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We consider single-channel transmission through a double quantum dot that consists of two identical single dots
coupled by a wire. The numerical solution for the scattering wave function shows that the resonance width of
a few of the states may vanish when the width (or length) of the wire and the energy of the incident particle each
take a certain value. In such a case, a particle is trapped inside the wire as the numerical visualization of the
scattering wave function shows. To understand these numerical results, we explore a simple model with a small
number of states, which allows us to consider the problem analytically. If the eigenenergies of the closed system
cross the energies of the transmission zeroes, the wire effectively decouples from the rest of the system and traps
the particle. © 2005 Pleiades Publishing, Inc.

PACS numbers: 03.75.Fi, 05.30.Jp, 67.57.Fg
Dramatic changes of the widths of resonance states
may arise by resonance trapping: at strong coupling, a
few resonance states of the system align with the chan-
nels and become short-lived, while the remaining ones
decouple more or less strongly from the continuum of
decay channels. This effect, which was first found in
nuclear reactions [1], has been observed meanwhile in
many different systems [2]. In atoms, it may appear as
population trapping in laser-induced continuum struc-
tures [3]. In microwave cavities, it is studied theoreti-
cally [4] and experimentally [5]. Resonance trapping is
caused by the existence of singular points in the com-
plex energy plane [6].

In the transmission through microwave cavities or
quantum dots (QDs), an additional parameter for vary-
ing the widths of the resonance states is involved. The
transmission is determined by the manner the leads are
attached to them, and the widths of the resonance states
can be changed even without changing the coupling
strength between the system and lead [7]. In a double
QD, an internal wire couples the two single dots. The
coupling and the wire’s energy can be controlled. This
allows us to even stabilize the system at certain param-
eter values without varying the coupling strength to the
environment [8], at least in the one-channel case. On
the one hand, the position of the transmission zeroes
through such a system is determined by the spectro-
scopic properties of the single dots since the leads are
attached only to them. On the other hand, the transmis-
sion is resonant in any case and related to the spectro-
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scopic properties of the double QD as a whole. These
two conflicting facts cause some nontrivial constraint
on the system in order to fulfill the unitarity of the
S-matrix [8]. As a consequence, the widths of the reso-
nance states may be strongly parameter-dependent, and
some of them may even vanish at certain parameter val-
ues. Such a case presents a novel bound state that cor-
responds to the confinement of an electron in the inter-
nal wire as we will show in the following.

The relation between transmission zeroes and reso-
nance states with vanishing width has been studied also
by other authors. Firstly, a drastic narrowing of the res-
onant peak was shown by Shahbazyan and Raikh in a
junction of two resonant impurities [9]. In [10], an anti-
bonding state is found to be totally decoupled from the
leads and to give rise to a “ghost” Fano peak with zero
width in the system of two coupled QDs. According to
[11], a dynamic confinement of electrons in time-
dependent quantum structures may appear due to the
coherent interaction between two Fano resonances. The
system studied is a double-well structure in which the
electrons are confined in the region between the two
wells at some special values of the energy of the inci-
dent particle and the length of the region between the
wells. It is the aim of the present study to show that a
similar phenomenon appears in the system of identical
QDs connected by a wire. Localization of electrons in
the wire takes place in this system without time-peri-
odic perturbation, as we will show by considering the
wave functions of the resonance states with vanishing
width.
© 2005 Pleiades Publishing, Inc.
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The split gate in the middle of a double QD allows
us to control, e.g., the width W of the wire that connects
the two single QDs [12–14]. Using the exact correspon-
dence between the quantum-mechanical description of
the single-electron transmission through a QD and the
transmission of planar electromagnetic waves through a
microwave billiard [15], it is convenient to control the
length L of the connecting waveguide. In any case, con-
sidering the wire as a stripe with the width W and the
length L, we present the wire as a third quantum sub-
system with the energies εw ~ m2W–2 + n2L–2, where m
and n are the quantum numbers of the wire. These
modes appear in addition to the eigenenergies εi ∝  R–2

of the single QDs, where R is the characteristic scale of
the single dot. If L, W ! R and εw @ εi, the role of the
wire as a third quantum subsystem is not relevant
because the coupling between the dots is of tunneling
type. However, for the case εw ~ εi, the wire degrees of
freedom are important. In this case, the quantum sys-
tem consists, indeed, of two quantum subsystems cou-
pled by a third quantum subsystem that has its own
energy spectrum. In the following, we present the the-
ory for the one-channel case of this system. It is not
restricted to the description of double billiards but can
be applied also to the transmission through a system
consisting of two scattering centers that are connected
by a waveguide. Such a system might be, e.g.,
waveguides with two bends [16–18].

In order to vary smoothly the width of the wire in the
numerical computation, we apply an auxiliary potential

(1)

to squeeze the wire in a similar manner as in a real dou-
ble QD system [12–14]. In computations, we take V0 =
100, C = 17. The transmission probability, presented in
the log scale in Fig. 1, clearly shows transmission
zeroes appearing at certain energies independently of
the width W of the stripe (for details, see the discussion
in [8]). The most interesting features appear, however,
at the points where the eigenenergies of the double QD
system cross the transmission zeroes (two points are
marked by open circles in Fig. 1).

Originally, the spectroscopic values such as the
positions in energy of states are defined for the discrete
eigenstates of Hermitian Hamiltonian HB that describes
the closed quantum system. When embedded into the
continuum of scattering states, the discrete eigenstates
of the closed system turn over into resonance states
with a finite lifetime. The effective Hamiltonian Heff of
the open quantum system contains HB as well as an
additional term [2] that describes the coupling of the
resonance states to the common environment,

(2)

V x y,( ) V0 1 0.5 C y W /2–( )( )tanh[+{=

– C y W /2+( )( ) ] }tanh

Heff HB V BC
1

E+ HC–
-------------------VCB.

C

∑+=
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Here, VBC and VCB stand for the coupling matrix ele-
ments between the eigenstates of HB and the environ-
ment that may consist of different continua C, e.g., the
scattering waves propagating in the left and right leads
attached to the closed system. The concept of the effec-
tive Hamiltonian appeared first in Feshbach’s papers
[19] and, independently, in Livshitz’s study of open
quantum system [20]. Heff is non-Hermitian, its eigen-
values zk and eigenfunctions are complex and contain
the “external” interaction of the resonance states via the
continuum. The complex eigenvalues of the effective
Hamiltonian determine the positions and widths of the
resonance states. They are energy-dependent functions,
since the non-Hermitian effective Hamilton operator
(2) depends on energy. Nevertheless, spectroscopic val-
ues for resonance states can be defined also for the res-
onance states [2, 21] by solving the fixed-point equa-
tions

(3)

and defining

(4)

The values Ek and Γk characterize a resonance state
whose position in energy is Ek and whose decay width
is Γk. These values coincide approximately with the
poles of the S matrix.

The effective Hamiltonian Heff appears in the deriva-
tion of the S matrix [2, 21]. Calculations performed

Ek Re zk( ) E Ek==

Γ k 2Im zk( ) E Ek= .=
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Fig. 1. The probability ln(T(E, W)) for the transmission
through the double QD shown in Fig. 3 versus energy and
width of the wire. The eigenenergies of each single QD are
marked by crosses. The eigenenergies of the wire are shown
by dashed curves, and those of the closed double QD sys-
tem, by thin dotted curves. In the present calculation, the
eigenenergies of the closed system are almost the same as
the eigenenergies of the open system. The radius of the QD
in units of the width d of the input and output leads is 3d.
The length of the wire is 2.5d. The size of all diaphragms is
0.6d.
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with Heff correspond therefore to calculations on the
basis of the S matrix, but they contain additionally a
unique definition of the spectroscopic values [21].
Explicitly in the tight-binding approach, Heff is given in
[22, 23]. The results of a numerical computation for the
system consisting of two quantum dots coupled by a
wire are shown in Fig. 2 for the imaginary parts of four
complex eigenvalues zk. The points marked by crosses
in Fig. 3 are found by self-consistent solution of
Eqs. (3) and (4). They exactly correspond to the points
shown in Fig. 1.

The numerically computed scattering wave func-
tions (Fig. 3) demonstrate that, at these points, the elec-
trons are localized inside the wire that connects the two

Fig. 2. The imaginary part Γk of the first four eigenvalues zλ
as a function of W for E = 16.36. The first two Γk which van-
ish at W = 0.638 and W = 0.74 are shown by the solid curves.
Corresponding points are marked by crosses. They exactly
correspond to points shown in Fig. 1 by open circles.
single QDs. This effect appears, of course, only in the
open double-dot system. In the closed system, a local-
ization in the wire will never occur.

In order to understand this mechanism of electron
confinement, we use the periodicity of the transmission
picture (Fig. 1), which allows us to restrict the investi-
gation to the transmission properties of a simple model
with only a few states in each single QD [8].

The Hamiltonian of the closed system consists of
three parts: two parts describe the two single QDs, and
a third one is related to the wire. The Hamiltonian of
minimal dimension, which can cause a zero in the
transmission through a single QD, is two [8]. Then, the
total Hamiltonian, which can explain the characteristic
features of Figs. 1 and 2, has the following matrix form:

(5)

For simplicity, it is assumed here that the two single
QDs are identical and that all the coupling constants u
between the wire and the single QDs are the same. The
Hamiltonian (5) differs from those used in the literature
[10, 24, 25] for the description of a double QD by tak-
ing explicitly into account the wire as a third sub-
system. The eigenenergies εw of the wire depend on at
least two values: on the width W and the length L. With-
out loss of generality, we can consider the energy εw to
be the parameter by which the system can be con-
trolled.

The knowledge of the eigenstates of the closed
quantum system allows us to formulate the S-matrix

HB

ε1 0 u 0 0

0 ε2 u 0 0

u u εw u u

0 0 u ε2 0

0 0 u 0 ε1 
 
 
 
 
 
 
 
 

.=
(a) (b)

Fig. 3. The density probability for the transmission through the double QD for the two cases shown in Fig. 1 by open circles:
(a) E = 16.36, W = 0.638; (b) E = 16.36, W = 0.74.
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and the effective Hamiltonian in the manner described
in [23, 26] in order to consider the transmission through
the system. Let Em and |m〉  with m = 1, …, 5 denote the
five eigenenergies and eigenstates of (5). The ampli-
tudes 〈 j = 1, 2|m〉  describe the left billiard, 〈 j = 3|m〉  the
wire, and 〈 j = 4, 5|m〉  the right billiard. Similar to [10],
we assume that the left lead is coupled to both states
(j = 1, 2) of the left billiard with the same strength v.
Correspondingly, the right lead is coupled to both states
(j = 4, 5) of the right billiard with the same strength v.
Then, the coupling matrix elements between the closed
system and the two leads L and R can be written as

(6)

where C = L, R, VL(m) = v , VR(m) =

v . The factor  in (6) results from
the one-dimensional leads [8, 23]. The matrix elements
of the effective Hamiltonian are [8, 23, 26]

(7)

Using the S-matrix formalism [2, 23, 26], the amplitude
for the transmission through the system reads [23]

(8)

Figure 4a closely reproduces a fragment of the total
picture (Fig. 1), including the appearance of transmis-
sion zeroes. According to Fig. 4b, the decay widths of
the eigenstates 2 and 4 of the effective Hamiltonian are
independent of the wire’s energy εw, while those of the
other states depend on it. The state 3, lying in the mid-
dle of the spectrum, crosses the transmission zero at

(9)

At this energy, we have from (5) the following eigenen-
ergies

(10)

and eigenstates

(11)

E C V m,〈 〉 v
ksin

2π
----------VC m( ),=

j m〈 | 〉
j 1 2,=∑

j m〈 | 〉
j 4 5,=∑ ksin

m〈 |Heff n| 〉

=  Emδmn V L m( )V L n( ) V R m( )V R n( )+( )eik.–

t 2πi
L〈 |V |λ ) λ|V R| 〉(

E zλ–
--------------------------------------.

λ
∑–=

εw εb

ε1 ε2+
2

---------------.= =

E1 5, εb η , E2± ε1, E3 εb, E4 ε2= = = =

1〈 | 2u
η

---------- u
η ∆ε–
---------------- u

η ∆ε+
---------------- 1–

u
η ∆ε+
---------------- u

η ∆ε–
----------------, , , , 

  ,=

2〈 | 1

2
------- 1 0 0 0 1–, , , ,( ),=

3〈 | u
η
--- 1 1

∆ε
u

------ 1– 1, , ,–, 
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4〈 | 1

2
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where η2 = ∆ε2 + 4u2, ∆ε = (ε2 – ε1)/2. Substituting (11)
into (6), we obtain

(12)

for the elements of the coupling matrix. One can see
that, under condition (9), the wire decouples from the
rest of the system. Substitution of (12) into (2) shows

5〈 | 2u
η

---------- u
η ∆ε+
---------------- u

η ∆ε–
---------------- 1

u
η ∆ε–
---------------- u

η ∆ε+
----------------, , , , 

  ,=

m〈 |V E C, L R,=| 〉 v
ksin

8π
---------- 1 1 0 1 1±±( )=
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Fig. 4. (a) The transmission through a system with two iden-
tical QDs that are connected by a wire versus incident
energy E and energy of the wire εw. The eigenenergies of
(5) are shown by solid curves, and the energy εw of the wire
is shown by the dashed curve. The QDs have energies ε1, 2 =
±1/2. v  = 1/2, u = 1/4. (b) The imaginary part of the five
eigenvalues zλ of the effective Hamiltonian (2) as a function
of εw for E = 0.5 (at E = 0, the widths of the two short-lived
states are equal). One of imaginary parts is equal to zero at
εw = εb = 0 for all energies E marked by cross.

εw
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that, at εw = εb, the effective Hamiltonian matrix 5 × 5
decomposes as Heff = H1 ⊕  E3 ⊕  H2, where

(13)

and Γ = –v 2exp(ik)/2. Obviously, the imaginary part of
the third eigenvalue of Heff is zero, i.e., the width of the
third eigenstate vanishes at εw = εb. According to for-
mula (105) of [23], the scattering wave function can be
decomposed in the set of eigenfunctions of Heff,

(14)

where the Vλ(E, C) are the coupling matrix elements
between the leads C and the open double QD described
by the eigenstates ψλ of Heff. Since the eigenvalue z3 is
real, V3(E, C)  0 if E  z3 = E3 = εb. Therefore, a
particle moving from the left (right) lead to the left
(right) billiard is fully reflected. That means the wire is
decoupled from the reservoirs and the electrons are
trapped inside the wire. According to (8), the contribu-
tions from λ = 1 and 5 as well as those from λ = 2 and
4 to the transmission cancel each other at E = εb due to
the symmetry in relation to εb, while the contribution
from λ = 3 vanishes. As a consequence, an electron will
not be transmitted at the energy E = εb. The probability

for the electron to be in the left QD is 

H1
E1 Γ+ Γ

Γ E5 Γ+ 
 
 

;=

H2
E2 Γ+ Γ

Γ E4 Γ+ 
 
 

,=

ψ
Vλ E C,( )
E+ zλ–

----------------------ψλ ,
λ C, L R,=

∑=

ψ j( ) 2

j 1 2,=∑

Fig. 5. The probabilities for the electron to be in the wire
(dashed curve) and in the right and left QD (full curve) as a
function of the wire’s energy. ε1, 2 = ±1/2, v  = 1/2, E = 0.02,
u = 0.2.
and in the right one . For the case of
time reversal symmetry (both leads are equivalent),
these probabilities coincide (Fig. 5, full curve). The
probability for the electron to be in the wire is given by
|ψ(3)|2 (Fig. 5, dashed curve). A localization of the elec-
tron in the wire takes place when εw = εb.

The physical reason of the localization of electrons
inside the wire in the one-channel case is flux conserva-
tion expressed by the unitarity of the S-matrix. A full
localization takes place only when the two single QDs
are identical and both leads are equivalent. The effect
exists also when the two single dots are slightly differ-
ent from one another and (or) time reversal symmetry
is broken. It is, however, somewhat reduced in such a
case. These features are similar to those observed in
laser-induced continuum structures in atoms, which are
called population trapping [3]. The mechanism by
which the resonance states with vanishing width are
created is, however, different in the two cases.

The electron localization in the transmission
through a system with two identical QDs can be seen
also in the generalized Fabry–Perot approach [11]. We
ignore the evanescent modes in the wire, the total trans-
mission amplitude in the single-channel case can be
easily calculated as a geometrical sum over all the indi-
vidual transmitted and reflected elementary processes.
This gives the simple expression

(15)

for the transmission probability, where t1 and r1 are the
complex amplitudes of the transmission and reflection
for a single quantum billiard, and q is the wave number
of the connecting waveguide related to the energy of the
single-channel transmission by E = q2 + π2/W2. The
bound states are defined by the zeroes of the denomina-
tor in T, i.e., by sin(φ(E) + q(E)L) = 0, where φ(E) =
arg(r1). One obtains, therefore, a quantization rule for
the particle trapped in the one-dimensional box of
length L. In fact, Fig. 3 shows the first two of these
bound states in the wire. However, exponentially small
evanescent modes in the internal wire slightly violate
formula (15).

In conclusion, controlling the eigenenergies of the
wire that connects the two single QDs of a double QD,
by means of the gate voltage, the widths of the reso-
nance states of the double QD system and the transmis-
sion through this system can be manipulated. When the
width of one of the resonance states vanishes, the elec-
trons are trapped in the wire and the transmission is
zero. This effect might be used for quantum informa-
tion storage.
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