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Abstract—Electron—phonon interaction is sequentially derived from a realistic p—d multiband model for the
cuprates under conditions of strong electron correlations. The electronic structure is described using the repre-
sentation of the Hubbard X operators in a generalized tight-binding method. Dependences of the diagonal and
off-diagonal (on lattice sites) matrix elements of electron—phonon interaction on the wavevectors are found for
three phonon modes, namely, breathing, apical breathing, and bending modes. The interactions of the breathing
and bending modes with electrons are shown to contribute to the formation of kinks in the (0; 0)—(1t, 1) and
(0; 0)(Tx, 0) directions, respectively. A low-energy t—J* model with phononsis devel oped; apart from electron—
phonon interaction, it also includes spin—phonon interaction. The elimination of phonons gives an effective
el ectron—electron interaction that depends on the occupation number of a multielectron term and on the carrier
concentration due to strong electron correlations. © 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Despite significant progress reached in studying
high-temperature superconductivity (HTSC) in layered
cuprates, the HTSC mechanism is still unclear. Among
numerous mechanisms proposed in the initial stage of
investigating HTSC, the following two mechanisms
have been most often discussed recently: the traditional
mechanism of electron—phonon interaction (EPI) and
the spin-fluctuation mechanism [1]. Thelatter isknown
to be caused by strong electron correlations that result
in a long-range antiferromagnetic (AFM) order in
undoped dielectric cuprates and to a short-range AFM
order in weakly doped cuprates. Interest in electron—
phonon interaction, which is present in all substances
and can be strong in layered cuprates due to specific
features of their crystal structure, has currently quick-
ened because of inflection points (kinks) detected in
electron dispersion laws in ARPES (angle-resolved
photoemission spectroscopy) measurements [2]. Note
that kinks were found in many hole cuprates, but they
are absent in the electron cuprates with a T' structure
(Nd,_,Ce,Cu0,). The kink energy measured from the
Fermi level (w,=70meV) isvirtually universal, and the
effect is most pronounced in the form of abend in the
dispersion law in the diagona direction ' — M,
(0; 0)—t, ) of the Brillouin zone. A kink at an energy
W, = 40 meV was aso detected in the vicinity of the
X((15, 0), (0; ™)) and Bi2212 points [3], and it increases
sharply as the temperature decreases below T, (see the
review of ARPES datain [4]). The nature of thekink is
obvioudy related to electron—boson interaction; how-

ever, the question of what bosons, namely, phonons or
spin fluctuations, are responsiblefor these renormaliza-
tions of an electronic spectrum near the Fermi level is
amatter of dispute [5]. The kink can result from inter-
action with optical phonons [6] or with spin fluctua-
tions|[7, 8].

Thus, to describe both superconducting pairing and
the properties of the normal state in the cuprates, one
has to take into account the interactions of electrons
with phonons and spin fluctuations. To describe opti-
mally or strongly doped compositions, one can start
from ordinary band theory; however, to discuss the
entire phase diagram of cuprates, beginning from
undoped antiferromagnetic dielectrics, one has to
describe electrons in the strong-correlation regime.
Various modifications of the one- and multiband Hub-
bard models led to a low-energy effective t—J model
that describes electron interaction with spin fluctua-
tionsin the Hubbard bands [9, 10]. However, electron—
phonon interaction in the strong-correlation regime has
been studied to alesser extent (see recent review [11]).
Asarule, researchers consider the t—J model with local
interaction of electrons with a certain optical mode. At
the sametime, to discussthe symmetry of the supercon-
ducting state and the differencesin kinkslocated in dif-
ferent regions of the Brillouin zone, it is necessary to
know an explicit dependence of the matrix elements
g¥(k, q) of electron—phonon interaction on the incom-
ing momentum k transferred by q and the number v of
the phonon mode. The purpose of this work is to
sequentially derive electron—phonon interaction from a
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realistic p—d multiband model for cuprates in the
strong-correlation regime [12] and to redistically
describe the phonons that interact most strongly with
electrons.

In the general case, we can distinguish diagonal and
off-diagonal contributions to the electron—phonon
interaction in the nodal representation. Strong electron
correlations and the diagonal el ectron—phonon interac-
tion were simultaneously taken into account in [13-17].
It was found that the following three phonon modes
interact most strongly with electrons: the longitudinal
breathing mode (oxygen-ion vibrations in the CuO,
plane that deform the Cu—O bond), the apical breathing
mode (vibrations of apical oxygen ions that deform the
Cu-0O bond aong the ¢ axis), and the bending mode
(oxygen-ion vibrations in the CuO, layer normal to the
Cu-0O bond) (Fig. 1). Neutron-scattering experiments
reveal ed the maximum softening of the breathing mode
at the boundary of the Brillouin zone, at the (1/a; 0; 0)
point [18, 19]. Thejoint effect of EPI and spin-fluctua-
tion interaction on the superconducting pairing without
regard for strong electron correlations was analyzed
in [20]. As follows from the results of all these works,
the breathing mode interacts most strongly at a phonon
guasi-momentum q ~ Q = (1Tva; Tva) and breaks pairing
with the dxz_yz symmetry; the bending mode has max-

imum interaction at small g; and the apical breathing
mode has a matrix interaction element that is indepen-
dent of the in-plane wavevector g. Oxygen-ion vibra-
tions normal to the CuO, plane strongly modulate the
ionic component of the chemical bond in the cuprates
by changing the Madelung potential; hence, they
strongly interact with electrons [11].

Kinks in ARPES experiments at the noda (k =
(Tv2a; 1¥2a)) and antinodal (k = (1/a; 0)) points have
different boson frequencies and different temperature
dependences; therefore, their analysis requires a
detailed description of EPI, in particular, the descrip-
tion of the dependence of the matrix elements gV(k, q)
on not only the transferred momentum q but also on the
incoming momentum k [21]. Thelatter dependence can
only be caused by the off-diagonal part of EPI. When
the authors of [22, 23] derived EPI, they took into
account strong electron correlations within the frame-
work of the three-band p—d model and diagonal and off-
diagonal EPIsand only considered the breathing mode.
Asaresult, they constructed an effective t—J model with
EPI. In this work, we investigate the interaction of
strongly correlated electronswith all three modes given
above and find diagonal and off-diagonal contributions
to EPI. By comparing the crystal structures and phonon
spectraof LSCO (T structure) and NCCO (T structure),
we could reveal the contributions to EPI that disappear
when passing from the T to the T' structure and could
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Fig. 1. Schematic diagram for atomic displacements for
(a) the breathing mode, (b) the bending mode, and (c) the
apical breathing mode.

explain why the EPI in the T' structure is significantly
weaker than that in the hole cuprates.

2. DERIVATION
OF ELECTRON-PHONON INTERACTION
USING A MULTIBAND p-d MODEL
FOR LAYERED CUPRATES

The Hamiltonian of the CuO, layer in the multiband

p—d model can be written as follows (in the hole repre-
sentation) [24]:

Hog = z (Eix—M)Nipg + Z Zti)\j)\lar)\caj)\'c

AN AWt t
+ Z Z(Vij NixsNinvo = Jij Aino@ire@jra@jne) -
ijog’ AN

Here, nj, = aiTM, Qg aiTM, isthe operator of production
of aholeonthesitei = R inthe orbital state A with the
spin projection o and the energy €;,; MU is the chemical

potential; tﬁ-” isthe matrix element of an atomic jump;

and V" and Ji" are the matrix elements of the Cou-
lomb and exchange interactions, respectively. Unlike
the three-band p—d model [25, 26], the multiband
model takes into account boththed . . andd . .=

3z —r

d . copper orbitals (although the other threet,, orbitals

can also be included, they are filled by electrons and
their energy levelsin the electron valence band are well
below the low-energy range (E < 1 eV) to be studied
here). For oxygen ionslying in the CuO, layer, we take
into account the p, and p, orbitals, and the p, orbitals of
the apical oxygen (which are present in the T structure
and are absent in the T' structure) are also considered.
Important microscopic model parameters are the fol-
lowing: t,q is @ hopping between the dxz_yz copper and

thein-plane oxygen; t,, is ahopping between neighbor-
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ing (O, and O,) oxygen ions; and t,,4 and t,,, are hop-
pings between copper and the apical oxygen and thein-
plane and apical oxygen, respectively. From the Cou-
lomb interactions, we distinguish the intra-atomic
interactions of two holes in one (U, is the Hubbard
parameter) and different (V) orbitals, the correspond-
ing interactions (U, and V,) for oxygen, the Coulomb
interaction of neighboring copper and oxygen (V),
and the interaction of neighboring oxygen ions (V).
From the exchange interactions, we distinguish intra-
atomic (Hund) exchange parameters Jy and J,. A
detailed analysis of Hamiltonian (1) and various matrix
elements, as well as a procedure for the calculation of
the band structure of quasi particles with allowance for
strong electron correlations using a generalized tight-
binding (GTB) method, are givenin [12, 27].
After the Wannier functions have been constructed
in the framework of the GTB method, Hamiltonian (1)
iswritten asthe sum of intracell (H.) and intercell (H..)
parts[12, 27]
H=H,+H

cc
Ho= S Hp Hy= HP? + HO + 1 (2
f

b b
Hee = 3 (hig +hig + hgY).

fgo

Here, thef and g sitesare only related to the copper sub-
lattice (the cell is the CuQg or CuQ, cluster), since the
Wannier functions are centered at the Cu sites. The
superscripts a and b indicate the symmetries of the

Wannier functions; the dxz_yz copper states are hybrid-
ized inside the cell with the molecular b, orbital of the
in-plane oxygen, and the d . copper states are hybrid-

ized with the a,, states of the in-plane oxygen and the
p, states of the apical oxygen. Apart from one-particle

p—d and p—p hoppingsinsidethecell, the H $b) and H ia)
Hamiltonians contain intracell Coulomb interactions.
For example, U, and V4 are involved in al three H;

terms. However, Hﬁab) only contains Coulomb and

exchange interactions, since the Wannier functions
inside the cell are orthogonal. They are mixed due to
hoppings between neighboring cells, and thismixing is

contained in the h{3” term.

To take into account strong electron correlations
within the framework of the GTB method, we first
exactly diagonalize the H; Hamiltonian and useits com-
plete set of eigenstates{|pJ to construct the Hubbard X

operators X! = |p[d. In the second stage, the intercell
Hamiltonian part H, iswritten in the X representation,
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and it has the same operator structure (~tX¢X,) as the
hopping Hamiltonian in the standard Hubbard model.
This fact allows us to find the Green function and a
band structure using perturbation theory. A dispersion
equation for the calculation of a band structure in the
GTB method has the form (in the paramagnetic phase)

E-Q, ,
= Omm — gy)\c(m)TM'(k)y)\'o(m)

det =0,

where the coefficients y,,(m) of the representation of
the one-electron operators in terms of the Hubbard X
operators,

Afpe = Zy)\c(m)xrfn! m‘—’(p! q)! (4)

are calculated after the exact diagonalization of H;. The
Q,, energies have a one-particle meaning, and they are
defined as resonances between multielectron terms |pl]
and |ql Q,, = E, — E,. Thefilling factors F, = IXPPLH+
X% just like the Q,,, energies, are calculated after the
exact diagonalization of H;. Finaly, the intercell hop-
ping matrix elements T,,.(k) are defined by different
p—d and p—p hoppings. For example, electron produc-
tion at the bottom of the conduction band of undoped
La,CuQ, or Nd,CuQ, isrelated to aresonance between
the vacuum (|OC] the d'°p® configuration) molecular
orbitalsand the one-hole (|o[,Jo = +1/2; amixture of the
d®p® and d'%® configurations) molecular orbitals. Hole
production near the valence band top is related to reso-
nances Qg between the one-hole |o[states and the two-
hole |sCA singlet that is mixed with the band of triplet
excitations Q; (|1, c0— |2, T with the participation
of the two-hole *B triplet.

In the one-hole sector of the Hilbert space, the
blocks of the H; matrix with the b and a symmetries
have the form

Ue(d, ,) -0
e = g0y T (5)
O —T, €p O
D 1
0&(dz) -ty —Tpe O
@ _ [ . O
HO =0 @ e -ty (6)
a . . ]
O _Tpd _tpp 8(pz) O

where the hopping parameters T and the energies of the
oxygen b and a orbitals are renormalized as compared
totheinitial atomic valuesdueto the construction of the
Wannier functions. The corresponding matrices in the
two-hole sector have a large dimension; they are given
in an explicit form in [12, 27] and are not discussed
here.
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After diagonalizing the intracell H. part and after
passing to the X-operator representation, we can write
electron Hamiltonian (1) as

1 ,
Ha = 3 (B —n)X{" ™+ 5 S t"XEXg. (7)
fny fg mm'

At low energies near the bottom of the conduction band
and the top of the valence band, we restrict ourselvesto
thefollowing set of nyderms: n=0, [0GIn=1, |olJo =
+1/2; n=2, singlet [sCand triplet [T, MLJM =0, £1[12].
Indices m, m' denote various hole excitations. For this
set of [nyterms, the disappearance of aholewith aspin
o in Eq. (4) is described by the following quasiparti-
clessaam=0,(0,0);am=1,(0,s);am=2, (0, TO);
and a m= 3, (o, T20).

As usua, when EPI is derived in terms of the GTB
method, it is necessary to take into account the modula-
tion of the intra-atomic (g,) and interatomic (t}")
parameters upon atomic displacements. Moreover, in
our case, EPI is contributed by the modulation of the
Coulomb interatomic interaction. It is important that
the modulation of the one- and two-particle Hamilto-
nian parameters due to atomic displacements contrib-
utes to not only the one-particle but also the two-parti-
cle terms; in the general case, it also contributes to the
multiparticle terms E,,, (where n is the number of elec-
trons, and y is the set of quantum numbers) that deter-
mine the resonance energies Q in Eq. (3), whence
adiagonal contribution to EPI appears. The modulation
of various atomic-jump and Coulomb-interaction
parameters also causes an off-diagonal contribution to
EPI. As aresult of atomic displacements, the energies
of the |nyterms become site-dependent:

Eny(Ri) = Eny(RiO+ui) = Eny(0)+gnyui- (8)

Similarly, the hopping and interaction parameters
depend on the difference in the sites R; — R; = Rjp —
Rjo + Ujj, Uj = U, — u;. In alinear approximation, we
have

ijs

thy" = thy (0) + V™ [y, 9)

Here, a set of the phenomenological g, and V™
parameters specifies the diagonal and off-diagonal con-
tributionsto EPI. Asaresult, we obtain el ectron Hamil-
tonian (7), in which all energies belong to the undis-
turbed lattice (i.e., E,,(0) and t,(0)), and the EPI Hamil-
tonian

Hel—ph = Z gny [u f erw "
fny

(10)
. L
+3 SV XPXg

fg mm'

in the system of strongly correlated electrons.
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Using the breathing mode as an example, we con-
sider characteristic displacements and modulation of
the corresponding Hamiltonian parameters. Figure 1
shows a fragment of the CuO, layer and the directions
of oxygen-ion displacements for the three phonon
modes under discussion. For the breathing mode, adis-
placement of the O~ ion along the Cu—O bond (Fig. 14)
changes the Madelung potential and, thus, the d-level
energy in the crystal field:

si(dXZ_yZ) = &40+ g Ly,

U = ux%i + %%—Uxa?i—%%

+Uy R + %% ~u,R - %%‘

In the approximation that is linear in displacements,
modulation of the €, level on oxygen is absent because
of the symmetry, since the contributions from the left
and right copper ionsare canceled (Fig. 1a). Asaresult,
we have modulation of the charge transfer energy: A, =
€ — si(dxz_yz) = /Ay — g - u;. Analogous linear-in-dis-
placement contributions appear in the parameters of
hoppings between copper and the in-plane oxygen
(toa(i) = to4(0) + Ot,g), between oxygen and the oxygen
inside the CuO, layer (t,,(i) = t,,(0) + dty), and
between the apical oxygen and the in-plane oxygen
(top (i) = t,,(0) + 3t} ); they also appear in the param-
eters of the Coulomb interaction of copper with oxygen
(Vpa(i) = Vie(0) + 8V,) and of oxygen with oxygen
(Vpp(i) = Vpe(0) + 8V).

In[12], the parameters of Hamiltonian (1) were con-
sidered as phenomenological and were found from a
comparison with ARPES experimental data for
undoped Sr,CuO,Cl, oxychlorides. These parameters
have recently been calculated using the LDA and
LSD + U band-theory methods [28]. All hopping inte-
grals were found to be of the same order of magnitude:
top = tpp = 0.4-0.5t,4. The displacement dependence of
the parameters has not been calculated; therefore, in
this work we cannot describe EPI without using fitting
parameters. The modulation corrections to the hopping
integrals are assumed to be of the same order of magni-
tude: Sty ~ Ot,, ~ Oty ~ Oty

Apart from the modulation of the Coulomb interac-
tions and the crystal field, all these linear-in-displace-
ment modulations renormalize the energies of the one-
hole by, doublet |oCand the two-hole *A singlet and °B
triplet, which resultsin the modul ation of the Qgand Q+
energies (diagonal contribution to EPI). The off-diago-
nal contribution results from the modulation of T, in
dispersion equation (3). Since the distance depen-

(11)
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dences of all matrix elements of Hamiltonian (1) are
unknown, we introduce two parameters of the diagonal
and off-diagonal EPIs for each electron band and each
phonon mode (v). Using the completen&ss condition

XO,O+ X0,0+ X + XTM ™ =1 12
f f f

M=-1

for the multielectron basis of the cell, we can €liminate
one parameter of the diagonal EPI and write

((ZI\I)E)i = zuf Y
X[zgé“)x + 99X +zg$“)><”” TM}
(o)

As usual, the displacement vector is represented in the
form

(13)

uf,v = ¢'q,vexp(iq(Rf+Ra))1(l4)

iZ—ew
JNM [2M @, ,
where M, istheion a mass, R, istheion radius vector
inthe R; cell, &, , isthe polarization vector, and ¢, , =

by, v + bT , and bqu(biq,v) are operators of annihila-
tlon (productl on) of phonon v with the q wavevector.
Neglecting the copper-ion displacements (which are
small as compared to the oxygen-ion displacements),
for the breathing optical mode (v = 1) wefind

u Z ¢q1 'qERf
f1 s ./2|v| N

(15)

[ x(Ox)sn— +e (Oy)sin%a]

Asaresult, the diagonal part of EPI for thev mode can
finally be written as

Haa = [Z S 6 (@Ko XM 0 (16)

kqv m
where for the breathing mode we have

(1)
2ign

J2MoWyq 1

[ X(Ox)sm—— +e (Oy)sin(%?]

g% m(@) =
(17)

The off-diagonal part of EPI for thismodeis

(1) —
off -

S > Vi QU1+ ug DXTXT

fg mm'

(18)
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and can be represented as

1 .
Heif = [zzgf;f’mm-(k,q)lequq,v, (19)
kqv mm'
where
v/ (D)
g(§2 (k,q) = M
off, mm' 1
[2Mowq 1
X[ex(ox)sinq +ey(oy)smq” (20)

*[y(k) +y(k +q)]

and y(q) = (cosg,a + cosq,a)/2.
For the apical breathing mode (v = 2), the displace-

ments of the apical oxygen ions along the z axis modu-
late the crystal field on copper and, thus, d¢4, the
Cu-0Q,, bond length, the dt,4 hoppings, and the at,,,
hoppings between the apical and in-plane oxygen
(Fig. 1b). All these effects contribute only to the diago-
nal EPI, since they change the parameters only inside
the R; cell. Of course coupling between neighboring
CuO, layers al so appear; however, werestrict ourselves
to only one-layer cuprates in this work. Strong EPI for
this mode and its doping-induced softening were pre-
dicted in[29].

For a two-dimensional vector g =
g - R, = 0; therefore, we can write

(0. Qy), We have

z(oap) |q Ry
U, ., = —o , 21
f,2 ,\/N Z mq)q 2 ( )
so that
@) 9(2)
gdla m(q) = - ez(oap) (22)

/ZMqu,2

depends only weakly on g through the wy, , dispersion.
The off-diagonal part of EPI for the apical breathing
mode is absent:

0 (k, q) = 0.

For the bending mode (v = 3), displacementsin the
tetragonal phase are transverse to the Cu—O bond
(Fig. 1¢), and the microscopic nature of EPI for this
modeis not so obvious. Indeed, because of the symme-
try, the Cu-O bond lengths, the crystal field, and the ty
hopping cannot be modulated in the linear-in-displace-
ment approximation; their modulations are propor-
tional to the displacement squared [13]. Linear contri-
butions appear only inthe corrugated CuO, layer owing
to orthorhombic distortions, and they are small due to

(23)
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Fig. 2. EPI matrix element for the breathing mode at the k, nodal point: (a) the total element, (b) the diagonal part, and (c) the off-

diagonal part.

the small angle of corrugation. It should be noted that,
in [13] and most related works, EPI is derived from an
analysis of displacements using a simplified Hubbard
model or the three-band p—d model with absent apical-
oxygen states. In our p—d multiband model, the pres-
ence of the apical oxygen leadsto the modulation of the
distance between the in-plane and apical oxygen
(Fig. 1c). Asaresult, the ot,,, and 8V ,, parametersare
modulated in the linear-in-displacement approxima-
tion. Moreover, for this mode, the modulation of the
Madelung potentia (the ionic component of the chem-
ical bond) contributes significantly to EPI [11], since
oxygen-ion vibrations transversely to the CuO, plane
are weakly shielded.

Finally, the diagonal EPI with the bending mode can
be written in the form of Eq. (16) with the matrix ele-
ment

3)
3) 20,

Qdiam(Qd) = m

X [eZ(OX) cos%1 +¢,(0,) cos%l]

The matrix element of the off-diagonal EPI with the
same modeis

(24)

2V
./ZMO(A)(L3

X [ez(ox) cos=k, + Ci’Da +¢,(0,) cosk, + %Ea]

0% wm(k, Q) =
(25)
o]

By summarizing the results of this section, wewritethe
EPI Hamiltonian as

T
Hapn = 35 gk, )X o X (bgy + b1 ),

kgqv mm'

gg\%(k, Q) = 6mmgc(i:)a),m(q) + gz(n;}f) mm'(kv q)

(26)
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The gg, and g, matrix elements for the three phonon
modes under study are given by Egs. (17), (20),
(22)-(25).

It should be noted that the introduction of two phe-
nomenological parameters (g(nf) and Vﬁ,&) for the
diagonal and off-diagonal EPIsfor each modeisrelated
to not only alarge amount of different microscopic con-
tributions but also to incomplete knowledge of the dis-
tance dependences of various parameters. For example,
even for the simplest particular case of EPI in the t—J
model with the breathing mode, two works ([22, 23])
solving similar problems give different results: alarge
diagonal contribution (~0.25 €V) and a two orders of
magnitude smaller off-diagonal contribution in [22] in
contrast to virtually the same (~0.03 €V) diagonal and
off-diagonal contributionsto EPI in [23]. When severa
EPI mechanisms are taken into account, different con-
tributions begin to interfere; for instance, the contribu-
tion of 0V, decreases the contribution of oty by
approximately 30% [22]. When passing to a redlistic
model with alarge number of contributions to EPI, the
estimation errors of matrix elements accumulate; there-
fore, we think that the decision to restrict ourselves to
phenomenological parameters was reasonable.

3. ANALYSIS OF THE SYMMETRY
OF ELECTRON-PHONON INTERACTION

It is convenient to consider the dependences of the
matrix elements on k and ¢, which were obtained by
analyzing the atomic displacements in each mode,
using mapsin which [gV(k, g)]? is presented as a func-
tion of the phonon momentum q at fixed values of the
initial electron momentum k. The values of k were cho-
sen according to ARPES data in which renormalization
of the effective € ectron mass, which indicates interac-
tion between electrons and collective excitations, was
detected in the nodal direction for k, = ((1—90)102; (1 -
0)172) and in the nodal direction for k,, = (T(1 — d); &)
(where d ~ 0.1). Figures 2-5 show maps for the diago-
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nal and off-diagonal matrix elements for EPl with the
breathing and bending modes at the nodal and antinodal

points. All the maps were plotted for ng‘]’) = ﬁ;’% =1.

Thetotal intensity |92 1 (a) + et mm (K, Q) for quasi-
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particles that are diagonal in the band index m,
g™ (k, q) is characterized by interference of the gy,
and g, matrix elements. An example of interferenceis
shown in Fig. 2a for the breathing mode, where the
peak height at q = (3174, 3174) in the total matrix ele-
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ment is smaller than that in the partial |gy(k, g)? con-
tribution (Fig. 2c) for the same q point.

For the nodal k, point, the |g®(k,, q)]? maxima of
the breathing mode (Fig. 2a) near the g points equal to
(31v4; 3174), (1t 0), and (0; 1) correspond to an off-
diagonal contribution (Fig. 2¢), and the diagonal part
(Fig. 2b) causes aweak maximum at the (1t 1) point. (It
is easy to see that the off-diagonal contribution for g =
(Tt 1) becomes zero, just as in [23].) The maximum
effective electron—phonon interaction is determined by
vibrations with the wavevectors g located at the edges
of the Brillouin zone. It isthese phononsthat transfer an
electron from k ~ Kk into states with the final momen-
tumk' =k + g lying at the Fermi surface. The intensity
of interaction with electrons for the half-breathing
mode g = (11, 0) ishigher than that for thefull breathing
mode q = (1t ). This finding agrees well with experi-
ments. As was shown in inelastic neutron scattering
experiments, the spectrum renormalization with doping
for the (11, 0) mode is about 20%, whereasit isonly 5%
for vibrations with the (1, ) wavevector [30, 31]. Note
that the softening and the line broadening and asymme-
try of the half-breathing mode were detected in a num-
ber of HTSCs (e.g., in LSCO [32], YBCO [33],
BKBO [34]). Moreover, the frequency of thisvibration
(70-85 meV) fallsin the range of the kink energy inthe
nodal direction. The energy of the full breathing mode
is 8590 meV, which is higher than this value.

Theinteraction of the breathing mode with electrons
having an initial momentum Kk, is effectively small.
The |gW(k,,, q)]? maximum at the (0; T) point (Fig. 3a)
correspondsto the scattering of electrons having anini-
tial momentum k 4, near the Fermi surface into the final
statek' =k + g = (11, 1), which isfar from the Fermi sur-
face. (Similar considerations are valid for the maxi-
mum at the (1T, 0) point). Note that the diagonal contri-
bution at the maxima is small (Fig. 3b), and the off-
diagonal contribution isthe main contribution (Fig. 3c).

For the bending mode, the effective interaction is
maximal at small values of the phonon momentum in
both the nodal (Fig. 4) and antinodal (Fig. 5) directions.
In both cases, the result depends on the diagonal contri-
bution to the total matrix element.

For the apical breathing mode, €electron—phonon
interaction is independent of the k and q vectors.

Thus, an analysis of the atomic displacements of the
vibrations under study shows the following. The inter-
action of electrons at the nodal point is maximal for the
half-breathing mode with q = (11, 0) and for the bending
mode with small values of the wavevector q. The bend-
ing mode also strongly interact with electrons at the
antinodal point at small values of q. Moreover, the
matrix element squared (Jg®(k, q)P) for the half-
breathing mode is higher than that for the full breathing
mode q = (15, 1) at any values of the initial electron
momentum K.
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4. ELECTRON-PHONON INTERACTION
IN AN EFFECTIVE LOW-ENERGY MODEL

Intersite hoppings in Hamiltonian (7) contain intra-
band hoppings in the lower Hubbard hole band (m = 0,
the conduction band bottom in the electron representa-
tion) and in the upper Hubbard hole band (m = 1, the
valence band top). The corresponding Hubbard opera-

torsare X7 = X{° and X7 = X;°°.

Moreover, there are interband hoppings with excita-
tion through a gap with charge transfer A that are
described by the terms

:
15 XTXg = thXTOXT. (27)

The elimination of the interband hoppings result in the
effective low-energy one-band t-Jymodel [35]; for the

lower Hubbard band (el ectron doping), it can bewritten
in the form

Hi;, = H_;+Heg),

Hoy = 5 eaXi+ 5 XXy’
fo fgo (28)

+ fzg‘]fggsf ESg—j—'lnfnq%,

1:01 t01 L ~ ~
H(3) - z fmAmg(chrOX;cXgo_ X?Oxg]oxgc).

fgmo

Here, J, = 2(t7;)2/A is the exchange integral; S and ny
are the spin operator and the operator of the number of
particles at the site; and 6 = —0.

Off-diagonal EPI processes in Hamiltonian (10)
contain intraband processes of the form

V% X7OXS°, (29)

Their elimination in the second order in V% corre-

sponds to the corrections 8, ~ (V°1)2ufg/A to the

exchange integral, and we neglect them, since we
restrict ourselves to linear-in-displacement contribu-
tions. At the same time, acombination of two perturba-
tions (27) and (29) gives a linear-in-displacement cor-
rection to the exchange integral (spin—phonon interac-
tion):
01, ,01 01
53, = 2tV [l _ V7 [y

01
A ttg

iy (30)

Since the displacements are small and since V%u < to
in series (9), we have 8J < J. The spin—phonon interac-
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tion Hamiltonian is

s—ph - ZAfg(q V)% BS) __nfnq%
fgqv

+
X (by,y +bg ),
2it54/A
J2Mowy
x (ngxéf,g+x + Vg\i)yaf,g:ry)'

Analogous linear-in-displacement corrections also
appear in the three-center terms:

eiq OR¢ +Ry) (31)

Afg(q1 V) =

H(3) - _ VOl(tfmumg + ufmtmg)
el-ph Z A
fgmo (32)
X (XFOXXG® = XTOXETXS°).

In (30) and (32), we ignore the corrections that are lin-
ear in displacements but small in the V% - u/A para-
meter.

Thus, by making alowance for electron—phonon

interaction, we can write the effective low-energy t—J*
model asfollows:

— 0 3)
Her = Hige + Hpn + Hepn + Hg pn + HeZpn,

Hon = Zw b, g, v» (33)

eI ph - z g(V) qiv)xck’+qxf<)o(bq,v+biq,v)-

kqvo

The band structure of the p-type cupratesis formed
with the participation of two-particle *A; singlet and °B,
triplet and ismore complex [12]; however, the contribu-
tion of thetriplet band Q; to the dispersion and the den-
sity of states manifestsitself mainly below (by 0.5 eV)
the valence band top, near which the Fermi level is
pinned upon doping up to an optimum concentration
(X < Xop)- Therefore, to discuss the kinks and supercon-
ducting mechanisms, we may neglect the triplet band;
then, we obtain an effective hole Hamiltonian that is
identical to Hamiltonian (33) in which the operator X%
of the lower Hubbard hole band is replaced by the oper-

ator X% of the upper band (m=0 —» m= 1).

We now consider the simplest EPI contribution to
the electron mass operator,

2(k€) = NZ [dolgi(a k)

xG(k-qg,e—w)D(q, w).

Detailed computation of spectrum renormalizations is
beyond the scope of this work, and we only present

(34)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Voal. 101

OVCHINNIKOV, SHNEIDER

gualitative notes. First, electrons in the strong-correla
tion regimein the t—=J model are described as quasi par-
ticlesin the Hubbard subband, and their spectral weight
is specified by the filling factor F, in the numerator of
the Green function (see Eq. (3)). For electron doping in
Nd,_,Ce CuQ,, we have

= IX¥0+ X70= (1+x)/2,
and for holedoping in La,_,Sr,CuO, we have

F, = IX°O+ X3 = (1+x)/2.

This spectral weight of quasiparticles appears in the
Hartree—Fock Green function G in Eq. (34); asaresult,
the dimensionless EPI parameter for free electrons,
Ao = (9%wp)N(0), decreases by the filling factor: A =
Ao(1 + X)/2.

Second, based on EPI intensity maps and on the
energy and momentum conservation laws, we can qual-
itatively analyze the modes that contribute to the kinks.
In this analysis, we assume that the electron energy in
the superconducting phase is described by the
Bardeen—Cooper—Schrieffer formula

E(k) = f\/£k+Ak’

the A gap has the d._
Ao(cosk,a — cosk a)/2.

We now consider (K, €) at thenodal pointk, = ((1 -
0)1V2; (1 —0)102), d < 0.1. For the breathing mode, we
have interaction maxima with transferred momenta
g, = (3174; 3174) and q, = (15, ) (Fig. 2). An electron
with k,, — q, isfar from the Fermi surface, and the state
with k,, — g, is near the Fermi level. Here, E(k,—Q,) =
A(Kk,,—q,) = 0 both above and below T; therefore, for a

kink energy (k) = [E(k,—q) — w{" |, we obtain g(k,) =
70 meV, which corresponds to the breathing-mode
energy. An EPI maximum at the point q; = (15, 0) (the
half-breathing mode) is also visiblein Fig. 2. The vec-
tor k, — gz = (—-102; 12) is close to the noda point;
therefore, this mode obeysthe energy conservation law.
For the bending mode with an energy w= 35 meV, EPI
maxima are at the points q = (0; 0) and q = (11, 1)
(Fig. 4) and the vectors k,, — q are close to k,,; however,
the energy conservation law with g(k,,) = 70 meV does
not hold true. Thus, contributions to the electronic-
spectrum renormalizations at the nodal point are caused
by diagonal EPI with the breathing mode and by off-
diagona EPI with the half-breathing mode, with the
kink energy being temperature-independent because of
the gap symmetry A(K).

Similarly, for the antinodal point k,, EPI with the
breathing mode has maxima for g, = (15, ) (from a
diagonal matrix element) and for g5 = (15, 0) (from an

v symmetry, and A(k) =
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off-diagonal matrix element) (Fig. 3). The state with
k., — 0, iscloseto the antinodal point and E(K,,—Q,) =
A(Tt 0) ~ Ay = 35 meV (thisistrue of optimally doped
Bi2212, where kinks with energiesof 40 meV a T =
100 K and of 70 meV at T = 10 K were detected [4]).
The state with k4, — g3 lies far from the Fermi surface
and is of little interest. The contribution from the
breathing mode does not obey the energy conservation
law at both T > T, and T < T,.. However, EPI with the
bending mode at q = O obeys al conservation laws
(Fig.5). At T<T,, we have

e(Kan) = 70= |80+,
andat T > T, we have

(Kan) = 0.

According to [4], a sharp decrease in the kink ampli-
tude at the antinodal point above T, is caused by two
factors: a decrease in the density of states at € in the
normal phase as compared to the superconducting
phase and temperature-induced smearing. Thus, as
in[4], we arrive at the conclusion that the kink at the
antinodal point is mainly contributed by the bending
mode.

5. DISCUSSION

The consideration of EPI given above implied the
La,_,Sr,CuQ, structure (the T structure). Let us quali-
tatively discuss changes in the EPI when going to the
Nd,_,Ce,CuO, structure (the T' structure). The T
structure has no apical oxygen above and below the Cu
ions; therefore, the main change is caused by the
absence of the apical breathing mode with a strong EPI
(v = 2 in our designations in EQ. (26)). Moreover,
gf,frfq (k, q) decreases substantially for EPI with the

breathing mode, since the &t,, and &V, contribu-
tions, which give linear-in-displacement terms in EPI
for this mode (see discussion before Eq. (24)), disap-
pear.

Asfor EPI with the breathing mode, the basic con-
tribution is generated by oxygen-ion displacements in
the Cu-0O plane; therefore, we conclude that the values

of gf,fr)r, (k, ) for the T and T' structures differ only

dlightly. Inelastic neutron scattering experiments also
indicate that the doping-induced changes in the phonon
spectra of the breathing mode in La, _,Sr,CuO, and
Nd,_,Ce,CuQ, are similar [19]. A comparison of the
EPIsinthe T and T' structures makes it clear why the
kink in the antinodal direction (0; 0)—(1t, 0) isabsent in
Nd,_,CeCuQ,: it is absent because the interaction
with the bending mode is smaller than that in
La, _,S,CuQ,. If the EPI with the breathing mode
changes only weakly, it is unclear why the kink in the
nodal direction (0; 0)—T5, ) isabsent. The ARPES data

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 101

853

for Nd,_,Ce CuQ, in [36] imply weaker specific fea
turesin this direction.

To develop a superconducting theory, the effective
Hamiltonian in which EPI isexcluded using the Frolich
transform is of interest [37]. Until we restrict ourselves
to an effective Hamiltonian for the CuO, layer, the non-
adiabatic effects caused by vibrations with wavevectors
g, dong the c axis are insignificant [38]. For the t—J*
model with phonons (33), the Fréhlich transform in
terms of the X operators is nontrivia; therefore, we
briefly dwell on it. We write aHamiltonian as

H = Hel + Hel—phv (35)

where Hy is the Hamiltonian of the t-J* model
(Eq. (33)) for the conduction band bottom (m= 0) or for
the valence band top (m = 1) and Hg_, is described by
Eg. (26). In the canonical transformation Hg =
exp(-9Hexp(S), the Soperator is chosen to be

' mm’ 1-m m
S=3 Y (akg blg+ Big by Xie Xk (36)
kqo mm'

Asusual, wefind the a and 3 coefficients from the con-
dition

Hel—ph + [Hell S] =0 (37)
and write Hy; as
1
Hg = Hg + E[Hel—phl g. (38)

In solving Eq. (37), we neglect the interband contri-
butionsin Eq. (36). First, the EPI interband matrix ele-
ments are always smaller than the intraband elements,
since the former elements only contain off-diagonal
contributions (see Eq. (26)); second, interband excita-
tions go through a large gap A between the lower and
upper Hubbard subbands, so that the corresponding
contributions are ~gf,‘,’r)n| /A < 1. Insolving Eq. (37), we
also use aHubbard-1 type approximationinthe[Hy, §
commutator. As aresult, for the m band we obtain

Cicgy = Gm(K, Q)
X [(t(K) = t(K + @) Fry— 0 ] 7
By = Gmm(k, Q)
X [(t(K) —t(K + @) Frp— 0 ]

wheret (k) = glk t(R) exp(ikR). The dependence of a
|

and 3 on the filling factor F,, and, hence, the dopant
concentration appears as the effect of strong correla
tions. Asaresult, the effective Hamiltonian can be writ-
ten as

(39)

Her = Hi_pe + HeZpneas (40)
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where H,_; is described by Eq. (28) and Hg_pnq IS
defined as

Hel—ph—el = Z ZvrknEqXELqXE_qXEX?,

kk'gv m

v) (v)

Vrknlz]jq = gmm(ki q)gmm(k'l _q)(*)q,v (41)

% [(t(k) =tk + @) °Fr—w]

Here, m =0 and m = 1 give effective Hamiltonians for
the cuprates with electron and hole doping types,
respectively.

In contrast to the analogous effective interaction of
weakly correlated electrons, the effective interaction in
the regime of strong electron correlations depends on
the occupation numbers and, hence, on the concentra-
tion, temperature, and the magnetic field.

6. CONCLUSIONS

We have derived EPI within the framework of a
multiband realistic model of cuprates in the regime of
strong electron correlations. The number of different
microscopic contributionsis large, and they are caused
by the modulation of all interatomic-distance-depen-
dent parameters upon ionic displacements, these
include one-electron parameters (t,q and t,, hoppings
between various p and d orbitals and the one-electron
energiesof pand d orbitalsin the crystal field) and two-
electron parameters (Coulomb matrix elements). For
each vibration mode v, we combine different micro-
scopic contributions to form two parameters that char-
acterize diagonal EPI (on lattice sites) and off-diagonal
EPI. Explicit dependences of the g,,(q) and gu(Q)
matrix elements on the wavevectors were found for
three modes, namely, breathing, apical breathing, and
bending modes. A symmetrical analysis of these matrix
elements allowed the qualitative conclusion that EPI
with the breathing mode isinvolved in the formation of
akink in an electronic spectrum in the nodal direction
(O; 0)—(1t, ) and that the bending maode is responsible
for akink in the antinodal direction (O; 0)—(1t, 0).

It does not follow from our results that the kinks are
only caused by EPI. We do not exclude additive EPI
contributions and interaction with spin fluctuations.
Note that the recent calculation [39] of electronic-spec-
trum renormalizations by the nonperturbation varia-
tional Monte Carlo method, which aso includes inter-
action with spin fluctuations, has not reveal ed kinks and
has detected weaker e ectronic-spectrum renormaliza
tions.

A comparison of EPIs in the n-type cuprates with
the T' lattice and in the p-type cuprateswith the T lattice
showed a weaker EPI in the T' lattice as compared to
the T lattice. However, the EPIs for the breathing mode
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differ only weakly for these two types of cuprates. An
additiona origin of electron—hole asymmetry in the
cuprates is related to different natures of the carrier
bands: in the hole cuprates, carriers are holes moving
along the oxygen p, orbitals, whereas in the electron
cuprates carriers are predominantly electrons of the

d._. orbita of Cu.

The effects of strong correlations in EPlI manifest
themselvesin thefilling factors F,,, which are self-con-
sistently determined via the occupation numbers of
multiel ectron terms and are functions of the carrier con-
centration, the temperature, and the magnetic field. The
same factors specify the nonintegral spectral weight of
the Hubbard quasiparticles, i.e., the specific features of
aband structurein strongly correlated systems.
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