=( ).≈

τ0n
2 M2 n 1–( )α

q( ) Γ 2n χ+( )
M2nα

q( ) Γ 2n 2– χ+( )
----------------------------------------------,=

∆LL
2

∆FF
2
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3. CALCULATION OF A CORRECTION
TO THE COORDINATE OF A SINGULAR POINT 

OF THE CORRELATION FUNCTIONS

The SCFF approximation corresponds to the limit
d  ∞. As is shown in [12] by an example of homo-
nuclear systems, for d = 3, the coordinate of the singu-
lar point of the ACF on the imaginary-time axis
increases due to the correlation of local fields,

(13)

and the main contribution to δτc is given by the correc-
tions to the moments that can be represented by trees of
double bonds with a built-in pair of fourfold interaction
or triangle of four bonds. In the heteronuclear case, the
degree of correlation is characterized by the following
ratios of lattice sums:

(14)

where

(15)

with summation over the sites occupied by nuclei of
one type with a nucleus at site i. In the primed sums, the
summation is performed over the sites occupied
by  nuclei of another type. The numerical values of
ratios (14) for three orientations of a LiF crystal are pre-
sented in [11]. The small value of these ratios corre-
sponds to the real smallness parameter. For conve-
nience, we introduce a formal parameter ε; in finite for-
mulas, we set this parameter equal to zero.
Contributions with lattice sums (14) are already con-
tained in the fourth moment (A.3). The corresponding
decrease in M4x can be ascribed to the SCFF if one
reduces λq . For example, for the orientation [110], we
obtain λF = 0.94 and λL = 0.75. Such a variation leads
to an increase in the coordinate τ0 by about 2%. As is
shown in [12, 16] in the homonuclear case, the incorpo-
ration of such fragments of (14) into large trees of
bonds corresponding to higher order moments pro-
duces a more significant effect. Such contributions can
be determined from Eqs. (1) for the ACFs.

Assuming that the correction εδτc is small, we esti-
mate it by taking a simplified version of equations in
which the zz interactions are predominant. Take

and substitute it into an integral equation with appropri-
ate correction terms for the memory function

In view of the form of the equations, it is more conve-
nient to pass to an equation for the squared transverse
ACF:

(16)

τc τ0 δτc,+=

S2/ S1( )2, S2' / S1( )2, S3/ S1( )2, S3' / S1S1'( ),

S1 bij
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4 , S3
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2 bikb ji

k j,
∑= = =
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2 t( ) Yq t( ) Yq0 t( ) εYq1 t( ).–= =
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For the first correction YF1(t), we find the equation

(17)
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in which we introduced dimensionless imaginary time

t' = –it(5 /4)1/2; omitted the prime; denoted

and denoted ratios (14) by S2, , S3, . Equation (17)
differs from that considered in the homonuclear case [12]
by the contributions of nuclei of different types and by
the change in the form of the correction Rq(t) (because
lithium nuclei have spin 3/2) due to the permissible
fourfold interaction of nearest neighbors:

A change in the remaining part of Eq. (17) when pass-
ing to YL1(t) reduces to a change in the subscripts F 
L and L  F. For the functions Yq0(t) and Γzq0(t) of
zeroth-order approximation, we use a simple set of four

× YF0 t3( ) t1 t2 t3 Γ zL0 t5( ) t4 t5 RF t( ),–dd
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equations that is obtained from (8) for  = 5/4. More-
over, we neglect the time variation (Γzq(t'') ~ Γzq(0) = 1)
compared with (Γxq(t' – t''))2 in the integrand; as is
shown in [12], this leads to a slight decrease in the
moments but significantly simplifies the calculations.
For comparison, the coordinate of the singular point

τ0(  = 5/4)∆FF of the solution to such a system is
shown in Table 2. We had to simplify the equation in
order to increase the numerical positions up to 50. In
turn, such a large mantissa is required to sum up the
moments that strongly differ in magnitude.

Using the equations, we calculate the moments of
functions (16) up to n = 70. The coordinate of the sin-
gular point is determined from the ratio of moments:

Then,

(18)

Extrapolating the ratios obtained, we determine the val-
ues presented in Table 2.

Let us compare the results for hetero- and homonu-
clear systems. In the homonuclear case, we have τ0∆Z =
2.48 for any orientation, whereas, in the heteronuclear
case, Table 2 shows that τ0∆FF decreases by a factor of 2
under rotation from [111] to [100]. Using the units of
the total moment of the NMR spectrum of fluorine
nuclei,

we obtain τ0  = 3.72 for the [111] orientation.
This result coincides with that in the homonuclear case,
where the coordinate increases to 3.87 under the rota-
tion to the [100] orientation. Such an increase is associ-
ated with an increase in the contribution of the hetero-
nuclear zz interaction to M2F. In the homonuclear case,
a similar increase in the coordinate of the singular point

of the ACF with the ratio /  was observed in [17].

Let us pass to the correction δτc . We calculated
δτc/τ0 for a homonuclear face-centered cubic lattice by
the formula obtained in [12] for three orientations and
obtained the following results: 0.17 for [111], 0.37 for
[110], and 0.22 for [100]. A comparison of these results
with the values presented in Table 2 shows that, in both
cases, the correction attains its maximal value for the
[110] orientation and is primarily associated with the
large value of the parameter S2/(S1)2 = 0.225. The addi-

λq
2

λq
2

τc
2 τ0

2 1 εYF2 n 1–( )
1( ) /YF2 n 1–( )

0( ) …+–

1 εYF2n
1( ) /YF2n

0( )– …+
----------------------------------------------------------------.

n ∞→
lim=

2
δτc

τ0
-------

YF2n
1( )

YF2n
0( )----------

YF2 n 1–( )
1( )

YF2 n 1–( )
0( )-------------------–

 
 
 

.
n ∞→
lim=

M2F ∆FF
2 1 X2

F( )+( ),=

M2F

∆Z
2 ∆X

2
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tion of a heteronuclear interaction reduces the correc-
tion and smoothes out its dependence on orientation.

Thus, we have obtained, theoretically, the required
increase in the coordinate of the singular point of an
ACF due to the correlation of local fields, which was
revealed in [11] by analyzing experimental spectra
from the viewpoint of the SCFF theory. A quantitative
comparison of the theory and experiment requires that
one should determine a variation in the preexponential
factor due to the correlation in the motion of spins. An
appreciable effect of this factor was also shown in [11],
which testifies to the fact that the observed detuning
from the center of the spectrum is less than the mathe-
matical asymptotics. Finally, publications do not con-
tain all experimental conditions that are necessary for a
successful comparison of the results.

In conclusion, note that we have performed calcula-
tions for a LiF crystal when a magnetic field is directed
along three crystallographic axes. The theory allows us
to obtain results for other heteronuclear systems and
orientations. To this end, one should substitute the lat-
tice sums and the contributions to the squared local
fields into the formulas and perform the calculations
described in this paper.
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APPENDIX

Here, we present expressions for the moments up to
the tenth order for a system consisting of two types of

spins for an axially symmetric case  =  with an

arbitrary relation between  and  (below, for def-
initeness, we will use subscripts “F” and “L” in place of
q and p). The moments are calculated by the recurrence
relations obtained from the equations of the homonu-
clear case [6] after the above-mentioned modifications.
The results are exact in the SCFF approximation, which
corresponds to infinite-dimensional lattices:

∆xq
2 ∆yq

2

∆xq
2 ∆qq

2

M2X
F( ) ∆FF

2 ∆FL
2 ∆XF

2 ,+ +=

M4X
F( ) 3∆FL

4 3∆FF
4 4∆XF

2 6∆FF
2 2∆XL

2+ +( )∆FL
2++=

+ 5∆XF
4 6∆FF

2 ∆XF
2 ,+

M6X
F( ) 15∆FL

6 15∆FF
6 21∆XF

2 45∆FF
2+(++=

+ 30∆XL
2 )∆FL

4 51∆XF
6 73∆FF

2 ∆XF
4 55∆FF

4 ∆XF
2+ + +

+ 45∆XF
4 45∆FF

4 10∆XL
4 76∆FF

2 ∆XF
2+ + +(

+ 30∆FF
2 ∆XL

2 4∆LF
2 ∆XL

2 4∆LL
2 ∆XL

2 18∆XF
2 ∆XL

2 )∆FL
2 ,+ + +
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M8X
F( ) 105∆FL

8 144∆XF
2 420∆FF

2 420∆XL
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6+=

+ 112∆XL
2 ∆LL
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6+{
JOURNAL OF EXPERIMENTAL A
Expressions for the moments of the nuclei of the second
type are obtained by changing the subscripts F  L
and L  F.

For comparison, we present an exact expression for
the fourth moment of the ACF ΓxF(t) (4) for a system
consisting of nuclei of two types with a DDI for a real
LiF crystal, which was derived from the results for a
similar moment of the NMR spectrum [18], and an
expression for the fourth moment of the ACF of a
homonuclear system [19]:

(A.3)

A similar moment for the Li nuclei is obtained by the
change of the subscripts F  L and L  F and by
the simultaneous change of the numerical coefficients:

9S2/4  to 1.27S2/  and 34 /(5 )2 to 2 /( )2,
which is associated with the difference in the spin quan-
tum numbers of the F and Li nuclei.
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