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Abstract—A method is proposed for calculating the electronic structure and physical properties (in particular,
Young’s modulus) of nanotubes, including single-walled carbon nanotubes. This method explicitly accounts for
the periodic boundary conditions for the geometric structure of nanotubes and makes it possible to decrease
considerably (by a factor of 10–103) the time needed to calculate the electronic structure with minimum error.
In essence, the proposed method consists in changing the geometry of the structure by partitioning nanotubes
into sectors with the introduction of the appropriate boundary conditions. As a result, it becomes possible to
reduce substantially the size of the unit cell of the nanotube in two dimensions, so that the number of atoms in
a new unit cell of the modified nanotube is smaller than the number of atoms in the initial unit cell by a factor
equal to an integral number. A decrease in the unit cell size and the corresponding decrease in the number of
atoms provide a means for drastically reducing the computational time, which, in turn, substantially decreases
with an increase in the degree of partition, especially for nanotubes with large diameters. The results of the cal-
culations performed for carbon and non-carbon (boron nitride) nanotubes demonstrate that the electronic struc-
tures, densities of states, and Young’s moduli determined within the proposed approach differ insignificantly
from those obtained by conventional computational methods. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The experimental discovery of carbon nanotubes in
1991 [1] has opened up new fields in applied and fun-
damental physics. Owing to their sizes (the transverse
size is of the order of nanometers) and one-dimensional
structure, carbon nanotubes exhibit unique mechanical,
chemical, and electrical properties [2] and, already at
present, have found wide applications in many areas of
engineering. For example, since the invention of field-
effect transistors based on carbon nanotubes in 1998,
these devices have been fabricated in many laboratories
and subjected to experimental tests [3, 4]. The unique
combination of mechanical, elastic, and electrical (con-
ductivity) properties of carbon nanotubes has allowed
their use in tunneling and atomic-force microscopy.
High hopes have been pinned on the design of ultras-
trong fibers from carbon nanotubes (in particular, for
practical implementation of the space elevator idea).
Any technical application should be based on a detailed
theoretical analysis. In this respect, theoretical investi-
gations into the electrical and mechanical properties of
nanotubes, the formation of defects in nanotube struc-
tures, and nanotube functionalization (i.e., the forma-
tion of chemical bonds between nanotubes and modify-
ing molecules) are very important problems. Unfortu-
nately, theoretical quantum-chemical investigations of
nanotubes involve rather time-consuming procedures,
primarily, because of the long time required for calcu-
lating the electronic structure of nanotubes with large
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diameters (which are most frequently encountered in
experiments). For example, a unit cell of typical single-
walled carbon nanotubes (SWCNTs), as a rule, con-
tains from 101 to 102 atoms. However, in order to eluci-
date how defects of different types (adsorbed mole-
cules, vacancies) affect the properties of single-walled
carbon nanotubes, it is necessary to examine several
unit cells; in this case, the minimum length of the
region of the single-walled carbon nanotube under con-
sideration is approximately equal to 10 Å. For this
length, it is possible to avoid the undesirable effect
exerted by defects in adjacent unit cells on each other;
i.e., these defects are assumed to be isolated. Therefore,
the study of any defects inside single-walled carbon
nanotubes necessitates analysis of the structures in
which the number of atoms (~102–103) is one order of
magnitude larger than that contained in the unit cell.
The calculation of the electronic structure of these
objects involves an extremely cumbersome procedure
for any quantum-chemical (especially, ab initio)
method, even for those that explicitly account for the
periodic Bloch conditions, such as the methods based
on the muffin-tin approximation (LMTO, FPLMTO,
LAPW, etc.), the pseudopotential formalism, and other
approaches. The computational time needed to calcu-
late the electronic structure with these methods is pro-
portional to N~2–N4 (Hartree–Fock LCAO method),
where N is the number of atoms in the unit cell in the
structure under consideration. According to [5], one of
© 2005 Pleiades Publishing, Inc.
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the fastest computational algorithms is provided by the
pseudopotential method operating with the Vanderbilt
ultrasoft pseudopotential [6], the plane-wave basis set,
and the iterative diagonalization of the Hamiltonian in
the framework of the density functional theory. In [5],
it was demonstrated that, for systems containing up to
1000 electrons, the computational time of the algorithm
is proportional to ~N2. However, we can assume that,
even in the calculations performed with the above
method for nanotubes having large diameters, the con-
siderable decrease in the size of the computational cell
and in the number of atoms in it is of crucial importance
in the case when this does not lead to substantial errors
due to the transformation of the cell.

2. COMPUTATIONAL TECHNIQUE

In this paper, we propose a technique that makes it
possible to reduce considerably the time needed to cal-
culate the electronic structure of nanotubes. This
approximation is based on a change in the nanotube
geometry and allows one to decrease substantially the
size of the unit cell of the nanotube and the number of
atoms in the cell. By assuming that the method is used
to perform calculations in a plane-wave basis set in
which the wave function is calculated in different spa-
tial regions, including those with an almost zero value,
the proposed algorithm enables one to avoid calcula-
tions of the electron density in the vicinity of the nano-
tube axis where the electron density is virtually zero
(ρ ≈ 0) and, thus, to additionally increase the computa-
tional speed. The applicability of the method is illus-
trated by calculating a number of single-walled carbon
nanotubes and a (10, 10) single-walled boron nitride
nanotube.

The key idea underlying this method is that the elec-
tronic structures of a single-walled carbon nanotube
and a graphite sheet are similar to each other. Only for
single-walled carbon nanotubes with very small diam-
eters (D ≤ 6 Å) are the electronic structures of graphite
and single-walled carbon nanotubes somewhat differ-
ent. A comparison of the geometric structures of the
graphite sheet and the single-walled carbon nanotube
shows that the fundamental difference between them
lies in the boundary conditions. The graphite sheet is
treated as an infinite plane, and the boundary conditions
for the electron wave functions are specified using the
Bloch theorem. The electron wave function depends on
the two-dimensional wave vector k = {kx , ky} aligned
parallel to the graphite sheet. For a single-walled car-
bon nanotube, the boundary conditions are similar to
those for graphite only along the nanotube axis (the
Z axis).

Let us consider the wave vector kx along the rolled
graphite sheet perpendicular to the nanotube axis. It is
evident that, in this case, the wave vector changes dis-
cretely as a result of the periodicity when tracing
around the circumference of the nanotube.
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The symmetry group of the (n, n) and (n, 0) nano-
tubes contains the rotation axes [7, 8]:

Hence, the nanotube can be separated into n equivalent
sectors [9].

Chiral nanotubes of the (n, m) type are characterized
by the symmetry group G = Cd ⊗  , where Cd =

{Cd, , …,  = E} and d is determined by the fol-
lowing conditions:

Owing to the screw axes, the chiral nanotube can be
separated into d equivalent sectors with the correspond-
ing increase in their period along the Z axis.

The periodicity of the nanotube geometry enables us
to change the geometry of the calculated structure by
separating the structure of the nanotube into equivalent
sectors and reflecting each subsequent sector with
respect to the plane tangential to the adjacent sectors
along the line of their contact. Figure 1 illustrates this
sequential transformation of the single-walled carbon
nanotube into corrugated surfaces consisting of two and
then four sectors with the exact same curvature as that
of the initial geometric structure of the single-walled
carbon nanotube. The projections of the nanotube and
two corrugated surfaces onto the plane perpendicular to
the nanotube axis are also depicted in Fig. 1. The Ci –
Ci + 1 lines are perpendicular to the reflection planes of
the sectors whose reflection provides the formation of
the corrugated surface. The points Pi are the projections
of the contact lines of sequential sectors. At the first
stage of the nanotube transformation, the initial single-
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Fig. 1. Sequential transformation of a nanotube sector into
a corrugated surface.
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walled carbon nanotube is transformed into the sim-
plest corrugated surface by reflecting the half-sector of
the nanotube with respect to the plane passing through
the line of contact (with the projection P1). Then, this
structure is transformed into the next corrugated sur-
face by reflecting the previous corrugated surface with
respect to two planes (passing through the lines with the
projections P2 and P3). The partition of the corrugated
surfaces can be repeated. In this case, if the number of
reflection planes is equal to M, the number N of equiv-
alent sectors of the corresponding corrugated surface
formed from the nanotube structure is N = M + 1.

Since the single-walled carbon nanotube is parti-
tioned into a number of periodically repeated sectors
located along the X axis, it is possible to calculate the
electronic structure only for one sector of the corru-
gated surface. An increase in the degree of partition of
the nanotube leads to a decrease in the unit cell of the
corrugated surface. This results in an increase in the
computational speed. Proper allowance must be made
for the fact that the periodicity of the corrugated surface
along the X axis leads to a dependence of the electron
wave function ψν(r) (where ν = {kx , kz , n} and n is the
number of the band) on the wave vector component kx.
The wave vector k of the nanotube has only one compo-
nent (along the nanotube axis), whereas the wave vector
k of the corrugated surface has two components (kx , kz).
Note that the inclusion of the boundary conditions
(periodicity) for the wave function when tracing around
the circumference of the nanotube leads to the sole pos-
sible set kxi = {2πi/LxN, i = 0…(N – 1)}(where Lx is the
period of the corrugated surface along the x direction).

The structure of the corrugated surface differs from
the structure of the single-walled carbon nanotube only
in that the curvature of the corrugated surface changes
jumpwise (only in sign) along a small number of lines
with the projections Pi. Therefore, it can be expected
that any wave eigenfunction ψν(r) (ν = {kx , kz , n} of an
electron traveling along the corrugated surface should
be similar to a wave function of an electron traveling
along the surface corresponding to the single-walled
carbon nanotube.

It should be noted that the number of atoms in the
unit cell of the corrugated surface is smaller than the
number of atoms in the unit cell of the single-walled
carbon nanotube by a factor of N. In this case, an
increase in the set of possible values of the quasi-
momentum kx by a factor of N restores the total number
of possible electron eigenstates in the nanotube.

It is interesting to estimate the gain in the computa-
tional speed that can be achieved with the use of the
proposed approximation as compared to the conven-
tional calculation of nanotubes. We assume that, in the
case of single-walled carbon nanotubes with large radii
R, the chosen unit cell size determined by the periods Lx

and Ly is considerably larger than the vacuum gap
between the adjacent nanotubes. Under this assumption
PH
with due regard for the schematic diagram depicted in
Fig. 1, it is easy to derive the relationships Lx =
2Rsin(π/N) and Ly = R(1 – cos(π/N)). Taking into
account that, in the proposed method, the computa-

tional speed V is proportional to O( ) (where Nat is
the number of atoms in the unit cell) and the number of
atoms in the unit cell depends linearly on the unit cell
volume, we obtain the formula

For N @ π, the computational speed is proportional to
Vtube/VCSS ~ 2N/π. The increase in the number of wave
vector components kx in the corrugated surface is com-
pensated for by the decrease in the number of atoms in
its unit cell.

3. THE ORIGIN OF POSSIBLE ERRORS 
OF THE METHOD

It is very important to reveal the origin of possible
errors in the calculation of the electronic structure after
the transformation of the carbon nanotube into a corru-
gated surface. It is clear that possible errors are associ-
ated with the change in the curvature of the structure
under consideration. It is this curvature of the rolled
graphite sheet that is responsible for the small differ-
ences between the electronic structures of the nanotube
and the graphite sheet. The analysis of the corrugated
surface in the cylindrical coordinates relative to the
rotation axes (see the projections of the Ci axes in
Fig. 1) demonstrates that the first derivative of the coor-
dinates of the point on the corrugated surface with
respect to the rotation angle is continuous and that the
curvature determined by the second derivative of the
coordinates vanishes along the lines whose projections
in Fig. 1 are represented by the points Pi. At other
points of the corrugated surface, the curvature coin-
cides in magnitude with the curvature of the single-
walled carbon nanotube. To put it differently, the trans-
formation of the geometric structure of the nanotube
into the corrugated surface in terms of the solutions to
the Schrödinger equation is a correct procedure at all
points except for the points of the contact lines of the
sectors (with the projections Pi), which simultaneously
belong to two different sectors of the corrugated surface
and in which the curvature vanishes.

The origin of the errors can be revealed directly
from analyzing the differential Schrödinger equation
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by writing the Laplacian in the cylindrical coordinates:

(1)

Now, we take into account that C3P1 = –C2P1 and that
the first and second derivatives in the Laplacian have
the difference approximations ∂yi/∂ρ . 1/2h(–yi – 1 +
yi + 1) and ∂2yi/∂ρ2 . (1/h2)(16yi – 1 – 2yi + yi + 1). Then, it
becomes clear that all the terms in the Laplacian are
continuous functions of the arguments (ρ, φ), except for
the term (1/ρ)∂/∂ρ that changes the sign along the con-
tact lines Pi. This term is the sole factor responsible for
the possible change in the Laplacian upon transforma-
tion of the single-walled carbon nanotube into the cor-
rugated surface. Fortunately, it follows from relation-
ship (1) that this term decreases in proportion to the
increase in the nanotube radius. Consequently, when
the diameter of the initial nanotube is sufficiently large
and the number of points Pi is small, we can expect that
the electronic structure of the corrugated surface will
virtually coincide with the electronic structure of the
single-walled carbon nanotube.

4. CALCULATIONS OF THE ELECTRONIC 
STRUCTURE OF CORRUGATED SURFACES

As an example, we calculated the electronic struc-
tures of single-walled carbon nanotubes with different
diameters and chiralities and also the electronic struc-
tures of the corresponding corrugated surfaces. The
band structures, densities of states, and binding ener-
gies were calculated for the (20, 0) zigzag single-walled
carbon nanotube (according to the notations proposed

∇ 2

2m
------- V̂ r( )+ Ψν

r( )– ενΨν
r( ), ν k n,{ } ,= =

∇ 2 ∂2

∂ρ2
--------

1
ρ
--- ∂

∂ρ
------ 1

ρ2
----- ∂

φ2
----- ∂2

∂z
2

-------.+ + +=

Density of states for the (8, 8) family

EFermi

(8, 8, 8)

(8, 8, 4)

(8, 8, 2)

(8, 8, 0)

–20 –15 –10 –5 0 5
E, eV

0

10

20

30

40

50

60
D

en
si

ty
 o

f 
st

at
es

Fig. 2. Densities of states for the (8, 8, i) structures at i = {0,
2, 4, 8}.
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in [10]) and the (8, 8) and (16, 16) armchair single-
walled carbon nanotubes.

All the calculations were performed with the Vienna
Ab Initio Simulation Package (VASP) [5, 11, 12]. This
program package makes it possible to perform ab initio
calculations based on the pseudopotential method and a
plane-wave basis set in the framework of the local den-
sity functional formalism [13, 14]. The use of the
Vanderbilt pseudopotentials in the calculations led to a
substantial decrease (to 287 eV) in the maximum
kinetic energy Ecutoff of the plane-wave basis set without
a significant loss of accuracy. The electron–electron
exchange and correlation interactions were described
by the functional density theory method with the Cep-
erley–Alder exchange–correlation functional [15],
which has worked well in similar calculations.

All the geometric structures of the nanotubes and
the corresponding corrugated surfaces were con-
structed on the basis of the graphite sheet (with an inter-
atomic distance of 1.42 Å) curved in a specific manner.
The densities of states for all the structures under inves-
tigation are shown in Figs. 2–4. In these figures, the
corrugated surfaces are designated by the indices (i, j,
k), where k is the number of sectors into which the nan-
otube is partitioned upon transformation into a corru-
gated surface and (i, j) are the chirality indices. For
example, the designation (8, 8, 0) corresponds to the
initial (8, 8) single-walled carbon nanotube and the des-
ignation (8, 8, 4) refers to the corrugated surface
obtained by partitioning the initial nanotube into four
sectors. It can be seen from Figs. 2–4 that the densities
of states for all the corrugated surfaces almost coincide
with the density of states for the initial nanotube. This
indicates an insignificant contribution from a finite
number of lines in which the curvature of the geometric
structures of the single-walled carbon nanotube and the
corrugated surfaces differ from each other.
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Fig. 3. Densities of states for the (16, 16, i) structures at i =
{0, 2, 4, 8, 16}.
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Moreover, we investigated how the optimization of
the geometry structure affects the electronic structures
of all the objects. For this purpose, the electronic char-
acteristics were calculated for the structures with opti-
mized and unoptimized geometries. All the degrees of
freedom of atomic coordinates could be varied in the
course of optimization. The optimization was carried
out by the conjugate-gradient method. The structure
was treated as optimized when the magnitude of the
force acting on any atom was less than 0.02 eV/Å. The
calculations demonstrated that the densities of states
for the optimized structures are in close agreement with
the densities of states for the corresponding unopti-
mized structures. For this reason, these densities of
states are not presented in the figures.

Density of states for the (20, 0) family
EFermi

(20, 0, 20)

(20, 0, 10)

(20, 0, 4)

(20, 0, 0)

–20 –15 –10 –5 0 5
E, eV

0

50

150
D

en
si

ty
 o

f 
st

at
es

(20, 0, 2)

100

Fig. 4. Densities of states for the (20, 0, i) structures at i =
{0, 2, 4, 10, 20}.
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Fig. 5. Dependences of the strain energy on the strain for the
(8, 0) single-walled carbon nanotube and the (8, 0, 2) corru-
gated surface.
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The total binding energies (per atom) for all the
structures (optimized and unoptimized) are listed in
Table 1. The computational times of one iteration (over
all k points), the numbers of k points, and the numbers
of plane waves (averaged over the k points) are also pre-
sented in Table 1. The calculations were carried out on
a PIII-860 personal computer. As can be seen from
Table 1, the binding energies for the corrugated sur-
faces are very close to the binding energies for the cor-
responding single-walled carbon nanotubes. Note that
the difference between these energies increases with an
increase in the degree of partition of the nanotubes. It
can also be seen from these data that, in all cases, the
binding energy depends very weakly on the optimiza-
tion of the structure.

5. APPLICATION OF THE CORRUGATED-
SURFACE METHOD FOR CALCULATING 

THE ELASTIC PROPERTIES OF NANOTUBES

The proposed method was also used to calculate the
elastic properties of carbon and non-carbon structures.
The Young’s moduli Y were calculated for the (6, 6) and
(10, 10) single-walled carbon nanotubes. The Young’s
moduli of the nanotubes, as a rule, have been calculated
from the standard formula Y = (1/V0)(∂2E/∂ε2), where
V0 = 2πLRδR is the volume of the unstrained structure
and δR is the thickness of the nanotube wall. However,
there is arbitrariness in choosing the thickness of the
nanotube wall δR. For example, Lu [16] determined
the thickness of the nanotube wall δR as the distance
between the graphite sheets, whereas Yakobson et al.
[17], reasoning from the atomic radius of carbon,
assumed that the thickness δR is equal to 0.66 Å. This
problem was solved by Hernandez et al. [18], who
introduced the modified Young’s modulus Ys =
(1/S0)(∂2E/∂ε2), where S0 = 2πLR. It is this relationship
that was used in the present work.

The calculated Young’s moduli Ys are given in
Table 2. It can be seen from this table that, in the case
of the (6, 6) single-walled carbon nanotube with a small
diameter, the error in the calculation of the Young’s
moduli Ys for the corrugated structure is rather large.
However, as the nanotube diameter increases, the accu-
racy of the calculation increases in accordance with the
predictions made in Section 2. In addition to the calcu-
lations of the elastic properties of the armchair carbon
nanotubes, we calculated the strain energy (i.e., the
energy associated with the bending of the graphite
sheet upon formation of the nanotube) for the (8, 0) zig-
zag single-walled carbon nanotube and the correspond-
ing (8, 0, 2) corrugated surface. The results obtained are
presented in Fig. 5 (the dependence shown by the solid
line is taken from [19]).

It can be seen from Fig. 5 that the strain energies of
the initial single-walled carbon nanotube and the corre-
sponding corrugated surface are very close to each
other (at moderate strains). This indicates that the pro-
YSICS OF THE SOLID STATE      Vol. 47      No. 11      2005
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Table 2.  Young’s moduli YS (TPa nm) calculated for the carbon and non-carbon structures

SWCNT YS SWCNT YS SWCNT YS BN nanotube YS

(6, 6) 0.463 (8, 0) 0.437 (10, 10) 0.423 (10, 10) 0.316

(6, 6, 2) 0.546 (8, 0, 2) 0.455 (10, 10, 2) 0.439 (10, 10, 2) 0.329

[14] 0.415 [14] – [14] 0.423 [14] 0.306

Table 1.  Binding energies per atom (eV) for the (8, 8, i), (16, 16, i), and (20, 0, i) structures; numbers of k points; numbers
of plane waves; and times of one iteration for the calculation of the (20, 0, i) structures

(8, 8, i) i = 0, 2, 4, 8 9.340 9.356 9.375 9.390 –

(optimized/unoptimized) 9.331 9.340 9.347 9.364 –

(16, 16, i) i = 0, 2, 4, 8, 16 9.390 9.392 9.393 9.406 9.405

(optimized/unoptimized) 9.381 9.348 9.381 9.385 9.389

(20, 0, i) i = 0, 2, 4, 10, 20 9.304 9.308 9.318 9.336 9.336

(optimized/unoptimized) 9.304 9.307 9.310 9.321 9.331

Number of k points 14 28 42 84 154

Number of plane waves 26290 15216 6290 2350 1158

Time of one iteration (s) 88517 40037 12340 2500 890
posed method can be used for calculating not only the
electronic structure but also the elastic properties of
carbon nanotubes.

Apart from the calculations of the properties of the
single-walled carbon nanotubes, we calculated some
properties for a number of boron nitride (BN) nano-
tubes. In particular, we calculated the binding energies
for the (10, 10) nanotube and the (10, 10, 2) corrugated
surface, as well as the Young’s moduli for these struc-
tures (Table 2). The results obtained demonstrate that,
within the proposed approach, the properties of non-
carbon structures are described with a high accuracy.

6. CONCLUSIONS

Thus, we proposed a method for calculating the
electronic structure and elastic properties of nanotubes,
including single-walled carbon nanotubes. This method
makes it possible to accelerate the calculations signifi-
cantly. The proposed approach is based on modification
of the geometry of the calculated nanotube through a
local piecewise change in its curvature and on the intro-
duction of additional boundary conditions. This pro-
vides a means for calculating the corrugated surface
with a unit cell having considerably smaller transverse
sizes. Moreover, the number of atoms in the unit cell of
the new corrugated surface is N times smaller than that
in the nanotube. The applicability of the method was
illustrated by calculating the electronic structure for a
number of carbon and non-carbon (boron nitride) sin-
gle-walled nanotubes. It was shown that the time it
takes for the nanotube properties to be calculated
decreases considerably (by a factor of 10–103 depend-
ing on the diameter) as the degree of partition of the sin-
PHYSICS OF THE SOLID STATE      Vol. 47      No. 11      200
gle-walled carbon nanotube increases, especially for
nanotubes with large diameters. A detailed analysis of
the Hamiltonian along the lines of the piecewise change
in the nanotube curvature demonstrated that the pro-
posed approach leads to an insignificant difference
between the calculated structures of the nanotube and
the corresponding corrugated structure. This difference
decreases in proportion to the increase in the radius of
the carbon nanotube.
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