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Abstract—The singularities of the time autocorrelation functions (ACFs) for a heteronuclear spin system of a
crystal are investigated. Exact expressions are obtained for ten moments of the spectra of ACFs in the approx-
imation of a self-consistent fluctuating field (SCFF) with arbitrary axial symmetry. These expressions are
applied to determine the coordinate of the lowest singular point of these functions on the imaginary-time axis
for a spin system with a dipole-dipole interaction (DDI). The leading corrections to this coordinate due to the
correlation of local fieldsin real crystals are calculated. These corrections are determined by lattice sums with
triangles of four bonds and pairs of four bonds. Numerical values of the coordinate are obtained for aLiF crystal
in a magnetic field directed along three crystallographic axes. An increase in the coordinate of the singular
point, which follows from the theory and |eads to a faster falloff of the wings of the ACF spectra, qualitatively
agrees with experiment. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Nuclear magnetic systems with controllable states
whose variations can be observed by an NMR method
[1] are of great interest for nonequilibrium statistical
physics. Heteronuclear systems (i.e., systems that
consist of nuclei with different Larmor frequenciesin
a strong magnetic field) open up new possibilities for
studying relaxation processes. This fact was demon-
strated in [2] with an example of cross relaxation
between subsystems. It is also important that hetero-
nuclear systems are encountered more frequently than
homonuclear systems and that there are many
methods developed for studying them; the informa-
tiveness of these methods depends on the devel opment
level of thetheory. Finally, systems consisting of nuclei
with different resonance frequencies have recently
attracted the attention of researchers in relation to
the problem of addressing spins in guantum computa-
tion [3].

The modern dynamic theory of dense spin systems
in solids is based on the concept of a time-fluctuating
random local magnetic field [4-9] whose properties are
close to those of a Gaussian random field. In heteronu-
clear systems, this field has several (according to the
number of different types of nuclel) components. This
fact complicatesthe construction of atheory. The use of
the self-consistency conditions[5] for the time correla-
tion functions of thefield and the spins has made it pos-
sible to construct a theory [10, 11] that qualitatively

explains many experimental data. This theory implies
that the spin correlation functions have singul arities on
the imaginary-time axis that are responsible for the
exponential wings of the spectra of these functions,
which are observed by magnetic-resonance methods.
An important consequence of this result is that the
wings of the spectra of different types of nuclel are uni-
versal because the coordinates of the singular points of
the time correlation functions, which are coupled dueto
the interaction, must coincide. A comparison with
experiment has shown that the correlation of local fields
weakens their fluctuation; in particular, it increases the
coordinate of the singular point. In[11], such acorrela-
tion was taken into account phenomenologically.

In the present paper, we develop a microscopic
approach to the calculation of correlation phenomena
in the theory of a self-consistent fluctuating field
(SCFF). The validity of this approach has recently been
demonstrated by a simpler example of a homonuclear
system [12]. First of all, we obtain general expressions
for moments up to the tenth order inclusive after gen-
eralizing a diagrammatic series for the memory func-
tion [6] to the heteronuclear case. Then, based on these
moments, we cal cul ate the coordinate of the lowest sin-
gular point of the correlation functions on the imagi-
nary-time axis. Finally, we determine a correction to
the moments due to the correlation of local fields and
apply them to calculate the corresponding shift in the
coordinate of the singular paint.
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2. EQUATIONS
FOR AUTOCORRELATION FUNCTIONS

Equations for the autocorrelation functions (ACFs)
of aspin precessing in an anisotropic Gaussian random
field werederivedin [6]. If wetake into account that, in
the case of a heteronuclear spin system, such equations
should be written out for spins of each type, we arrive
at the system of integral equations

t

d
at_lraq(t) = _IGaq(t_tl)ruq(tl)dt! (1)
0

where the subscript a denotes the spin projections x, y,
and z and g enumerates the subsystems. The memory
functions G,(t) are represented as seriesin irreducible
dressed skeleton diagrams with increasing number of
vertices:

Gug(t) = Y Gaalt). e

For the case of a field with arbitrary anisotropy in a
homonuclear system, al diagrams with 2, 4, 6, and
8 vertices are presented in [6]. In the heteronuclear
case, the form of adiagram remains the same; however,
in the explicit expressions for these diagrams, one
should associate with the zz lines (dashed lines) a sum
over contributionsto the longitudinal field rather than a
single term:

0ig(t) =Y Al zp(0)- (3)
p

The xx and yy lines correspond to a single contribution
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as before, but this contribution is different for different
types of nuclei:

Oxq(D) = D2Myq(t),  Gyg(t) = AT (1)

Here, we express the correlation functions of a Gauss-
ian random field in terms of the time-dependent spin
ACFs T (1), Tyo(1), and T 4(t) in a self-consistent way.
At high temperatures, the ACF of the a component of
the spin located at sitei of the lattice is given by

i % (a) i (a
ruq(t) = Sp{ eXp(l t)llul(j)xg}( | t)lm ’ (4)
Sp{ (i)

where 7 is the Hamiltonian of the secular part of the
dipole—dipole interaction (DDI) [1, 2] in astrong mag-
netic field. The mean sgquares of different contributions
to thelongitudinal field are

4 2
Aép - I(p)(l(P)+l)§z bl(gp)1
“ ®)
h
b = quLg(l—scosze”),
i

where 6; isthe angle between the internuclear vector r;;
and the direction of the static magnetic field. In the axi-
ally symmetric case, we have

2 _ a2 _ a2
AL, = D, = A2 4. (6)

Each term of series(2) isexpressed in terms of amulti-
pletimeintegral of the products of ACFs[6].

Table 1. Exact values of the ACF momentsin aLiF crystal in the SCFF approximation when the magnetic field is applied

along three crystallographic axes (X5 = M, A2"

-2n

(@ — pp(@)
and Zpn = Maynzle )

Ho || [111] Ho || [110] Ho | [100]
F Li F Li F Li

X5 1.5565 0.243175 3.2059 0.573075 10.9709 2.126295
X4 7.2621246 0.2062389 30.122726 1.1550313 357.05369 14.396791
Xs 60.240334 0.4462115 476.06509 5.7148923 19329.186 193.62608
Xg 785.97935 2.6795506 10916.055 73.047633 1469814.4 5748.5288
X10 15296.507 36.221363 342734.27 2018.0911 144788238 429421.26
Zy 05 0.07275 05 0.07275 05 0.07275
Zy 1.9315 0.0433208 3.5809 0.0913213 11.3459 0.3173148
Zg 17.917389 0.0669163 67.435923 0.3356018 739.17481 4.1540520
Zg 277.83143 0.1998922 2104.5260 2.4024558 80039.257 96.558982
Zyg 6249.6440 1.1415668 92520.012 31.813793 12125388 3612.1025
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ACFs (4) can be expanded in power series,

00

OEDY

n=0

(=1)"Mont”"
(2n)2! ' ("

Itiswell known [1] that M{?. isamoment on the order

of 2n of the spectral density of the corresponding ACF.
From similar equations for the homonuclear case [6],
after appropriate modifications according to (3), we
obtained recurrence equations for the moments for the
heteronuclear case. Henceforth, we will assume for
definiteness that there are only two types of spinsin the
system. Inthe Appendix, we present expressions for the
moments of the tenth order inclusive for a general axi-
ally symmetric case. As an example, we calculated the
moments for a LiF crysta (see Table 1); the contribu-

tions AZ, (5) for this crystal were taken from Table 2.

Equations (1) were derived for an interaction with
arbitrary magnetic anisotropy. The application of an
axially symmetric Hamiltonian of the DDI essentialy
improves the convergence of the series for the memory
function [10-15]. Therefore, it is expedient to trans-
form Egs. (1) in order to maximally take into consider-
ation the longitudinal component of the local field and
minimally take into account the transverse component.
In this approximation, we obtain the following system
of nonlinear integral equations for the ACFs of a LiF
crystal:

ra() = 1-308%

tt

x {{dt'dt"FiL(t'—t")FzL(t"),

t

K
M () = Tac(t) = Z A0 [dT o (t-1)
0

xfdt" M (U =) (P =)0 (1),
0 (8
1

Me(t) = 1-50%

tt

X {{dt'dt"riF(t'—t")rzF(t"),

t

k
Me(t) = rAF(t)—fAiFIdt'rAF(t—tv
0

t

xJ'dt"er(t' — ) (U - 1) e(t),
0
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Table 2. Mean sguares of homo- and heteronuclear contri-
butions to the longitudinal local fields, renormalization
parameters, and the coordinates of the singular point of the
ACFin LiF for amagnetic field directed along three crystal-
lographic axes

Ho [[[111] | Ho|l[110] | HolI[100]

AZ. , (rad/s)? 2838106 | 2581-10° | 1809 - 10°

2 2
DZ 1D 0.3065 1.9559 9.7209
N 0.0613 0.3912 1.94442

2 2
A IDE 0.1455 0.1455 0.1455
ToAg = DA 2.372 1.843 1.127
To(A; =5/4)Age | 2263 1.783 1.113
Ae 1.101 1.0911 1.0855
AL 1.099 1.0896 1.0850
ToA) e 2.33 1.82 112
To(Ag) /Mr 372 374 3.87
31d1o 0.158 0.215 0.161
To(Ag) + 0T, Us 51 44 31
TdAg) /Mr 4.31 453 450
where

tt

M (t) = exp%i—)\fAfL IIdt'dt"FZL(t")
00

tt
—N2L J’J’dt‘dt"FzF(t") E;
00 (9)

tt

0l
[ ae(t) = exp%ma ffeatTa ()
00

tt

2 . W
—AEAFFﬂdt dt"rLe(t") O
00 D

is the ACF of a spin rotating in the local field that has
only alongitudinal component, similar to the function
used in Anderson’s model [4]. Unlike the previous
work [11], we introduce a renormalization parameter
for thelongitudinal local field into Eq. (9). The value of
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Ratios of moments (12) for the ACF of the x components of
the spins of fluorine (circles) and lithium (triangles) nuclei
in a LiF crystal when the magnetic field is applied along
three crystallographic axes indicated in the figure. The
results obtained by the moments of solutionsto Egs. (8) and
(9) areindicated by open symbols, and the results obtained
by the moments from Table 1 are indicated by closed sym-
bols connected by straight lines.

this parameter is determined from the moments. The
correctness of the second momentsis guaranteed by the
strict relation between the parameters k, and A, that
enter Egs. (8) and (9):

_ 2
ky = 5—4A2,

Let us determine the fourth moment of the solution to
Egs. (8) and (9):

From the equality of thismoment to its exact value (A1),
we determine the parameters

15 3D,

16]D1/2

4%D —D +

whereDg = AZ, /A% andD, = AZ./A?, . Thevauesof

the parameters cal culated by formula (10) are presented
in Table 2.

The solutions of Egs. (8) and (9) have singular
points on the imaginary-time axis. The principal parts
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of the ACFs in the neighborhoods of these points are
given by

0= )= =
(1 I)C (orin™
Mag(t) = ——= (q=F,Li).
(To+ )"

The exponents were determined in [10] by the Painelvé
method for three orientations of aLiF crystal. For the F
nuclei, all exponents equal 2, whereas, for the Li nuclel,
only the exponentsfor the orientation [100] are equal to
2; for two other orientations, the exponents are as fol-
lows: d=x =0.123for[111] and =X =0.784 for [110]
(we do not need the exponent ().

For aknown value of the exponent of the lowest sin-
gular point, its coordinate, equal to the convergence
radius with respect to moments (7), can be evaluated as
the limit of the sequence of relations

2 MZ(n nal (2n+X)
on —
MSr (2n—2+X)’

(12)

asn —» oo, where I'(X) is the gamma function. These
sequences are shown in the figure. The calculations are
performed by the exact values of ten moments from
Table 1 and by 50 moments of the solutions to approx-
imate Egs. (8) and (9) for the values of the parameters
Aq given in Table 2. In the homonuclear case, the con-
vergence of the sequence of relations is better [6]; this
allowed usto determine 1, by the first ten momentsto a
sufficiently high degree of accuracy. In the heteronu-
clear case, the convergence deteriorates because the

interaction between lithium nuclei is weak (AfL =

0.15AﬁF ). Therefore, it takes some time for the system

of Li nuclei to adjust to the system of F nuclei. Thefig-
ure shows that the first terms in the sequence of the
ratios of moments of the solution to system (8), (9) are
close to the ratios of exact moments. The approximate
equations have allowed us to follow up how the ratios
of moments pass to the limit (see Table 2). This
approach represents the development of the simple esti-
mate of [6]. Applying it to the homonuclear casefor A =
1.105, we arrive at the value 1A, = 2.48, which was
determined earlier by ten moments. Note that an esti-
mate for 1, was obtained in [10] by using Egs. (8) and
(9) for A =1 (which isalso shownin Table 2). The vari-
ation of A, from 1 to 1.1 leads to variation of the coor-
dinate 1, by less than 2%, which is indicative of the
accuracy of its determination.
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3. CALCULATION OF A CORRECTION
TO THE COORDINATE OF A SINGULAR POINT
OF THE CORRELATION FUNCTIONS

The SCFF approximation corresponds to the limit
d — 0. Asisshown in [12] by an example of homo-
nuclear systems, for d = 3, the coordinate of the singu-
lar point of the ACF on the imaginary-time axis
increases due to the correlation of local fields,

T. = TO+6TC! (13)

and the main contribution to 31, is given by the correc-
tions to the moments that can be represented by trees of
double bonds with abuilt-in pair of fourfold interaction
or triangle of four bonds. In the heteronuclear case, the
degree of correlation is characterized by the following
ratios of lattice sums:

S/(S)% SIS’ S/(S): S(SS),

where

S = szizj’ S = Zbiﬂ}’ S = kzjbijbikbji (15

(14)

with summation over the sites occupied by nuclei of
onetypewith anucleusat sitei. In the primed sums, the
summation is performed over the sites occupied
by nuclei of another type. The numerical values of
ratios (14) for three orientationsof aLiF crystal are pre-
sented in [11]. The small value of these ratios corre-
sponds to the real smallness parameter. For conve-
nience, we introduce aformal parameter €; infinite for-
mulas, we set this parameter equal to zero.
Contributions with lattice sums (14) are aready con-
tained in the fourth moment (A.3). The corresponding
decrease in M,, can be ascribed to the SCFF if one
reduces A,. For example, for the orientation [110], we
obtain Ar = 0.94 and A\, = 0.75. Such a variation leads
to an increase in the coordinate 1, by about 2%. Asis
shownin[12, 16] in the homonuclear case, the incorpo-
ration of such fragments of (14) into large trees of
bonds corresponding to higher order moments pro-
duces a more significant effect. Such contributions can
be determined from Egs. (1) for the ACFs.

Assuming that the correction €91, is small, we esti-
mate it by taking a ssmplified version of equations in
which the zz interactions are predominant. Take

r(xq(t) = raqo(t)_er(qu(t)

and substituteit into an integral equation with appropri-
ate correction terms for the memory function

Guq(t) = Gaqo(t) _gGaql(t)-
In view of the form of the equations, it is more conve-
nient to pass to an equation for the squared transverse
ACF:

F2a(D) = Yo(t) = Yoo(t) —€Yqu(t). (16)
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For the first correction Y (t), we find the equation

t

d
d_tYFl(t) = ZEFFDYFl(t)IrzFo(tl)dtl
0

t

+2[F LDYFl(t)JT zro(ty)dt;
0

thty

4
+ E [FFDYFo(t)IIIYFl(ts)dtldtzdts
000

tht,
4
+ 5 [F L[NFO(t)J]].YLl(tB) dt, dt,dt;

000

t tly

+2 [FLD?S'ZYFO(t)J’r zLo(tl)dtlj I o(tp)dt,dt,
0 00

t tly

+25,LF FE%YFo(t)J’r zro(t1) dtlI [ 2ro(tz) dtydt,
0 00

thty

+ 2RF(S, + ) Veolt) [ Yeolte)tuctct
000

thty

4
+ 5 D_ Fl:”:l_ L[&YFO(t)IIIYLO(tB) dtldtzdts

000 a7

+ FFIEEES, + SEYo(t)

thty 3ty

x J’J’J’YFO(tS)dtldtzdt3 J-J-rz,:o(t5)dt4dt5
00

000

+ LR D:Ltg(sz +5)Yeolt)

ttity 3ty

X IIIYLO(t3) dtldtzdtsj. I, o(ts)dt,dts

000 00
+ ELLDD:LDELF[E'(S'Q +25) Yeo(t)

thht 3ty

X IIIYLo(ts) dtldtzdtsj' [ 2ro(ts) dt,dts

000 00

+ [FFCT EFLE@%YFO(t)
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t tit, tat,

.UIYFO(t 3)dt, dtzdtgj’ I, o(ts)dt,dts — Re(1),

000
in which we introduced dimensionless imaginary time
t' = —it(5 A% /4)Y2; omitted the prime; denoted

40
[FFO= 1, [FLO= —*,
FF
A an¢
OL0= =, 0OF0= —F
FF SAge

and denoted ratios (14) by S,, S, S;, S;. Equation (17)
differsfrom that considered in the homonuclear case[12]
by the contributions of nuclei of different types and by
the change in the form of the correction R(t) (because
lithium nuclei have spin 3/2) due to the permissible
fourfold interaction of nearest neighbors:

t

Re(t) = 25, EFFD?YFO(t)JTZFO(t_tl)dtl
0

4itp

XIIrzFo(ts) dt,dt;
00

t

+2S, EFLEFYFO(t)IrzLO(t —ty)dt,

U [ 15 ZLO(tl‘tz)} a.0(ts)dtz0ts,

t

RJU==2$ELHmeaUTEav4adu

4ty

X IIrzFo(t3) dt,dt,
00

t

+2S, D—LU—’YLO(t)IrzLO(t —t,)dt,

4tp
16
x J;J;[l + 72T wolls —tz)}rm(tg)dtzdta_

A changein the remaining part of Eq. (17) when pass-
ingto Y, ;(t) reducesto achangein the subscriptsF —
L and L — F. For the functions Yyo(t) and I",q(t) of
zeroth-order approximation, we use asimple set of four
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equations that is obtained from (8) for )\é =5/4. More-
over, we neglect the time variation (I 4(t") ~ I 4(0) = 1)
compared with ((t' — t"))? in the integrand; as is
shown in [12], this leads to a dlight decrease in the
moments but significantly simplifies the calculations.
For comparison, the coordinate of the singular point

To()\é = 5/4)Age of the solution to such a system is

shown in Table 2. We had to simplify the equation in
order to increase the numerical positions up to 50. In
turn, such a large mantissa is required to sum up the
moments that strongly differ in magnitude.

Using the equations, we calculate the moments of
functions (16) up to n = 70. The coordinate of the sin-
gular point is determined from the ratio of moments:

(0)
2 _ 2. 1—€Y 2(n 1)/YF2(n nt
T, = Tplim D) o0
noo 1—eYen/Yeo t.
Then,
(1) (1)
26TC — Iiml:szn YFZ(n 1!‘] (18)

o (0) (0)
To N=*¥eon  Yez(n-1H

Extrapol ating the ratios obtained, we determine the val -
ues presented in Table 2.

Let us compare the results for hetero- and homonu-
clear systems. In the homonuclear case, we have 1,4, =
2.48 for any orientation, wheresas, in the heteronuclear
case, Table 2 showsthat 1,Axr decreases by afactor of 2
under rotation from [111] to [100]. Using the units of
the total moment of the NMR spectrum of fluorine
nuclei,

My = AZ(1+ XP)),

we obtain 1,,/M,r = 3.72 for the [111] orientation.

Thisresult coincideswith that in the homonuclear case,
where the coordinate increases to 3.87 under the rota-
tion to the [100] orientation. Such anincreaseis associ-
ated with an increase in the contribution of the hetero-
nuclear zz interaction to M. In the homonuclear case,
asimilar increasein the coordinate of the singular point

of the ACF with theratio A3 /A% was observed in [17].

Let us pass to the correction d1.. We calculated
01./1, for ahomonuclear face-centered cubic lattice by
the formula obtained in [12] for three orientations and
obtained the following results: 0.17 for [111], 0.37 for
[110], and 0.22 for [100]. A comparison of these results
with the values presented in Table 2 shows that, in both
cases, the correction attains its maxima value for the
[110] orientation and is primarily associated with the
large value of the parameter S)/(S,)? = 0.225. The addi-
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tion of a heteronuclear interaction reduces the correc-
tion and smoothes out its dependence on orientation.

Thus, we have obtained, theoretically, the required
increase in the coordinate of the singular point of an
ACF due to the correlation of local fields, which was
revealed in [11] by analyzing experimental spectra
from the viewpoint of the SCFF theory. A quantitative
comparison of the theory and experiment requires that
one should determine a variation in the preexponential
factor due to the correlation in the motion of spins. An
appreciable effect of thisfactor wasaso shownin[11],
which testifies to the fact that the observed detuning
from the center of the spectrum is less than the mathe-
matical asymptotics. Finally, publications do not con-
tain al experimental conditions that are necessary for a
successful comparison of the results.

In conclusion, note that we have performed calcula-
tionsfor aLiF crystal when amagnetic field is directed
along three crystallographic axes. The theory alows us
to obtain results for other heteronuclear systems and
orientations. To this end, one should substitute the | at-
tice sums and the contributions to the squared local
fields into the formulas and perform the calculations
described in this paper.
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APPENDIX

Here, we present expressions for the moments up to
the tenth order for a system consisting of two types of

spins for an axially symmetric case A, = A%, with an

arbitrary relation between Ay, and AZ, (below, for def-

initeness, wewill use subscripts“F’ and “L” in place of
g and p). The moments are cal culated by the recurrence
relations obtained from the equations of the homonu-
clear case [6] after the above-mentioned modifications.
Theresults are exact in the SCFF approximation, which
corresponds to infinite-dimensional lattices:

MY = Afe+ A7 + AL,
MY = 3AF +3ARe + (40%¢ + BAZ: + 205 )AF
+ 50y + BAFDr,
ME) = 15A% + 15A% + (21A%, + 4572,
+ 3005, )AL + S1A%: + T30F AL + 55ARARE

+ (4505 + 45A1. + 100y, + 7602 A%
+ 300705, + DT EAL + AAT Dy + 18A% AL A7
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ME) = 10542 + (1440% + 42002 + 4200%, )AL,
+ (11205 A7 + 4480y + 11205 A ¢ + 6301,

+840AZ:A%, + 360A% A%, + 4200y,
+ 98BN AL )AL, +{1678AZ Ay + 9203,

+ 154408 Ny + 42005, + 2405 A},
+ (720505, + T80y, + 4805, AZp + 11277 AL )AL

+ 11202 Ao AN ¢ + 2405 A - + 180A5 Ay,
+ 284N Dy + BABALEAL DY + TOA Al

+80AL A% A2+ 9145 + 280A2 Ay,
+420Ape A5, YAE, + 1ATONZAS - + 861A5

8 6 2
+105A% + 13782 Ay ¢ + TO0AL AL,

ME) = (1245A%; + 4725A% + 6300A% )AL,
+ (252005 A, + 5856y + 252005, A ¢

+ 94507+ + 18900AZ- A%, + 6060A% A%,
+ 126000y, + 15120A%-A%F )AL, +{ 36858A-Ax e

+ 48300y A + 8340A2, + 37890Ar-A -
+ 94502 + 1080A% A} + (228005 A%,

+5190Ay, + 2160A%, AC ¢ + 5040AZ-A%, VAZ,
+ 504002 A% A ¢ + 166760 + 1080A%, Al -

+ 828005 Ay, + 9140A% Ay, + 2700AZ A% Ay,
+ 26565 A5 A ¢ + 18900A2 Ay,

+ 1890001 A%, AT +{ 276435  + 1442175
+ 578580 A2y + BATAANy Ape + 3540005 A

+ 472508 + 1080A%, AZA; - + 414005, AZe

+ 285205 A2, + 630005, Al + TA2NS AL,
+ 25205 AfeA ¢ + 994005 NG A2,

+ 31500y AZA ¢ + 435205 A% N2AY.  (AD)
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+ 2094005 D5 Dt + 153205, A2,
+ 24005 AL - + 24005 A, + T56A%, A ¢
+ 6300A%, Ape + 45600 Ay,
+ 24180y Na e ¢+ 98ANS AL AL

+ 211205 A5 A ¢ + 189965 (A% A2,
+(3976A% A% A2 + 72005 A

+ 182405 A%, + 252005 Ape + 216005, A2 N
+ 176875 A + 351005, A2

+ 172805 A5 A p + 182005, + 241805 Ay, )AF |
+ (1080A% AZ: + 101245, + 72005 AZ;

+ TAADG Dy )AL A EL + 945AF + 43980A7 A5
+21847A + 945A + A8498AL NS,

+ 3374207 Dy + 113850705,
MY = 20%,
MY = AALAZ, + 10A%: + 402 A,

M = 2403eAF + 9205 + T8AZAKe
4 a2 4 2 a2 2 a2 2
+ 240y e + (T0AxE + 4BAReAx e + BAKAY ) AR,

M) = 240A3 A%, + (24002 NG, + 75605,
+ 72005 A2 AL+ (T2005 - Afe + 176805 A2,

+ 1605 A 0y, + 16A5 A Ao + 153205
+ 2480y Dy, + 24005 AZEAS + A0AL Ay, JAF

+ 1820A% A2 + 101205 At

+ 24005 A2 + 144215
M) = 3360A%.A%, + (67200502, + 10956/,
+ 134400502 ) A8, + (201600508 (A.2)

+ 405800y A2y + 89602 A2 AL,
+896AL A Ao, + 2875205 - + 1151645 A%,
+ 1344005 D2 N + 336005 Dy, )AL
+{ 1344005 A% + 368A5 A2,
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+ 896 A A2LAZ - + 482920y Ape
+ 4670205 ¢ + 840Ny Ao A ¢

+ 72348NS A2 + 1378805 Do A2
+ 672005 A5 Dpe + (19205 (A5 A2 + 8080y Ly,

+ 31205 Ay + 8IBAY AL A )AL
+ 224005 Dy A2 + 90481 NG,

+9BAL AR AL + 9BALEAY A F + 28005 Ay Afr
+ 202005 Ay, YAZ, + 186680 A2 + 58138A% A2,

+ 3360A% AL, + 44TA8NS At + 3549205 .

Expressionsfor the moments of the nuclel of the second
type are abtained by changing the subscripts F — L
andL — F.

For comparison, we present an exact expression for
the fourth moment of the ACF I'(t) (4) for a system
consisting of nuclei of two types with aDDI for aread
LiF crystal, which was derived from the results for a
similar moment of the NMR spectrum [18], and an
expression for the fourth moment of the ACF of a
homonuclear system [19]:

My _77 95, S
Afe 16 45! 25
AZ AZ D AZDD
Wham, b, S 5 A (A.3)

A0 202, 2SS0 AT

2 2
B ws
DT (5)

A similar moment for the Li nuclei is obtained by the
change of the subscripts F — L and L — F and by
the simultaneous change of the numerical coefficients:

9S,/4S. to 1.27S/S; and 34S,/(5S,)? to 2S,/(S,)?,
which isassociated with the differencein the spin quan-
tum numbers of the F and Li nuclei.
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