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Abstract—The possibility of implementing a quantum-spin-liquid-type state in a two-layer triangular spin-1/2
antiferromagnet at T = 0 is investigated. The ratio of intra- to interlayer exchange constants (j) is found under
which a transition from the classical state with 120° triangular order to a quantum state with zero magnetization
per site occurs; in this case, the spins of adjacent layers form singlets that are separated from triplet excitations
by an energy gap. Compared with an analogous system with the square lattice, the range of j in which the clas-
sical ordered state is realized turns out to be an order of magnitude smaller due to the effects of frustration; in
this case, the behavior of thermodynamic quantities is analogous, on the whole, to that in two-layer square lat-
tices; a difference manifests itself in the behavior of the gap in the spectrum of quasiparticles in an external mag-
netic field h. For small fields h, a j–h phase diagram is constructed that determines the domains in which the
120° and the singlet phases exist. It is established that, in the neighborhood of the second-order phase transition,
the contribution, to the thermodynamic quantities, of longitudinal spin fluctuations, which are disregarded in
the spin-wave description, is comparable to the contribution of transverse fluctuations. © 2005 Pleiades Pub-
lishing, Inc. 
1. INTRODUCTION

It is well known that the formation of a spin gap
between a lower singlet state and excited magnetic lev-
els in magnets leads to the situation when there is now
magnetic ordering in these magnets at low tempera-
tures. Moreover, the phenomenon of high-temperature
superconductivity is likely to have a spin-gap nature.
Therefore, a large number of model objects and real
compounds possessing the above properties have
recently been studied [1–19]. Quantum phenomena
most clearly manifest themselves in low-dimensional
systems, systems with small coordination number, low-
spin systems, and frustrated systems [20–26]. Frustra-
tions, in particular, create or enhance the degeneracy of
the ground state [27], thus giving rise to new types of
ordering as a result of competition between quantum
phenomena and weak perturbations of different nature;
on the other hand, they lead to the effective damping of
coupling, thus significantly changing the domain where
a quantum-disordered phase can be realized.

In the present paper, we consider conditions under
which singlet and magnetic phases arise, as well as the
thermodynamic properties of a system consisting of
two layers of a triangular ferromagnet. Theoretical
interest in bilayer systems has been stimulated in part
by experimental factors. Experiments show that certain
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high-temperature semiconductors contain pairs of
CuO2 layers separated from other layers by nonmag-
netic interlayers [28, 29]. Layers with a triangular lat-
tice formed by ferromagnetic He3 have also been
deposited in experiments [30].

Investigations in two-dimensional triangular
Heisenberg antiferromagnets have shown [31–34] that,
at T = 0, long-range ordering exists even in spin-1/2
systems; in this case, the magnetization per site is half
the classical magnetization and has virtually the same
value as that in square lattices [35, 36]. At the same
time, it is well known that, under certain relations
between intra- and interlayer exchange constants, the
interaction between layers in two-layer square antifer-
romagnets may lead to the transition to a singlet state
with complete quantum reduction of the spin [37–39].

The possibility of quantum behavior in bilayer anti-
ferromagnets is clear from the following consider-
ations. In a bilayer system consisting of Heisenberg 1/2
spins with the intralayer exchange constant J1 and the
interlayer constant J2, in the limiting case of J1 = 0, we
have a system of noninteracting dimers in which one of
the following four states is realized at each site: a sin-
glet or one of three triplet states, whose energies differ
from the ground-state energy by the value of the
exchange constant J2. Obviously, the inclusion of the
weak intralayer exchange J1 does not substantially
change the situation: the width of the gap is not equal to
J2 as in the case of noninteracting dimers but is on the
© 2005 Pleiades Publishing, Inc.



        

A QUANTUM SPIN LIQUID IN A TWO-LAYER TRIANGULAR ANTIFERROMAGNET 869

                                                     
order of J2 (a confirmation of this fact is given in the
text; see formula (14) below). Therefore, for a weak
interlayer exchange (J2 ! J1), the gap is small, the trip-
let states at every site are populated, and the mean mag-
netization is different from zero and, in a bilayer trian-
gular antiferromagnet, should correspond to the classi-
cal 120° ordering. In the limit of large J2 (J2 @ J1), the
triplet magnetic levels are separated from the ground
state by a too large gap, and the system should live in a
singlet state with zero magnetization per site.

The Hamiltonian of the model (J1, J2 ≥ 0) is given by

(1)

where 〈i, j 〉  is a pair of nearest neighbors in each layer
and 1 and 2 are the layer numbers. The apparent redun-
dancy in the last terms is due to the fact that, under a

systematic enumeration in , each interacting pair

of spins is counted twice, while, in , it is counted

once. A pair of nearest-neighbor spins of adjacent lay-
ers is called a dimer.

2. SPIN-WAVE CALCULATIONS

We carried out standard spin-wave calculations in
the ordered triangular phase with the use of the Hol-
stein–Primakov transformation from spin operators to
the operators of creation and annihilation of magnon
deviations from the 120° triangular order. We estab-
lished that the excitation spectrum consists of two
branches each of which contains a Goldstone boson:
the first branch contains this boson at a wavevector of
k = (0, 0), which corresponds to fermionic ordering,
and the second, at k = q = (4π/3, 0), which corresponds
to the 120° triangular order:

(2)

(3)

In the first order in 1/S, we obtained the magnetization
per site and the velocity of spin waves in the neighbor-
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hood of a symmetry wavevector k = q (here, N is the
number of dimers).

(4)

3. BOND-OPERATOR REPRESENTATION

In another limiting case, a spin-wave description is
inapplicable to a singlet phase with zero magnetization
per site; therefore, we used the bond-operator represen-
tation, which was first introduced in [35] and was later
applied to Heisenberg models with a competing inter-
action [2, 5, 36] and to two-layer antiferromagnets with
a square lattice [38, 39]. We introduce a system of
dimer states

(5)

and three bosons a, b, and c that describe a transition
from the singlet state |0〉  to one of the three triplet
states:

(6)

The creation and annihilation operators of the singlet
state are defined as

(7)

The operators s+ and s thus defined are equal to each
other and to a constant:

s+ = s ≡ u,

which indicates that the singlet state is a condensed
state. The operator u defined by the normalization con-
dition allows us to rule out the existence of several trip-
let excitations at a single site. At a given moment, one
of the four states is realized at a site and the operator of
the total number of particles at the site is 1:

Therefore,

(8)

In terms of the new operators, the components of the

N0 S
1
2
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S
2N
-------

3J1 J2 3J1νk/2+ +
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HP

---------------------------------------------,
α k,
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s+s u2 1 a+a– b+b– c+c– u⇒= =

=  1 a+a b+b c+c+ +( )– .
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ferro- and antiferromagnetism vectors

of the dimer are expressed as

(9)

Following [38], we introduce a parameter λ in the root
of the operator u,

which allows us to expand u in the approximation of
λ ! 1. Then, similar to the 1/S expansion in the usual
spin-wave theory, we set λ = 1 in the final results. In
order that the spin commutation relations

(10)

remain unchanged, we introduce the factor 1/  into
the three components of the vector L:

(11)

Substituting (9) and (11) into the initial Hamiltonian (1)
and taking into account that the relation

holds for a dimer with S = 1/2, we obtain (  ≡ Jij/λ)

(12)

M S1 S2, L+ S1 S2–= =

Mz a+a b+b, M+– 2 a+c c+b–( ),= =

M– 2 c+a b+c–( ), Lz c+u uc+( ),–= =

L+ 2 a+u ub+( ), L– 2 b+u ua+( ).= =

u 1 λ a+a b+b c+c+ +( )– ,=

Mα Mβ,[ ] iεαβγMγ, Lα Lβ,[ ] iεαβγMγ,= =

Mα Lβ,[ ] iεαβγLγ=

λ

Lz c+u uc+( )/ λ ,–=

L+ 2 a+u ub+( )/ λ ,=

L– 2 b+u ua+( )/ λ .=

S1S2
3
4
---– a+a b+b c+c+ + +=

Jij*

H
3
2
---J2N– 2J2 ai

+ai bi
+bi ci

+ci+ +( )
i

∑+=

+ Jij ci
+ai bi

+ci–( ) a j
+c j c j

+b j–( )




ij

∑

+ Jij* bi
+ui uiai+( ) a j

+u j u jb j+( )

+
1
2
---Jij

*
ci

+ui uici+( ) c j
+u j u jc j+( )

+
1
2
---Jij ai

+ai bi
+bi–( ) a j

+a j b j
+b j–( )





,
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where the operators a, b, and c satisfy the boson permu-
tation relations

4. THE SPECTRUM OF A DISORDERED PHASE

In a disordered state, the bosons a, b, and c are
equivalent and a quadratic form of Hamiltonian (12) is
expressed as (u ≈ 1)

(13)

The stability domain of the singlet phase can be deter-
mined by analyzing the excitation spectrum of quasi-
particles. The excitation spectrum of a disordered state
is determined without taking quantum corrections into
account by the diagonalization of the quadratic form. In
view of the equivalence of the bosons a, b, and c, the
spectrum is triply degenerate and has a gap at the
wavevector q of the 120° triangular order:

(14)

As explained in the Introduction, the gap in the spec-
trum of elementary excitations of a disordered phase
(including the domain J2 @ J1) is on the order of J2 and
is equal to the exact value of J2 in the case of noninter-
acting dimers (J1 = 0).

When j > 1, the spectrum is everywhere real; when
j < 1, the spectrum becomes partially imaginary: the
system should pass to a new state. At the point of the
phase transition, j = 1, the gap in the spectrum vanishes;
therefore, the energy of excitations associated with the
formation of the 120° triangular order vanishes. A
Goldstone boson Ek(k = q) = 0 arises that points to the
symmetry reduction associated with the condensation
of the new state—the 120° triangular order—for j < 1.
Thus, in this approximation, the 120° triangular order is
stable in the domain of j < 1, while the singlet phase is
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stable for j > 1. The velocity of spin waves at the tran-
sition point is c = (3/2) .

5. MODIFICATION OF OPERATORS
IN THE 120° PHASE

In the ordered phase, the operators a, b, and c are
modified so as to guarantee that the mean value of the
spin at a site corresponds to the 120° triangular order.
This can be done by separating the mean value of oper-
ators of kind c at the wavevector k = q. If we set

(15)

then, for the mean value of the spin at a site in the sec-
ond layer, we obtain

where β ≡ λα 2. One can see that  behaves as a pro-

jection of the modulus  onto the z axis at an angle
αi = qRi , where αi is changed by 4π/3 · 1 = 240° ⇔
−120° (rotation of the spin) under the transition from a
certain site to the neighboring one (Ri = 1). At each site,
the spins of the first layer are opposite, as it must be, to
the spins of the second. Thus,

is the mean value of the spin at a site in the zero approx-
imation, and representation (15) guarantees the 120°
triangular order.

The equilibrium value of β is determined from the
minimum of the ground-state energy. In the mean-field
approximation, the energy of the ground state and β
(∂E0/∂β = 0) are given by

(16)

Thus, the mean value of the operators c (~α) and the
mean value of the spin at a site make sense for j < 1, i.e.,
in the ordered phase; at the point j = 1 of the phase tran-
sition in the mean-field approximation, all the means
vanish.

6. THE EXCITATION SPECTRUM
OF THE ORDERED PHASE

To determine the excitation spectrum in the ordered
phase, one should find a quadratic form of Hamilto-
nian (12) with regard to relations (15).

J1*

cq〈 〉 Nα ck Nαδkq εk,+⇔=
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λ
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1
2
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The Hamiltonian of the ordered phase can be repre-
sented as

where H⊥  is a part that is quadratic with respect to the
operators a and b and H|| is a part that is quadratic with
respect to the operators ε. H|| yields the spectrum of lon-
gitudinal fluctuations of the spin (the operators c and ε
determine the mean value of the spin at a site), and H⊥
determines the spectrum of transverse oscillations.

6.1. The Spectrum of Transverse Oscillations 

Let us explain how we determine the quadratic form
by the operators a and b (H⊥ ). To this end, in Hamilto-
nian (12), it suffices to use, as u, the expression

in the terms that explicitly contain a, b, and u, and the
approximation

in the terms containing c and u; for c in H⊥ , we every-
where use the mean value

c = 〈c〉 .
As a result, after the transition to the k space, H⊥  takes
the form

(17)

The spectrum of transverse modes is doubly degener-
ate, is gapless, and contains a Goldstone mode with k =
q (for any j):

(18)

(19)
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where (β0) is the mean-field approximation. The
presence of a Goldstone boson in the spectrum of oscil-
lations in the plane of the layer is obviously associated
with symmetry breaking due to the 120° Néel ordering
in the plane of the layer for j < 1. The velocity of spin
waves near k = q is equal to

6.2. The Spectrum of Longitudinal Oscillations 

The terms that are quadratic in ε and form the
Hamiltonian H|| are contained in the following compo-
nents of Hamiltonian (12):

where it suffices to apply the relations

Ek
⊥

c
3
2
---J1* 1 β0–( ) 1

β0

2
-----– 

  .=

H || 2J2 εi
+εi

i
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+
1
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ij

∑
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+ ui0 ui0ci0+( ) c j0
+ u j0 u j0c j0+( ) } ,
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,

and expand u in powers of λ. The condensate state that
is included in the sum with minus sign is already taken
into account in the ground-state energy (16). Upon sep-
arating the part quadratic in ε and passing to the k
space, we obtain

(20)

The spectrum of longitudinal oscillations has a gap

( (β0) is the mean-field approximation) and is repre-
sented as

u 1 λc+c– , c c0 ε+= =

H || e||
0 Ak
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(22)

The gap is closed at the phase-transition point β0 = 0. In
the neighborhood of the critical point (β0  0), the

value of the gap is small (∆||(β0) ~ ); therefore, in
calculating various physical quantities, one may expect
that the contribution of longitudinal fluctuations will be
comparable to the contribution of transverse ones.

7. CORRELATION FUNCTIONS

We investigated the behavior of correlation func-
tions between nearest-neighbor spins in a layer,
〈SniSnj 〉 , and between the layers, 〈S1iS2i 〉 , in both phases:

(23)

Ek
|| β0( ) 3J1* 1 2νk j2+ ,=

∆|| β0( ) 6J1* β0 1 β0–( ) Ek
|| k q=( ).= =

β0
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M j L j+
2
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S2iS2 j〈 〉
Mi Li–

2
------------------

M j L j–
2

------------------- ,=
where we used relations (9) and (11) and restricted the
analysis to a quadratic approximation with respect to
operators. For example, in a disordered phase, we
obtained the following expression for 〈SiSj 〉1, 2:

The mean values in this expression are obtained by a
Bogolyubov transformation to new operators in terms
of which the original Hamiltonian (the Hamiltonian of
a disordered state in this case) is diagonal. As a result,
these means contain constants and the operators of the
number of particles of certain kinds with a definite
value of k; according to the Bose distribution, these
operators are equal to zero in the case, which is consid-
ered here, of a magnon gas with a chemical potential of
µ = 0 at T = 0. The remaining correlation functions are

SiS j〈 〉 1 2, 1
4λN
----------- 2 ak

+b k–
+〈 〉 akb k–〈 〉+


k

∑=
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+ak〈 〉 bk
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+ck〈 〉+ +

+
1
2
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 k∆.cos
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determined analogously. The results for a disordered
phase look as follows (j > 1):

(24)

We do not present analytical results for the ordered
phase (j < 1) in view of their awkwardness. A detailed
account of all the results discussed can be found in [40].
The behavior of correlation functions is shown in
Fig. 1. As it should be, in the limit of j  ∞, the cor-
relation between spins of the same dimer 〈S1iS2i〉  have
the asymptotics –3/4, while intralayer correlations
〈SiSj 〉  tend to zero. At the transition point, the correla-
tion functions are continuous. In the limit of j = 0, the
terms in 〈SiSj 〉  that are attributed to the longitudinal
fluctuations total zero; i.e., they make zero contribu-
tion. In contrast to modified spin-wave methods, the
correlations between spins in a layer in the singlet
phase have a finite value and increase as approaching
the phase-transition point (j = 1). The correlations
between spins in adjacent layers decrease with j and
reach a value of –0.47, which is less than that in the
modified spin-wave theory.

8. GROUND-STATE ENERGY 
WITH REGARD TO FLUCTUATIONS

After the diagonalization, the components H⊥  and
H|| of the Hamiltonian of the ordered phase have a stan-
dard form that allows us to calculate the ground-state
energy E with regard to fluctuation corrections,

(25)
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and to refine the equilibrium value of the parameter β
(∂E/∂β = 0). An equation for the equilibrium β has a
self-consistent form:

(26)

We calculated Zb(β) to a first approximation by trans-
forming the exact values of β and then used the mean-
field approximation β0 for β. The roots of the equation
are determined by the method of interval bisection with
an accuracy of 0.01. A family of functions β(j) that cor-
respond to different λ is shown in Fig. 2. One can see
that there exists an asymptote

as λ  0. A characteristic feature of these functions
for large values of λ is the two-valuedness of β(j) in the
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Fig. 1. Correlation functions between nearest-neighbor
spins (the mean-field approximation).
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region of small β, which is physically meaningless.
Such results are attributed to Gaussian fluctuations that
indefinitely increase as the phase transition (β  0) is
approached; this fact was discussed in detail in [38].
Therefore, using the values of β that were calculated
away from the phase transition, we approximate the
functions in the neighborhood of the phase transition
(β ≈ 0) so as to avoid the two-valuedness (Fig. 2).
According to this approximation, the point at which β
vanishes for λ = 1 is given by j = J2/3J1 = 0.132; i.e.,
J2/J1 = 0.4. In a similar system with a square lattice, the
point of transition to a disordered phase corresponds to
the values of J2/J1 ranging from 1.86 to 4.5 depending
on the computation method [38, 39]. As expected, the
classical 120° state triangular ordered decays much
faster than that in the square system: the domain of val-
ues of j in which the ordered state is realized is less by
an order of magnitude. Such a significant difference
may be attributed in part to the in-plane frustratedness
of bonds. For equal J1 and J2 in square and triangular
systems, the effective interaction of two spins in the

plane of the triangular lattice  proves to be weaker by
a factor of two and the ratio J2/J1 at the transition point
is effectively greater (approaching that in the square lat-
tice), because the spin is not oriented according to the

J̃1

0.2
λ = 0

0.2 0.4 0.8 1.00
j

0.6

0.5

0.4

0.3

0.1

λ = 1.0

λ = 0, 0.1, 0.2, ..., 1.0

β = (1 – j)/2

β

Fig. 2. Equilibrium β with regard to quantum corrections.
The dots represent a solution to the self-consistent equation
(26) for λ = 0.1, …, 1.0; the solid curves represent an
approximation that eliminates the unphysical two-valued-
ness of the function, which is associated with the divergence
of Gaussian fluctuations near the phase transition
(β  0). The point at which β vanishes for the physical
case of λ = 1 is j = 0.132.
JOURNAL OF EXPERIMENTAL A
local energy minimum. It is qualitatively clear that an
effective increase in J2/J1 leads to an increase in the gap
between the singlet and the triplet levels, whereby the
singlet orbital turns out to be populated earlier (in j) and
the 120° triangular order is destroyed.

9. SPONTANEOUS MAGNETIZATION

The mean value of the spin at a site in the 120° phase
is equal to

(27)

Up to the terms that are quadratic in the operators, we
have

(28)

The means are determined by the Bogolyubov transfor-
mation, which was obtained in Section 7. As a result,
we obtain

(29)

N0 S1
z〈 〉 S2

z〈 〉 1

λ
------- c+u〈 〉 1

λ
-------= = = =

× α ε++( ) 1 λ a+a b+b α ε++( ) α ε+( )+ +[ ]–〈 〉 .

N0
α 1 β–

λ
--------------------=

× 1
λ

2 1 β–( )
-------------------- ak

+ak〈 〉 bk
+bk〈 〉 ε k

+εk〈 〉+ +( )–

–
λ

2 1 β–( )
-------------------- εk

+εk〈 〉 ε k
+ε k–

+〈 〉+( ) λβ
8 1 β–( )2
----------------------–

--× εkε k–〈 〉 ε k
+ε k–

+〈 〉 ε k
+εk〈 〉 ε kεk

+〈 〉+ + +( ) .

N0
β 1 β–( )

λ
------------------------ 1 λZa β( )–( ),=

Za β( ) Z6 β( ) Z7 β( ) Z8 β( ) Z9 β( ),+ + +=

Z6 β( ) β
8 1 β–( )2
----------------------,=

Z7 β( ) 2 β–

8 1 β–( )2
---------------------- 1

N
----
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||

Ek
||-----,
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N
----

Ak
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,
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Here,

is the approximation of magnetization without fluctua-
tions.

An approximation of spontaneous magnetization,
which is independent of the table of values of β(j), can
be obtained with the use of the first iterative approxima-
tion for β:

Then, setting

and taking into account that λ ! 1, we obtain the
approximation of magnetization that is shown in Fig. 3.
This approximation has an significant drawback: the
points at which N0 and β vanish (the phase-transition
point) do not coincide. However, it reveals the follow-
ing characteristic feature of the function: the presence
of a small maximum in the region of small j, which is
especially manifest for medium values of λ; this
behavior is analogous to that in two-layer square lat-
tices [38].

We have established that, in the limit of j = 0, longi-
tudinal waves do not contribute to the magnetization
because the terms in Za that are associated with longitu-
dinal fluctuations total zero. In the other limiting case,
in the neighborhood of the phase transition (β  0),

the magnetization vanishes as N0 ∝  , and all the
terms in Za(β = 0), both transverse and longitudinal,
prove to be of the same order of magnitude. Thus, lon-
gitudinal spin fluctuations, which are neglected in the
spin-wave description, prove to be comparable with
transverse fluctuations in the neighborhood of the phase
transition.

It may seem that the obtained table of equilibrium
values of β(j) allows one to determine the exact behav-
ior of magnetization. However, this is a fallacy, because
the substitution of the values of β(j) determined with
regard to fluctuations into the integral functions Za(β)
and Zb(β), which contain the spectrum, and are calcu-
lated only in the quadratic approximation with respect
to the operators of secondary quantization without tak-
ing quantum corrections into account, is an excess of
accuracy. In the quadratic approximation, the spectrum
is determined in the range of j ∈  (0, 1), the point of the
phase transition is j = 1, and the equilibrium value is
β = (1/2)(1 – j). The substitution of the refined values of
β(j) < (1/2)(1 – j), which are determined in the interval

β 1 β–( )
λ

------------------------
c0

+u0〈 〉
λ

----------------=

β β1≈ β0 λZb β0( ).–=

Za Za β0( ), Zb Zb β0( ),≈ ≈

β
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of j ∈  (0, 0.132), makes the spectra of the ordered phase
partially imaginary (for example, the transverse spec-
trum is positive definite in the entire Brillouin zone
only if β ∈  ((1/2)(1 – j), 1)). Thus, a more accurate
determination of the behavior of the magnetization and
other quantities requires that one should either deter-
mine the excitation spectrum and the equilibrium β in
the same consistent approximation, which is often asso-
ciated with the elimination of unphysical states in
higher orders of expansion in the operators, or apply the
Monte Carlo method. We restricted ourselves to an
approximate determination of the behavior that is based
on the knowledge of the phase-transition point and the
characteristic form of the function. An approximate
behavior of magnetization is shown by a dashed line in
Fig. 3. According to this figure, the magnetization van-
ishes simultaneously with β(j) at j = J2/3J1 = 0.132. The
calculations performed allow us to evaluate the mean
value of the spin at a site; it ranges from about 1/4 to 0.
Thus, the quantum reduction of the spin in the 120° tri-
angular phase ranges from 50 to 100% depending on j.

10. INITIAL SUSCEPTIBILITY

We have calculated the initial susceptibility in a field
H = Hx that is perpendicular to the plane of the layers.
Instead of the a and b bosons, it is convenient to use
operators s and p in the field Hx ,

which satisfy the relation

;

s
a b+

2
------------, p

a b–

2
-----------,= =

a+a b+b+ s+s p+ p+=

0.2

λ = 0.7

0.1 0.2 0.4 0.50 j0.3

0.4

0.1

N0

λ = 1.0

0.132

0.3

Fig. 3. Spontaneous magnetization with regard to fluctua-
tions. The solid curves are obtained with the use of the first
iterative approximation for β, and the dashed curve illus-
trates the approximate behavior corresponding to the table
of equilibrium β(j) for λ = 1.0.
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the ferro- and antiferromagnetism vectors are given by

(30)

The convenience of the new operators is associated
with the fact that a field applied along the x axis induces
the condensation of the p field alone, which occurs at
the wavevector k = q. Indeed, the expected value of
induced magnetization

must not depend on a site; this fact imposes a constraint
on the admissible form of the operators p. In the general
case, we have

therefore,

(31)

Mx c+ p p+c, My+ i c+s s+c–( ),= =

Mz s+ p p+s, Lx+
1

λ
------- s+u us+( ),= =

Ly i

λ
------- p+u up–( ), Lz–

1

λ
------- c+u uc+( ).–= =

Sx i( )〈 〉 M ⊥ i( ) ci
+ pi〈 〉 const i( )= = =

ci
+ ci

+〈 〉 ε i
+, pi+ pi〈 〉 χ i;+= =

M ⊥ Sx〈 〉 ci
+ pi〈 〉 ci

+〈 〉 pi〈 〉 ε i
+χ i〈 〉+= = =

≡ M ⊥
0 i( ) ∆M ⊥ i( )+ const i( ),=

M ⊥
0 i( ) ci

+〈 〉 pi〈 〉 α iqRi–( ) pi〈 〉exp= =

=  const i( ) pi〈 〉⇒ α ˜ iqRi( ),exp=

pk N α̃δkq χk,+=

M ⊥
0 αα̃ βγ

λ
----------, γ λα̃2;≡= =

2

Quant. fluct.

0.132 10 j2

1

h

120°
3

Singlet

Fig. 4. j–h phase diagram for small h. The solid curve shows
the position of the phase boundary in the mean-field
approximation, and the dashed curve shows the same
boundary with regard to fluctuations. As the field
h increases, instead of the 120° structure [41], other seven
phases become the ground state in the region of small j.
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i.e., bosons c and p condense at a wavevector k = q. The
induced magnetization and the susceptibility are given
by

(32)

The parameters β and γ can be determined from the
minimum of the ground-state energy  in a magnetic

field. In the mean-field approximation (h ≡ Hx/3 ),
we have

(33)

(34)

On the curve

,

the parameters β0 and γ0 vanish simultaneously for
h ≠ 0. This function represents a curve of phase transi-
tions in the mean-field approximation because the 120°
triangular order vanishes in this case. Figure 4 shows
the corresponding j–h phase diagram of the model.
The dashed curve in this figure illustrates how the
phase diagram changes when one takes into account the
effect of quantum fluctuations. The magnetic field dis-
places, as it should, the point of phase transition to a
disordered state to a domain of greater values of j. How-
ever, such behavior of the equilibrium curve is only
characteristic of small h; as the magnetic field
increases, the 120° triangular order is no longer the
ground state, and the j–h phase plane exhibits an intri-
cate structure in the region of small j and h and defines
the existence domain of seven phases with different
types of spin ordering [20, 41, 42]. Note that thermal
fluctuations in purely two-dimensional systems lead to
complete destruction of ordering at h = 0 due to the van-
ishing of the effective spin length (the Mermin–Wagner
theorem). The temperature behavior of quasi-two-
dimensional triangular antiferromagnets has recently
been investigated in [43] with the example of
RuFe(MnO4)2.

M ⊥
βγ
λ

----------
1
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+χk〈 〉
k
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ẽ0

J1*

ẽ0
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Using the obtained values of β0 and γ0, we deter-
mine the mean-field approximation to the induced mag-
netization and the initial susceptibility:

(35)

In the limiting case of j = 0, we have  = 1/18J1,
which coincides with the results for single-layer trian-
gular lattices.

To calculate the fluctuation corrections to the mag-
netization,

,

we should find the eigenfunctions of the Hamiltonian in
a magnetic field; in the quadratic approximation, this
Hamiltonian can be reduced to

where Hs and Hcp are the quadratic forms with respect
to the s and εχ operators, respectively. We have

(36)

The spectrum of s excitations has a gap,

(37)

(38)

In contrast to square lattices, the gap depends on j;
moreover, it is closed in zero field. The spectrum of s
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excitations in zero field transforms into the spectrum of
transverse oscillations of the ordered phase. We have

(39)

An analytic expression for the spectrum of cp excita-
tions in a magnetic field is given by

(40)
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Unfortunately, this spectrum cannot be represented as a
compact function of the variables (j, h), (β, γ), or others.
The spectrum of cp excitations contains two branches.
The lower branch contains a Goldstone boson for k = q
and, at h = 0, turns into the spectrum of transverse (ab)
modes of the ordered phase. The upper branch has a gap
and turns into the spectrum of longitudinal (c) oscilla-
tions at h = 0; the value of the gap in the mean-field
approximation is

(41)

The diagonalization of Hs yields

As h  0, the diagonalization of Hcp leads to the fol-
lowing expression (εc and εp are the spectra for h  0):

(42)

∆cp Ek 2( )
cp k q=( )=

=  6J1* j β0+( ) j 1– 3β0+( ).

Hs Ek
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∑ 2Ek
sγk

+γk.
k

∑+=

Hcp Ecp
0 εc Ak

ε–( ) εp Ak
χ–( ) O h2( )–+[ ]

k

∑+=

+ 2 εpak
+ak εcbk

+bk+( ),
k

∑

Ecp
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0.2 λ = 0.6

0.2 0.4 0.8 1.00 j0.6
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χ⊥

λ = 1.0

0.132

Fig. 5. Initial susceptibility. The solid curves are obtained
with the use of the mean-field approximation for β, and the
dashed curve represents an approximate behavior that cor-

responds to β(j) with regard to fluctuations: χ⊥  ~ ; there-
fore, β and χ⊥  vanish simultaneously at j = 0.132.

β
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The ground-state energy in a magnetic field for h  0,

(43)

allows us to determine the equilibrium values of β and
γ (upon setting ∂Eh/∂β = 0 and ∂Eh/∂γ = 0). It suffices to
refine one parameter, γ; the other parameter can be
taken in the mean-field approximation because β and γ
enter the equation

as a product. As a result, we obtain

where ϕ = ϕ(β, γ, j, h) is an integral that contains the
coefficients of the Hamiltonians Hs and Hcp .

Thus, taking into account a renormalized value of γ
and diagonalizing transformations, we obtain the fol-
lowing expressions for the induced magnetization:

and the initial susceptibility,

where the mean fluctuation components are given by
(here, h  0, β = β0, and j ≈ 1 – 2β0)

(44)

Eh E0 Ecp
0 Ek

s Ak
s–( )

k

∑+ +=

+ εc Ak
ε–( ) εp Ak

χ–( ) O h2( )–+[ ] ,
k

∑

M ⊥
βγ
λ

---------- ∆M ⊥+=

γ β h
2 j 3β+( ) λϕ+
-------------------------------------

2

,=

M ⊥
β0γ
λ

------------ ∆M ⊥+=

χ⊥ χ⊥
0 ∆χ⊥ ,+=

M ⊥
0 β0γ

λ
------------≈

≈ h
β0

λ 2 1 β0+( ) λϕ h 0=( )+[ ]
---------------------------------------------------------------,

χ⊥
0 1

3J1*
---------

β0

λ 2 1 β0+( ) λϕ h 0=( )+[ ]
---------------------------------------------------------------,=

∆M ⊥ h
1

4 1 β0+( )
---------------------- 1

N
---- uc

2up
2 xc xp+( )

k

∑–=

×
2 1 β0–( )– β0d '+[ ] xc xp+( ) β0d ' 1 xcxp+( )+

ec ep+
---------------------------------------------------------------------------------------------------------------,
ND THEORETICAL PHYSICS      Vol. 101      No. 5      2005



A QUANTUM SPIN LIQUID IN A TWO-LAYER TRIANGULAR ANTIFERROMAGNET 879
Here,

The form of the function χ⊥  is shown in Fig. 5. This
function is nonmonotonic with a small maximum in the
neighborhood of small j. The dashed line represents the
behavior corresponding to the table of equilibrium val-
ues of β(j).

In this paper, we did not consider the possibility of
the formation of singlet pairs in a layer. In our view,
consideration of this possibility should lead to vanish-
ing of the spin at a site of χ⊥  for j ≈ 0; thus, the interval
of the 120° triangular phase will become even nar-
rower.
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