= ФИЗИКА =

УДК 535.2

ЭЛЕКТРОМАГНИТНО-ИНДУЦИРОВАННАЯ ПРОЗРАЧНОСТЬ И УПРАВЛЕНИЕ ВРЕМЕННОЙ ФОРМОЙ ЛАЗЕРНЫХ ИМПУЛЬСОВ

© 2005 г. В. Г. Архипкин, И. В. Тимофеев

Представлено академиком В.Ф. Шабановым 26.10.2004 г.

Поступило 26.10.2004 г.

1. Развитие новых методов управления оптическими свойствами вещества и временной формой лазерных импульсов является важной физической проблемой, имеющей фундаментальное и прикладное значение, например, в спектроскопии быстро протекающих процессов, для квантового контроля атомов и молекул, для оптоэлектроники и оптической связи и т.д. Для этих целей интересные и даже уникальные возможности представляет явление электромагнитно-индуцированной прозрачности (ЭИП) [1–3]. Хотя большинство исследований ЭИП выполнено в атомарных средах (см., обзоры [3–6] и ссылки к ним), эти идеи получили развитие и в твердотельных системах [7].

ЭИП – это квантовое интерференционное явление, возникающее при взаимодействии двух лазерных полей с трехуровневой квантовой системой. Оно состоит в том, что одно поле, которое называют управляющим (или контролирующим), модифицирует оптические свойства среды на частоте другого (пробного) поля. В общем случае пробное поле может быть сравнимо по интенсивности с управляющим. В условиях ЭИП вещество оказывается в когерентном состоянии с необычными свойствами [3-6]. Например, оптически плотная среда становится прозрачной для пробного поля в области однофотонного резонанса, а дисперсия показателя преломления сильно увеличивается. В таких условиях оптические импульсы могут распространяться на расстояние, значительно превышающее резонансную длину однофотонного поглощения (см., например, [8, 9]). Контролирующее поле может управлять групповой скоростью распространения пробного импульса, уменьшая ее вплоть до нуля, или даже сделать отрицательной [5]. При групповых скоростях порядка 1–100 м/с происходит пространственное сжатие пробного импульса, в результате чего он полностью локализуется в среде. Это явление

Институт физики им. Л.В. Киренского

позволяет записывать, хранить и считывать информацию об оптических импульсах [5, 6, 10] и открывает новые подходы к созданию квантовой памяти [6].

ЭИП используется для управления характеристиками оптического излучения, например, для генерации фемтосекундных и субфемтосекундных импульсов (см., например, [11]). В настоящее время методы управления фемтосекундными импульсами достаточно хорошо развиты и применяются в спектроскопии, микроскопии и оптическом контроле [12]. Для пико- и наносекундных импульсов дела обстоят не так хорошо.

В данной работе обсуждается новая возможность управлять формой лазерных импульсов и их длительностью, используя явление ЭИП. Основную идею рассмотрим на примере временного сжатия импульсов. Пусть пробный импульс распространяется в трехуровневой среде в присутствии управляющего импульса, взаимодействующего со смежным переходом (рис. 1). Огибающая последнего изменяется во времени по некоторому закону. Так как при ЭИП скорость распространения пробного импульса зависит от интенсивности управляющего импульса в данный момент времени, то разные участки пробного импульса движутся с различной скоростью, величиной которой можно управлять изменением формы управляющего импульса. Например, огибающая управляющего импульса на границе среды может быть выбрана такой, чтобы скорость распространения в среде заднего фронта пробного импульса была больше, чем переднего. В результате импульс будет сжиматься во времени. Варьируя форму управляющего импульса, можно получать огибающую пробного импульса различной формы.

Таким образом, предлагается эффективный способ управления формой лазерных импульсов и их длительностью с помощью дополнительного управляющего излучения, взаимодействующего со смежным переходом в условиях ЭИП.

2. Рассмотрим взаимодействие двух оптических импульсов с огибающими $E_p(t)$ и $E_c(t)$ с трехуровневой средой (рис. 1). Импульсы распростра-

Сибирского отделения Российской Академии наук, Красноярск

Рис. 1. Энергетическая схема трехуровневого атома, резонансно взаимодействующего с пробным ω_p и управляющим ω_c лазерными импульсами.

няются в одном направлении вдоль оси *z*. Пробный импульс E_p резонансно взаимодействует с переходом между основным $|0\rangle$ и возбужденным состояниеми $|1\rangle$, а управляющий импульс E_c – с уровнями $|2\rangle$ и $|1\rangle$. Переход $|2\rangle$ – $|0\rangle$ дипольно запрещен. Будем предполагать, что длительности импульсов T_p и T_c много меньше всех времен релаксации атома и $T_p < T_c$.

Эволюция пробного и управляющего импульсов описывается стандартной самосогласованной системой уравнений Максвелла–Шредингера, которая в системе координат с локальным време-

Hem
$$\tau = t - \frac{2}{c}$$
 имеет вид
 $\frac{\partial a_0}{\partial \tau} = iG_p^* a_1, \quad \frac{\partial a_2}{\partial \tau} = iG_c^* a_1,$
 $\frac{\partial a_1}{\partial \tau} = i(G_p a_0 + G_c a_2),$
(1)

$$\frac{\partial G_p}{\partial z} = iK_p a_1 a_0^*, \quad \frac{\partial G_c}{\partial z} = iK_c a_1 a_2^*, \tag{2}$$

где $a_{0,1,2}$ – амплитуды вероятностей состояний атома; $2G_p = \frac{d_{10}E_p}{\hbar}$, $2G_c = \frac{d_{12}E_c}{\hbar}$ – частоты Раби; $K_p = \pi \omega_p |d_{10}|^2 \frac{N}{\hbar c}$, $K_c = \pi \omega_c |d_{12}|^2 \frac{N}{\hbar c}$ – коэффициенты распространения; d_{ij} – матричные элементы электрического дипольного момента на переходе $|i\rangle - |j\rangle$ (i, j = 0, 1, 2); $\omega_{p,c}$ и $k_{p,c}$ – несущие частоты и вол-

мов; *с* – скорость света в вакууме. Уравнения для амплитуд вероятностей записаны для нулевых однофотонных отстроек $\omega_{10} - \omega_p = \omega_{12} - \omega_c = 0$. Считаем, что все атомы в начальный момент времени находятся в основном состо-

новые числа (в вакууме); N – концентрация ато-

янии $|0\rangle$, т.е. a_0 (-∞, z) = 1, a_1 (-∞, z) = a_2 (-∞, z) = 0, а поля $E_{p,c}(t)$ задаются на границе среды z = 0: $E_{p,c}(t, z = 0) = E_{0p,0c}(t)$.

Уравнения (1) и (2) должны решаться самосогласованно. В общем случае это можно сделать численными методами. Существенные упрощения достигаются в адиабатическом приближении [13]. В этом случае решение системы можно представить в виде (см., например, [8, 9])

$$a_0 = \cos[\theta(\tau)], \quad a_2 = -\sin[\theta(\tau)],$$

$$a_1 = -\frac{G_c \dot{G}_p - G_p \dot{G}_c}{G^3} = i \frac{\dot{\theta}}{G}.$$
 (3)

Угол смещения θ определяется как tg $\theta = \frac{G_p}{G_c}$; $G(\tau) = \sqrt{|G_p(\tau)|^2 + |G_c(\tau)|^2}$ – обобщенная частота Раби. Точка сверху означает дифференцирование

Раби. Точка сверху означает дифференцирование по локальному времени τ : $\dot{\theta} = \frac{\partial \theta}{\partial \tau}$ и т.д. В общем случае огибающие G_p и G_c зависят от координаты z.

Критерий применимости адиабатического приближения можно записать в виде

$$\frac{\dot{G}_c G_p - \dot{G}_p G_c}{G^3} \leqslant 1.$$
(4)

Детальный анализ условия адиабатичности с учетом распространения импульсов проведен в работе [9].

Из (3) и (4) следует, что в адиабатическом пределе населенность промежуточного состояния близка к нулю в процессе взаимодействия ($|a_1| \ll 1$). Это означает, что поглощение на переходах $|0\rangle$ – $|1\rangle$ и $|2\rangle$ – $|1\rangle$ мало, поэтому импульсы распространяются на расстояние, значительно превышающее длину резонансного линейного поглощения пробного излучения. Это явление также интерпретируют в терминах когерентного пленения населенностей (КПН): атомы возбуждаются в когерентную суперпозицию нижних состояний $|0\rangle$ и $|2\rangle$, которую называют КПН-состоянием или темным состоянием [14]. В этом состоянии атомы перестают взаимодействовать с оптическими импульсами. В результате возникает явление ЭИП.

Используя (3), уравнения (2) можно представить в следующем виде:

$$\frac{\partial G_p}{\partial z} = -K_p \frac{\dot{\theta}}{G} \cos \theta, \quad \frac{\partial G_c}{\partial z} = K_c \frac{\dot{\theta}}{G} \sin \theta. \tag{5}$$

В общем случае система уравнений (5) может быть решена только численно.

ДОКЛАДЫ АКАДЕМИИ НАУК том 401 № 4 2005

1

Рис. 2. Временной профиль нормированных частот Раби пробного $g_p = \frac{G_p(\tau)}{G_{\text{max}}}$ (G_{max} – максимальное значение частоты

эффективной частоты Раби) и управляющего $g_c = \frac{G_c(\tau)}{G_{max}}$ (штриховая кривая) импульсов при различных значениях координаты *z* внутри среды: а – на входе в среду z = 0, $G_p(\tau = 0, z = 0)$ $T_p = 20$; б – на некотором расстоянии *z*; в – на выходе из среды, z = L.

При $K_p = K_c$ из (5) нетрудно показать, что обобщенная частота Раби *G* не зависит от координаты *z*:

$$G(\tau, z) = G(\tau, z = 0) =$$

= $G_0(\tau) = \sqrt{|G_{0p}(\tau)|^2 + |G_{0c}(\tau)|^2}.$ (6)

Это означает, что любые изменения в пробном поле компенсируются соответствующими изменениями в управляющем. В этом случае система уравнений (5) сводится к одному уравнению для $\theta(\tau, z)$:

$$\frac{\partial \theta}{\partial \tau} + \frac{G_0^2(\tau)}{K} \frac{\partial \theta}{\partial z} = 0.$$
 (7)

Решение (7) можно записать в виде

$$\theta(\tau, z) = \theta_0(Z^{-1}(Z(\tau) - z)) = 0,$$
 (8)

где $Z(\tau) = K^{-1} \int_{-\infty}^{\infty} G_0^2(\tau', 0) d\tau', Z^{-1}$ – обратная функция

κ Z, $θ_0 = θ(τ, z = 0)$.

Зная $\theta(\tau, z)$, можно найти

$$G_{p} = G_{0}(\tau) \sin[\theta(\tau, z)],$$

$$G_{c} = G_{0}(\tau) \cos[\theta(\tau, z)].$$
(9)

Анализ уравнений (9) (с учетом (8)) показывает, что эволюция пробного импульса зависит от временной формы управляющего импульса на границе среды z = 0. На рис. 2 приведена временная эволюция частоты Раби пробного и управляющего импульсов при различных значениях координаты z, описываемая решением (9). Форма импульсов на границе среды z = 0 показана на

ДОКЛАДЫ АКАДЕМИИ НАУК том 401 № 4 2005

рис. 2а. Видно, что в указанных условиях происходит временное сжатие пробного импульса. На выходе из среды длительность пробного импульса существенно уменьшается по сравнению с входной. Физически это можно связать с тем, что в указанных условиях скорость распространения в среде заднего фронта пробного импульса больше, чем переднего. Ограничения на предел сжатия обусловлены конечной шириной окна прозрачности, в котором пробный импульс может распространяться без поглощения, а также условиями адиабатичности.

Картина пространственно-временной эволюции импульсов похожа на распространение адиабатонов [8], но в нашем случае длительность и форма импульсов изменяются по мере распространения. При этом огибающие обоих импульсов изменяются согласованно. Поэтому их можно назвать квазиадиабатонами. Таким образом, можно говорить о когерентном контроле формой пробного импульса управляющим импульсом в условиях ЭИП.

Отметим, что эффект сжатия не зависит от деталей временной структуры управляющего импульса. Достаточно, чтобы имелся участок, где амплитуда увеличивается (адиабатически). Эффект сужения возникает и при линейном законе изменения огибающей управляющего импульса. Если амплитуда управляющего импульса становится постоянной (по времени), то на выходе будем иметь адиабатоны, как в [8].

Полученные результаты хорошо совпадают с результатами численного решения самосогласованной системы уравнений Максвелла–Шредингера (1), (2) в области параметров, где выполняются условия адиабатичности. Сжатие пробного импульса, продемонстрированное выше, является частным случаем когерентного контроля формы пробного импульса с использованием ЭИП. За счет выбора временной формы управляющего импульса можно, например, уширить импульс, придав ему форму с плоской вершиной, или сделать двугорбым и т.д.

3. Таким образом, теоретически показано, как можно управлять огибающей и длительностью пробного импульса, используя явление ЭИП. Данный способ применим для управления импульсами в широком диапазоне длительностей и в широком спектральном диапазоне длин волн.

Предлагаемый способ когерентного управления временной формой лазерных импульсов может оказаться полезным в оптических коммуникационных технологиях, для обработки оптических сигналов, а также в нелинейной оптике.

Работа поддержана РФФИ (грант 02–02–16325) и Красноярским краевым фондом науки (12F0042c).

СПИСОК ЛИТЕРАТУРЫ

1. Раутиан С.Г., Смирнов Г.И., Шалагин А.М. Нелинейные резонансы в спектрах атомов и молекул. Новосибирск: Наука, 1979. 310 с.

- 2. Попов А.К. Введение в нелинейную спектроскопию. Новосибирск: Наука, 1983. 274 с.
- 3. Harris S.E. // Phys. Today. 1997. V. 50. № 7. P. 36-42.
- 4. *Lukin M.D., Hemmer P.H., Scully M.O. //* Adv. Atom. Mol. and Opt. Phys. 2000. V. 42. P. 347–385.
- Matsko A. B., Kocharovskaya O., Rostovtsev Yu. et al. // Adv. Atom. Mol. and Opt. Phys. 2001. V. 46. P. 191– 242.
- 6. Lukin M.D. // Rev. Mod. Phys. 2003. V. 75. P. 457-472.
- Kuznetsova E., Kocharovskaya O., Hemmer P. et al. // Phys. Rev. A. 2002. V. 66. P. 063802.
- Grobe R., Hioe F. T., Eberly J. // Phys. Rev. Lett. 1994. V. 73. P. 3183–3186.
- Arkhipkin V.G., Timofeev I.V. // Phys. Rev. A. 2001. V. 64. P. 051811.
- Архипкин В.Г., Тимофеев И.В. // Письма в ЖЭТФ. 2002. V. 76. В. 1. С. 74–78.
- 11. Sokolov A.V., Harris S.E. // J. Opt. B: Quantum Semiclass. Opt. 2003. V. 5. P. R1-R26.
- Kawashima H., Wefers M.M., Nelson K.A. // Annu. Rev. Phys. Chem. 1995. V. 46. P. 627–656.
- 13. *Vitanov N.V., Fleischhauer M., Shore B.W. et al.* // Adv. Atom. Mol. and Opt. Phys. 2001. V. 46. P. 55–189.
- 14. Arimondo E. // Progress Opt. 1996. V. 35. P. 257.