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Abstract—The basic equations describing the conditions for reflection and refraction of bulk acoustic wave at
the interface between acentric crystals subjected to the action of a uniform external electric field are reported.
Numerical analysis of the effect of this field on the reflection and refraction anisotropy of bulk acoustic waves
at the crystal/vacuum and piezoelectric/elastic-isotropic-medium interfaces is performed. © 2005 Pleiades
Publishing, Inc.
INTRODUCTION

The theory of reflection and refraction of bulk
acoustic waves (BAWs) at an interface between two
nonpiezoelectric crystals was reported in [1, 2]. This
theory was used, for example, to design polygonal
ultrasonic delay lines. Further development of this the-
ory is related to the consideration of the specific fea-
tures of wave propagation in piezoelectrics [3]. The the-
ory of propagation of bulk acoustic waves in piezoelec-
tric crystals subjected to the action of a external electric
field and stress was described in detail in [4, 5]. The
effect of a uniform external electric field E on the prop-
agation of surface acoustic waves (SAWs) in piezoelec-
tric crystals was considered in [6]. In the first-order per-
turbation theory, the effect of E is determined by
changes in the conditions for BAW and SAW propaga-
tion, which are related to the nonlinearity of elastic,
piezoelectric, and dielectric properties and the electros-
triction. Therefore, the effect of E can be calculated if
the material constants of the nonlinear electromechani-
cal properties are known. By date, complete sets of the
coefficients of the nonlinear electromechanical proper-
ties have been investigated for some piezoelectric crys-
tals (lithium niobate, crystals with sillenite structure,
and langasite) [5, 7, 8].

REFLECTION AND REFRACTION OF ELASTIC 
WAVES AT THE INTERFACE 

BETWEEN PIEZOELECTRIC CRYSTALS 
UNDER THE ACTION OF A DC ELECTRIC FIELD

Using the results of [5], we will derive necessary
equations describing the effect of E on the conditions
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for the BAW reflection and refraction at an interface
between two media. In the initial coordinate system, the
wave equations for waves with small amplitudes in
homogeneously deformed acentric media and the equa-
tion of electrostatics have the form [5]

(1)

where ρ0 is the density of a unstrained crystal (initial

state),  is the vector of dynamic elastic displace-
ments (hereinafter, the sign ~ denotes the time-depen-
dent quantities), τAB is the tensor of thermodynamic
stresses, and DM is the electric-displacement vector. A
comma after an index denotes a spatial derivative and
two periods above a variable denote the second deriva-
tive with respect to time. Latin coordinate indices run
from 1 to 3. In what follows, summation over double
indices is implied.

When the effect of E is taken into account, the state
equation for the dynamic components of thermody-
namic stresses and the electric displacement have the
form

(2)

where ηCD is the strain tensor and the effective elastic,
piezoelectric, and dielectric constants are determined

ρ0Ũ
˙̇

A τ̃ AB B, ,=

D̃M M, 0,=

ŨA

τ̃ AB CABCD
* η̃CD eNAB* ẼN ,–=

D̃N eNAB* η̃ AB εNM* ẼM,+=
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by the relations

(3)

Here, dNQR is the tensor of “linear” piezoelectric coeffi-

cients; , eNABKL, , and HNPAB are the nonlin-
ear elastic, piezoelectric, dielectric, and electrostriction
material tensors, respectively; MN is the unit vector of
the external electric field, and E is the magnitude of the
external electric field.

To consider the problem of the BAW reflection and
refraction at an interface of two acentric media, let us
choose the orthogonal coordinate system with the 

axis directed normally to the interface and the  axis
lying in the interface plane. It is assumed that an elastic
wave is incident on the interface from the crystal occu-
pying the half-space  < 0. Solutions to the wave
equation will be sought for in the form of plane waves.
It is convenient to consider the conditions for the wave
reflection and refraction using the expressions for a
plane elastic harmonic wave and a wave of electrical
potential, written in terms of the refraction vectors m =
N/v  (N is the unit vector of the wave normal, and v  is
the phase velocity of a BAW):

(4)

where αC and α4 are the amplitudes of the elastic dis-
placement and electrical potential, respectively.

Substituting expressions (4) into (1) and leaving
only the terms linear in E, we obtain the system of four
homogeneous equations [6]:

(5)

where the components of the modified Green–Christof-
fel tensor have the form

(6)

The determinant of system (5) is a polynomial of
power 8 with respect to the component m3 of the refrac-
tion vectors of the reflected and refracted BAWs at a

CABKL
* CABKL

E
CABKLQR

E
dNQR eNABKL–( )EMN ,+=

eNAB* eNAB eNABKLdPKL HNPAB+( )EMP,+=

εNM* εNM
η

HNMABdPAB εNMP
η

+( )EMP.+=

CABKLQR
E εNMP
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X3
'

X1
'

X3
'
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Γ11 ρ0– Γ12 Γ13 Γ14

Γ21 Γ22 ρ0– Γ23 Γ24

Γ31 Γ32 Γ33 ρ0– Γ34

Γ41 Γ42 Γ43 Γ44 
 
 
 
 
 
  α1

α2

α3

α4 
 
 
 
 
 
 

0,=

Γ BC CABCD
* 2CABFD

E
dJFCMJE+( )mAmD,=

Γ B4 eIAB* mImA,=

Γ4B Γ B4 2ePFDdJDCmPmFMJE,+=

Γ44 εKL
η

mKmL.–=
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given direction of an incident elastic wave. Generally,
the values of m3 may be complex due to the effect of
total internal reflection [2]. In this case, the values of m3
should have a negative imaginary part for the crystal
occupying the lower half-space  < 0 (reflected
waves), and a positive imaginary part for the crystal in
the upper half-space  > 0 (refracted waves). As a
result, the condition for the decay of reflected and
refracted waves in the bulk of the corresponding crys-
tals will be satisfied.

Determination of the refraction vectors m makes it
possible to obtain the values of the angles of reflection
and refraction of BAWs and the corresponding phase
velocities. However, the most important energy charac-
teristics of reflection and refraction are the amplitude
coefficients of the reflected and refracted waves, which
characterize the distribution of the incident-wave
energy between the reflected and refracted waves. To
determine these coefficients, the boundary conditions
should be formulated. In the case of a rigid acoustic
contact between two crystals, the boundary conditions
for the thermodynamic-stress tensor are reduced to the
requirement for the continuity of the normal compo-
nents of the stress tensors of reflected and refracted
waves and the continuity of the elastic-displacement
vectors [2]:

(7)

where nJ is the normal unit vector on the interface. Tak-
ing into account the piezoelectric properties of the crys-
tals, we have to formulate the boundary conditions for
the electric-field characteristics. The conditions for the
continuity of the tangential components of the electric
field vector at the interface and the continuity of the
normal components of the electric-displacement vector
in the quasi-static limit can be written as

(8)

Substituting solutions (4) into Eqs. (7) and (8) and
leaving only the terms linear in E, we obtain finally a
system of linear equations with respect to the eight
amplitude coefficients of the reflected and refracted
waves:

(9)
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where aµ are the amplitude reflection coefficients and
bµ are the amplitudes of the refractive indices. In addi-
tion, the following designations are used:

(10)

In (9) and (10), the superscript 1 corresponds to the
crystal occupying the half-space  > 0, the superscript

2 corresponds to the half-space  < 0, the index 0
denotes the incident elastic wave, and the index µ
denotes the types of the reflected and refracted elastic
waves: a longitudinal (L) wave (1), a fast shear (FS)
wave (2), and a slow shear (SS) wave (3).

When only the reflection of a wave from the crystal–
vacuum interface is considered, it is necessary to
change the boundary conditions. In this case, the
stresses on the crystal surface should absent; i.e.,

 = . The boundary conditions include

also the requirement for continuity of the normal com-
ponents of the electric displacement at the crystal–vac-
uum interface and the validity of the Laplace equation
for the potential wave in a vacuum. The system of linear
equations for the four amplitude coefficients can be
written as

(11)

(12)

where ε0 is the dielectric constant.
Note that these expressions for the boundary condi-

tions are obtained for the case when a uniform external
electric field is applied to the crystal and the edge
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C

effects are neglected. The equations obtained take into
account all changes in the configuration of the anisotro-
pic continuous medium related to its static strain and, in
particular, the changes in the crystal shape: extensions
and rotations of elementary lines parallel to the sample
edges [5].

CALCULATION OF THE EFFECT 
OF A DC ELECTRIC FIELD 

ON THE REFLECTION OF BAWS 
FROM THE FREE BOUNDARY 

OF A PIEZOELECTRIC CRYSTAL

As an example, we will consider the effect of an uni-
form external electric field on the reflection of BAWs
from a free boundary of a cubic piezoelectric with sym-
metry 23. Let a wave be incident in the (010) plane (the
sagittal plane). The normal to the interface coincides
with the [001] direction. The dispersion equation for
reflected BAWs (at E = 0) in the case of incidence of an
L wave or an FS wave on the interface can be written
as [3]

(13)

When a slow shear (SS) wave is incident on the
interface, which is piezoelectrically active in the given
sagittal plane and has a polarization directed along the
[010] axis, i.e., orthogonally to the plane of incidence,
the dispersion equation has the form

(14)

Therefore, in the case of the incidence of an L wave of
a FS wave (polarized in the plane of incidence), only L
(quasi-longitudinal (QL)) and FS (fast quasi-shear
(FQS)) waves will be reflected. In the case of incidence
of a slow quasi-shear (SQS) wave, only an SQS wave is
reflected, whose amplitude coefficient is very close to
unity. However, owing to the piezoelectric activity of
this wave, along with the elastic SQS wave, there is also
a potential wave. Therefore, taking into account that the
refraction vector of the reflected SQS wave is real, the
amplitude coefficient for this wave is complex and its
imaginary part characterizes the phase shift between
the incident and reflected waves [3].

Application of an electric field to a crystal in the
[001] direction, according to the Curie principle,
decreases the crystal symmetry to the monoclinic class 2,
in which the twofold symmetry axis is also directed
along the [001] axis. As a result, new effective material
constants (equal to zero in the absence of a field) are
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Fig. 1. Real parts of the amplitude reflection coefficients of BAWs reflecting from the germanosillenite-crystal/vacuum interface for
the incidence in the plane (010).
induced:

(15)

Thus, dispersion equations (13) and (14) become

C̃16 = C166d14 e124–( )E, C̃36 = C144d14 e114–( )E,

C̃45 = C456d14 e154–( )E, ẽ15 = e156d14 H44+( )E,

ẽ33 = e114d14 H11+( )E, ẽ31 = e124d14 H12+( )E.
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polynomials of power 8 with respect to the components
m3 of the reflected waves. Figure 1 shows the real part
of the amplitude reflection coefficients of BAWs in a
Bi12GeO20 crystal at E || [001] in the plane of incidence
(010) for BAWs of the QL, FQS, and SQS types. When
a QL wave is incident at an angle of 60°, transformation
of reflected elastic waves occurs and only the FQS
wave is reflected. In the case of incidence of an FQS
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wave, for the reflected QL wave, beginning with an
angle of incidence of 38°, the phenomenon of total
internal reflection is observed. (The refraction vector of
the elastic wave becomes complex.)

In the case of incidence of an SQS wave, application
of an external electric field, which decreases the crystal
symmetry, generates all three types of reflected waves.
In the absence of a field directed along the normal to the
free surface, there is an tangential acoustic axis [9].
Application of an electric field E || [001], as discussed
previously [10, 11], removes the degeneracy of shear
waves in the [001] direction. In this case, the initial
acoustic axis is split into two conical axes lying in the
(110) plane. Therefore, even normal incidence of an
SQS wave leads to the generation of reflected shear
waves of both types with real parts of the amplitude
coefficients of 0.78 and 0.71 for the FS and SS waves,
respectively. Note that, when an electric field is applied,
the amplitude coefficients of reflected waves are always
complex. 
C

EFFECT OF A DC ELECTRIC FIELD 
ON THE REFLECTION AND REFRACTION 

OF BAWS AT THE INTERFACE 
BETWEEN AN ISOTROPIC ELASTIC MEDIUM 

AND A PIEZOELECTRIC CRYSTAL

Figure 2 shows the results of the calculation of the
real parts of the amplitude reflection coefficients and
amplitude refractive indices of BAWs in a system com-
posed of fused quartz and germanosillenite Bi12GeO20
for the case when an external electric field is applied
only to the Bi12GeO20 crystal along the twofold axis
[001], i.e., normally to the interface between these
media. The cases of incidence of L and shear waves
polarized either in the plane of incidence or normally to
it are investigated. When E = 0, for an incident L wave,
there are only a reflected L wave and a shear wave
(polarized in the plane of incidence) and a refracted L
wave and an FS wave (polarized in the plane of inci-
dence). A characteristic feature of this case is the trans-
formation of the type of refracted waves since, at an
angle of incidence of 58°, only the FS wave exists (from
all refracted waves).
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A similar situation occurs when a shear wave polar-
ized in the plane of incidence is incident on the inter-
face. In this case, at an angle of incidence of 32°, there
is only a refracted L wave. However, at an angle of inci-
dence of 40°, the total internal reflection of this wave is
observed.

When a shear wave polarized orthogonally to the
plane of incidence is incident on the interface, the wave
CRYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
of the same type is reflected. However, concerning
refracted waves, there is only an SS wave in ger-
manosillenite, which has a longitudinal piezoelectric
activity. The piezoelectric activity of the SS wave leads
to the generation of an electrostatic potential wave at
the piezoelectric-crystal/isotropic-medium interface.
This wave is not related to elastic vibrations in the iso-
tropic medium and decays exponentially with an
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increase in the distance from the interface. As a result
of the presence of a potential wave, the amplitude coef-
ficient of the reflected elastic wave is a complex value
and its refraction vector is real.

Application of an electric field E || [001] to a
Bi12GeO20 crystal, owing to the reduction in the crystal
symmetry, leads to that the incidence of an elastic wave
C

of any type from an isotropic medium generates all
three types of refracted and reflected waves. An inter-
esting example is the incidence of a shear wave polar-
ized normally to the plane of incidence. In this case, it
appears as two reflected shear waves arise in the isotro-
pic medium, one of which is polarized in the plane of
incidence and the other is polarized normally to it. Nat-
urally, shear waves of only one type can exist in an iso-
RYSTALLOGRAPHY REPORTS      Vol. 50      No. 6      2005
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tropic medium. Nevertheless, the change in the bound-
ary conditions caused by the application of an external
electric field to a Bi12GeO20 crystal leads also to the
change in the direction of the polarization vector of the
incident SQS wave, which turns out to be directed at
some angle to the plane of incidence. This circumstance
allows for the existence of a reflected shear wave, also
polarized at some angle to the plane of incidence.

CONCLUSIONS

The software package developed here makes it pos-
sible to investigate the processes of reflection and
refraction of BAWs at interfaces between crystals of
arbitrary symmetry and obtain results in the form of
cross sections of refraction cavities. If the coefficients
of the nonlinear electromechanical properties are
known, this calculation can be supplemented by the
consideration of the effect of an external electric field.
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