
            

OPEN ACCESS

Persistent current of atoms in a ring optical lattice
To cite this article: Andrey R Kolovsky 2006 New J. Phys. 8 197

 

View the article online for updates and enhancements.

Related content
Conductivity with cold atoms in
optical lattices
A R Kolovsky

-

Superfluidity of Bose–Einstein condensate
in an optical lattice: Landau–Zener
tunnellingand dynamical instability
Biao Wu and Qian Niu

-

Nonlinear Landau–Zener tunneling in
quantum phase space
F Trimborn, D Witthaut, V Kegel et al.

-

Recent citations
Influence of quantum fluctuations on the
superfluid critical velocity of a one-
dimensional Bose gas
Chao Feng and Matthew J. Davis

-

Exact results for persistent currents of two
bosons in a ring lattice
Juan Polo et al

-

Blocked populations in ring-shaped optical
lattices
M. Nigro et al

-

This content was downloaded from IP address 84.237.90.20 on 09/04/2021 at 13:53

https://doi.org/10.1088/1367-2630/8/9/197
http://iopscience.iop.org/article/10.1088/1742-5468/2009/02/P02018
http://iopscience.iop.org/article/10.1088/1742-5468/2009/02/P02018
http://iopscience.iop.org/article/10.1088/1367-2630/5/1/104
http://iopscience.iop.org/article/10.1088/1367-2630/5/1/104
http://iopscience.iop.org/article/10.1088/1367-2630/5/1/104
http://iopscience.iop.org/article/10.1088/1367-2630/12/5/053010
http://iopscience.iop.org/article/10.1088/1367-2630/12/5/053010
http://dx.doi.org/10.1140/epjd/e2020-100532-9
http://dx.doi.org/10.1140/epjd/e2020-100532-9
http://dx.doi.org/10.1140/epjd/e2020-100532-9
http://dx.doi.org/10.1103/PhysRevA.101.043418
http://dx.doi.org/10.1103/PhysRevA.101.043418
http://dx.doi.org/10.1103/PhysRevA.98.063622
http://dx.doi.org/10.1103/PhysRevA.98.063622


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Persistent current of atoms in a ring optical lattice

Andrey R Kolovsky1,2

1 Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany
2 Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia
E-mail: kolovsky@mpipks-dresden.mpg.de

New Journal of Physics 8 (2006) 197
Received 20 June 2006
Published 20 September 2006
Online at http://www.njp.org/
doi:10.1088/1367-2630/8/9/197

Abstract. We consider a small ensemble of Bose atoms in a ring optical
lattice with weak disorder. The atoms are assumed to be initially prepared in
a superfluid state with nonzero quasimomentum and, hence, may carry matter
current. It is found that the atomic current persists in time for a low value of the
quasimomentum but decays exponentially for a high (around one quarter of the
Brillouin zone) quasimomentum. The explanation is given in terms of low- and
high-energy spectra of the Bose–Hubbard model, which we describe using the
Bogoliubov and random matrix theories, respectively.
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1. Introduction

Ultracold atoms in optical lattices constitute an intense research activity both in experimental and
theoretical physics. Up to now this system has mostly been used for modelling the fundamental
Hamiltonians of solid state theory (see, [1, 2], for example) where the number of particles is
macroscopically large. However, the recent progress with manipulating a countable number of
atoms [3, 4] makes it possible to build a system of arbitrary size, ranging from microscopic to
macroscopic. In this border region between microscopic and macroscopic, one has to deal with
a finite number of atoms which, on the one hand, is too large to use the single-particle approach
but, on the other hand, is too small to justify the thermodynamic limit. In the present study, we
theoretically analyse one of these problem related to superfluidity of a few (N ∼ 10) Bose atoms
in a ring optical lattice [5] with a few (L ∼ 10) sites.

It should be stressed in the very beginning that, currently, there are two different definitions
of superfluidity in the physics literature. One definition is based on the system’s response to
a phase twist. With respect to Bose atoms in a lattice this approach is discussed, in particular,
in [6], and a method of how one can realize the twisted boundary conditions in a laboratory
experiment is suggested in [5]. The other definition originates in the Landau criterion of super-
fluidity and involves a response of a superfluid flow to ‘wall roughness’[7, 8]. In this study, we try
to reconcile both approaches. Specifically, we address the following problem. Assume that, we
have N Bose atoms in a ring lattice with L sites in a superfluid state with given quasimomentum
κ = 2πk/L:

|κ〉 =
(

1√
L

∑
l

â
†
l eiκl

)N

|0〉. (1)

We are interested in the time evolution of this state (which we shall also refer to as the supercurrent
state) in the presence of a weak scattering potential and atom–atom interactions.

We note that for a Bose–Einstein condensate (BEC) of atoms (N � 1) the problem of
superfluid atomic current has been considered in a large number of papers (see [9]–[17], to
cite few of them). The starting point of all these studies is the mean-field approach, which is
sometimes rectified by taking into account the quantum fluctuations [15]–[17]. The mean-field
theory predicts a destruction of the supercurrent as soon as the quasimomentum exceeds one
quarter of the reciprocal lattice constant (κ > π/2 in the notations used). In order to justify the
mean-field approach in a 1D lattice the mean number of atoms per one site should be much larger
than unity. As stated above, in the present study, we focus on the opposite limit N/L ∼ 1, where
the mean-field approach is not applicable. For this reason, we treat cold atoms in an optical lattice
from a different viewpoint, in a sense closer to quantum optics than to condensed matter physics.

The paper essentially consists of two parts; in the first part (section 2), after a brief
preliminary analysis, we report the results of numerical simulations of the system dynamics,
and in the second part (sections 3 and 4), we explain the observed regimes in terms of the energy
spectrum of the system. The main results are summarized in the concluding section 5.

2. Supercurrent dynamics

Before proceeding with numerical simulations, we shall briefly discuss possible regimes for the
atomic current.
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2.1. Preliminary analysis

Let us first consider the single-particle problem. In the tight-binding approximation the
Hamiltonian of the system reads

Ĥ = −J

2

∑
l

(|l + 1〉〈l| + h.c.) +
∑

l

Vl|l〉〈l|, (2)

where |l〉 are the Wannier functions, J the hopping matrix element, and Vl the random scattering
potential. In what follows, to be concrete, we shall consider 0 � Vl � ε with ε � J . The operator
V̂ = ∑

l Vl|l〉〈l| couples the degenerate states with opposite quasimomentum, resulting in new
eigenstates |κc,s〉 = (|κ〉 ± | − κ〉)/√2 with an energy splitting |Ec − Es| = 2|〈κ|V̂ | − κ〉| =
2|V(2k)|, where

V(k) = 1

L

∑
l

Vl exp

(
2πk

L
l

)
∼ ε

L
,

is the Fourier transform of Vl. Thus, in the course of time, an atom in a ring will periodically
change its momentum to the opposite one with the frequency �ε ∼ ε/h̄L. It is of worth stressing
that this periodic dynamics is exclusively due to the finiteness of L and the assumed condition
ε � J , which means that V̂ couples only the degenerate states of the unperturbed system.3

Next, we consider the multi-particle case,

Ĥ = −J

2

∑
l

(â
†
l+1âl + h.c.) +

U

2

∑
l

n̂l(n̂l − 1) +
∑

l

Vln̂l, (3)

where â
†
l and âl are the bosonic creation and annihilation operator, n̂l = â

†
l âl, and U is the on-site

interaction energy. Using the canonical transformation, b̂k = (1/
√

L)
∑

l exp(i2πkl/L)âl, it is
convenient to present the Hamiltonian (3) in the form

Ĥ = −J
∑

k

cos

(
2πk

L

)
b̂

†
kb̂k +

U

2L

∑
k1,k2,k3,k4

b̂
†
k1
b̂

†
k2
b̂k3 b̂k4 δ̃(k1 + k2 − k3 − k4)

+
∑
k1,k2

V(k1 − k2)b̂
†
k1
b̂k2, (4)

where δ̃(k) = 1 if k is a multiple of L, and δ̃(k) = 0, otherwise. For U = 0 and ε = 0
the multi-particle eigenstates of the system (4) are the quasimomentum Fock states
|n〉 = |n0, n1, . . . , nL−1〉, where

∑
k nk = N. Our state of interest corresponds to |κ〉 =

| . . . , 0, Nk, 0, . . .〉, where all atoms have one and the same quasimomentum. Similar to the
single-particle case, the random potential couples this state to the supercurrent state with
the opposite quasimomentum |−κ〉 = |. . . , 0, Nk′, 0, . . .〉, k′ = modL(−k). However, now the
coupling is indirect and involves the intermediate states |κ(m)〉 = |. . . , (N − m)k, . . . , mk′, . . .〉,
as it immediately follows from the explicit form of the scattering potential in the momentum

3 In terms of Anderson’s localization theory, the above conditions mean that the Anderson localization length is
much larger than the system size.
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representation. Thus the time evolution of the state |κ〉 is defined by the following (N + 1) ×
(N + 1) matrix,

Am,m′ = Emδm,m′ +
√

(N − m)(m + 1)
[
V(2k)δm+1,m′ + V ∗(2k)δm,m′+1

]
, (5)

where Em = Eκ ≡ −JN cos κ are the degenerate energies of the states |κ(m)〉 and the next terms
the transition matrix elements 〈κ(m)|V̂ |κ(m′)〉. The spectrum of the matrix (5) is equidistant with
the level spacing 2|V(2k)|. Thus we have reproduced the result of the single-particle analysis,
where the time evolution of the system is periodic with the frequency �ε ∼ ε/h̄L.

Now we switch on the interaction. Then the intermediate states |κ(m)〉 acquire energy
shifts Em = Em(U), which appear to be m-dependent. Using the first order perturbation theory,
we obtain

Em = Eκ +
U

2L
〈κ(m)|

∑
b̂

†
k1
b̂

†
k2
b̂k3 b̂k4 δ̃(k1 + k2 − k3 − k4)|κ(m)〉

= Eκ +
U

2L
[(N − m)(N − m − 1) + m(m − 1) + 4(N − m)m]

≈ Eκ +
UN2

2L
+

U

L
m(N − m). (6)

Due to the mismatch of the energy levels Em, the supercurrent states |κ〉 ≡ |κ(0)〉 and |−κ〉 ≡
|κ(N)〉 become effectively decoupled and, hence, the supercurrent should persist in time.

At this point, we would like to note the analogy of the problem discussed with that for a
BEC in double well potential.4 Drawing this analogy further, we can estimate the minimal Umin

required for stabilization of the supercurrent as

Umin ≈ 8ε/N. (7)

For the sake of completeness, we present a derivation of the estimate (7) in the next subsection
(which can be safely skipped if a reader is familiar with the subject).

2.2. Semiclassical approach

The standard method of treating the system ((5) and (6)) consists of mapping it on to an effective
classical system (terms proportional to the identity matrix are omitted),

Heff = gI(1 − I) + 2|V|
√

I(1 − I) cos θ, g = UN/L, (8)

followed by a semiclassical quantization, where 1/N plays the role of Planck’s constant. The
phase portrait of the system (8) is shown in figure 1 for g/|V | = 1 and g/|V | = 10. It is seen
that when g is increased the phase portrait becomes similar to that of classical pendulum, with
a separatrix separating the librational and rotational regimes. The maximal and minimal values
of the classical action I along the separatrix are given by I∗ ≈ 1/2 ± √|V |/2g. The quantum
states, associated with I, are decoupled only if they lie above the separatrix. Then, by requiring
|I∗ − 1/2| � 1/2 and noting that |V | ∼ ε/L, we come to the estimate (7).

4 See, for example, chapter VII in review [18].
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Figure 1. Phase portrait of the effective system (8) for g/|V| = 1 (left panel) and
g/|V| = 10 (right panel).

Needless to say, the semiclassical approach described above requires 1/N � 1 and is not
accurate for small N. Nevertheless, even for N ∼ 10 the spectrum of the matrix A can be well
understood in terms of the effective system (8). For the purpose of future reference, the right
panel in figure 2 shows the numerical solution of the matrix eigenvalue problem for N = 7,
L = 9, and |V| = 0.0168. In particular, at U = 0.2J one can identify the first four top levels
with the phase trajectories below the separatrix, the next two levels with trajectories around the
separatrix, and the last two almost degenerate levels with trajectories well above the separatrix.

2.3. Numerical results

The above conclusion about the persistent current relies on the applicability of a perturbative
approach. Formally this means that the supercurrent state |κ〉, as well as the intermediate states
|κ(m)〉, have to be approximate eigenstates of the system at ε = 0. This imposes the upper
boundary Umax on the interaction constant, which appears to depend on the quasimomentum κ.
Indeed, the state |κ〉 with the energy Eκ ≈ −JN cos κ is an approximate eigenstate of the system
only if U is smaller than the characteristic energy gap separating it from the other energy states,
coupled to |κ〉 by interaction. As the first guess one can set this gap to the mean level spacing,
given by the inverse density of state �E = 1/f(E). It is easy to show that for U/J � 1 the density
of states of (3) is given by the Gaussian distribution (see figure 4 below)

f(E) ≈ N√
2πσ

exp

[
(E − Ē)2

2σ2

]
, (9)
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Figure 2. Spectrum of the matrix ((5) and (6)) as a function of the interaction
constant U. (The energy is measured in units of J , E0 = −JN + UN2/2L.)
Parameters are N = 7, L = 9, κ = 2π/L, and |V(2)| = 0 (left panel) and |V(2)| =
0.0168 (right panel).

where N = (N + M − 1)!/N!(M − 1)! is the dimension of the Hilbert space, σ ∼ J
√

N and
Ē ∼ UN2/L + εN/2. Thus the characteristic gap for a supercurrent state, which belongs to the
central part of the spectrum (i.e., for κ ∼ π/2), is essentially smaller than that for a supercurrent
state with low quasimomentum κ � π/2. As a consequence, Umax for the supercurrent state with
κ ∼ π/2 may be smaller than Umin. In other words, the perturbative approach of subsection 2.1
(where we used first order perturbation theory to find corrections to the eigenenergies of states
|κ(m)〉) breaks down before the stabilization of the supercurrent is achieved.

Figure 3 compares the dynamics of N = 7 atoms in a lattice with L = 9 sites,
which were initially prepared in the supercurrent state (1) with high, κ = 6π/L, and
low, κ = 2π/L, quasimomentum. The normalized mean momentum of the atoms, p(t) =
N−1 Im[〈	(t)| ∑l â

†
l+1âl|	(t)〉], is depicted. It is seen in the upper panel of figure 3 that in

the former case of high quasimomentum the oscillatory behaviour of p(t) changes to irreversible
decay as the interaction constant is varied from U = 0.02 to U = 0.2. (From now on, we set
J = 1, i.e., energy is measured in the units of J and time in the units T = 2πh̄/J .) Further
increase of the interaction constant (results are not shown) is reflected in even faster decay of
p(t). This should be contrasted with the case of low quasimomentum (lower panel), where
the current oscillations at U = 0.02 change to persistent current at U = 0.2. Here further
increase of U leaves the system dynamics qualitatively unchanged at least till U = 1. The
displayed numerical results suggest that the perturbative approach of subsection 2.1 works
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p
/p

0
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–1

0
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Figure 3. The mean momentum of N = 7 atoms in a lattice with L = 9 sites. The
magnitude of the scattering potential ε = 0.2. The interaction constant U = 0.02
(dash-dotted lines), U = 0.1 (dashed lines) and U = 0.2 (solid lines). The atoms
are initially prepared in the supercurrent state (1) with κ = 6π/L (upper panel)
and κ = 2π/L (lower panel).

for κ = 2π/L but does not work for κ > 2π/L. We shall come back to this point later on in
subsection 4.3.

It is worth stressing that through the paper, we consider a single realization for the random
potential (i.e., no average over disorder). Specifically to the considered lattice of L = 9 sites,
the random entries are Vl = ε(0.80, 0.59, 0.06, 0.18, 0.97, 0.31, 0.67, 0.78, 0.49). The Fourier
transform of this sequence gives |V(2k)| = 0.084ε and |V(2k)| = 0.144ε for k = 1 and k = 3,
respectively.

3. High-energy spectrum

To get a better insight into the physics of the discussed phenomena, we shall discuss the results
displayed in figure 3 in terms of the energy spectrum of the system (3). We begin with the case
of a high quasimomentum which, as mentioned above, refers to the central part of the spectrum.

3.1. Spectral statistics

We have found that in the case of high initial quasimomentum a transition from oscillatory
dynamics to irreversible decay is associated with the transition to chaos in the Bose–Hubbard
model. Following [19], we shall monitor this transition by analysing the distribution of distances
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Figure 4. (a, b) Density of states of N = 7 atoms in a lattice with L = 9 sites for
the interaction constant U = 0.02 and U = 0.2, respectively. The magnitude of
the scattering potential ε = 0.2. (c) Integrated level spacing distributions for the
central part of the spectrum.

between the neighbouring levels, normalized to the mean level spacing: s = (En+1 − En)/�E =
(En+1 − En)f [(En+1 + En)/2]. It should be stressed that the presence of random potential in the
Hamiltonian (3) alone does not yet induce chaos in the system. The only consequence of a weak
disorder (relevant to the spectral statistics) is that it breaks the translational symmetry and, hence,
we need not worry about decomposition of the energy spectrum into the independent subsets
(labelled, in the absence of a random potential, by total quasimomentum of the atoms [19]).

The results of the statistical analysis of the high-energy spectrum are presented in figure 4.
The dash-dotted and dashed lines in panel (c) correspond to the integrated distribution, I(s) =∫ s

0 P(s′) ds′, for the Poisson statistics,

P(s) = exp(−s), (10)

which is typical for a generic integrable system, and the Wigner–Dyson statistics,

P(s) = π

2
s exp

(
−π

4
s2

)
, (11)

typical for non-integrable systems. These distributions reflect the different character of the
parametric dependence of the energy levels En = En(λ) on some parameter in the Hamiltonian
(λ = U in our case). Namely, in the integrable case the energy levels may cross and, hence, one
finds an arbitrary small s. On the contrary, if the system is non-integrable, the energy levels show
avoided crossings and the probability of finding small s tends to zero.
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Panel (a) in figure 4 shows the density of states f(E) for U = 0.02, where only the data from
the central part of the spectrum (marked by the inverse parabola) were used for the statistical
analysis. It is seen in the lower panel that for U = 0.02 the level spacing distribution follows the
Poisson statistics. Thus for this value of the interaction constant the system should be classified as
integrable, which is consistent with the periodic dynamics of the mean momentum in figure 3(a).
Panel (b) in figure 4 shows the density of states for U = 0.2. Apart from an uniform shift of the
spectrum to positive values, no qualitative change in f(E) is observed. However, we do observe
a qualitative change in the level spacing distribution. Now it reliably follows the Wigner–Dyson
statistics which, as mentioned above, is a hallmark of quantum chaos.

3.2. Local density of states

The spectral statistics is only one (and, in fact, a rather poor) characteristic of the system. In
particular, the level spacing distribution remains unchanged (Wigner–Dyson) in the interval
0.2 � U � 1, although the decay rate of the supercurrent changes with U. One gets more
information about the system by studying its eigenfunctions. To this end we introduce a quantity
R(m, n),

R(m, n) = |〈	m(U ′)|	n(U)〉|2, (12)

closely related to the so-called local density of states.5 In equation (12), |	n(U)〉 are the
eigenfunctions of the Hamiltonian (3) calculated for a given U and ordered according to their
energies. In what follows we shall fix U ′ = 0.02, while U will be scanned in the interval
0.2 � U � 1. Since for U = 0.02 the system is integrable, the matrix (12) can be alternatively
viewed as the matrix of the expansion coefficients of the chaotic states |	n(U)〉 over ‘regular
basis’ |m〉 = |	m(U = 0.02)〉.

The characteristic structure of the matrix (12) is shown in figure 5 for U = 0.2. It is seen
that that R is a banded matrix with strongly fluctuating matrix elements. The mean values of the
elements across the main diagonal,

R̄(�m) = 1

M

M/2∑
m=−M/2

R(m, m + �m),
∑
�m

R̄(�m) = 1, (13)

are shown in figure 6 on linear and logarithmic scales. (Here, as in the spectrum analysis, we
consider an energy window of the order of unity in the central part of the spectrum.) It is seen
that R̄(�m) converges to the Lorentzian,6

R̄(�m) = �/2π

(�m)2 + �2/4
. (14)

We note, in passing, that a similar result is reported in the recent paper [21] devoted to the spectral
properties of the three-site Bose–Hubbard model.

5 The local density of states is defined as R(m, E) = ∑
n R(m, n)δ(E − En).

6 The distribution (14) is typical for the banded random matrices [20]. It is interesting to note in this connection
that for the N/L ∼ 1 neither matrix of the Hamiltonian (3) nor that of the Hamiltonian (4) are banded. It is an open
problem in the random matrix theory to extend the results of [20] to the present case of very sparse but not banded
matrices.
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n

m

Figure 5. Grey-scale image of the matrix (12). (The system parameters are the
same as in figures 3 and 4.)

The distribution (14), also known as the Breit–Wigner formula, implies the exponential
decay of the supercurrent state. Indeed, considering the overlap integral 〈κ|κ(t)〉, one has

〈κ| exp

(
− i

h̄
Ĥ t

)
|κ〉 =

∑
m,m′,n

〈κ|m〉〈m|	n〉 exp

(
− i

h̄
Ent

)
〈	n|m′〉〈m′|κ〉

≈ 1

N + 1

∑
m

R(m, n) exp

(
− i

h̄
Ent

)
∼

∑
�m

R̄(�m) exp

(
− i�Et

h̄
�m

)
,

where we substitute the exact energy levels En by their approximate positions, En ≈ Eκ +
�E�m. (This approximation obviously holds till time t h̄∼ h̄/�E = h̄f(Ek),which increases
exponentially with the system size.) Substituting here R̄(�m) from equation (14) we have
〈κ|κ(t)〉 = exp(−��Et/h̄). We found that the width � grows approximately quadratically with
U in the interval 0.2 � U � 1.

4. Low-energy spectrum

We turn to the case of low quasimomentum. For small κ the energy of the supercurrent state (1)
falls into the low-energy tail of the density of states (9), where the random matrix approach is
not applicable. On the other hand, the low-energy spectrum of the interacting Bose atoms is
believed to be described by the Bogoliubov theory. For this reason, we review the Bogoliubov
approach for a finite size system. Through the section, if not stated otherwise, we assume the
homogeneous case ε = 0.

New Journal of Physics 8 (2006) 197 (http://www.njp.org/)

http://www.njp.org/


11 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

–2000 0 2000
0

1

2

3 × 10
–3

n–m

R
(n

–m
)

–2000 0 2000
10

–6

10
–5

10
–4

10
–3

10
–2

Figure 6. Mean values of the matrix elements across the main diagonal in
the central part of the matrix. The solid line is the best fit by the Breit–Wigner
formula (14).

4.1. Bogoliubov approach

As an intermediate step, let us show that the Bogoliubov approach amounts to the following
two assumptions. (i) The low energy eigenstates of interacting Bose atoms are given by a linear
superposition of the quasimomentum Fock states, where n atoms have quasimomentum κ, n

quasimomentum −κ, and the rest N − 2n have zero quasimomentum [18], i.e.,

|	κ〉 =
N/2∑
n=0

cn|N − 2n, . . . , nk, . . . , n
′
k, . . . , 0〉, k′ = modL(−k). (15)

(ii) The number of atoms with κ �= 0 is small compared to the number of atoms with zero
quasimomentum, i.e., only the coefficients cn with n � N/2 have non-negligible values. (This
condition is automatically satisfied if one assumes the thermodynamic limit N → ∞, U → 0,
UN = const.)

The analysis goes as follows. Substituting the wavefunction (15) in the eigenvalue equation
with the Hamiltonian (4), we get a system of linear equations for the coefficients cn,(

2Ekn +
U

L
an

)
cn +

U

L
(bncn−1 + bn+1cn+1) = Ecn, (16)
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where

an = 2nN − 3n2 + n + N(N − 1)/2 ≈ n(2N − 3n) + N2/2,

bn = (n + 1)
√

(N − 2n)(N − 2n − 1) ≈ n(N − 2n),

and Ek = J(1 − cos(2πk/L)) is the single-particle excitation energy (should not be mismatched
with the energy of the supercurrent state, Eκ = −JN cos κ). Assuming the thermodynamic limit,
equation (16) simplifies to

2(Ek + g)ncn + gncn−1 + g(n + 1)cn+1 = Ecn, g = NU/L. (17)

Next, introducing the generating function,

�(θ) = 1√
2π

∞∑
n=−∞

cneinθ,

we present the system of linear equations (17) as a differential equation on the function �(θ),7

g[n̂eiθ + 2(1 + ε)n̂ + e−iθn̂]�(θ) = E�(θ), (18)

where n̂ = −i∂/∂θ and ε = Ek/g. The general solution of (18) reads

�(θ) = C exp

(
i
∫ θ

0

E/g − eiϑ

2 cos ϑ + 2 + ε
dϑ

)
. (19)

Finally, requiring �(θ + 2π) = �(θ) and calculating the relevant integral,

1

2π

∫ 2π

0

dθ

2 cos θ + 2 + ε
= 1

2
√

(1 + ε)2 − 1
,

we get the equidistant spectrum with the transition frequency

ωk = 2
√

2gEk + E2
k. (20)

The result (20) reproduces the famous Bogoliubov equation for the quasiparticle excitations of
the Bogoliubov vacuum.

4.2. Bogoliubov spectrum

In the previous subsection, we have considered an excitation of the given quasimomentum
state, with the single-particle excitation energy Ek = J(1 − cos κ). To include the other
quasimomentum states, the ansatz (15) should be generalized to

|	〉 =
∑

n

cn|N − 2
∑

k

nk, n1, n2, . . .〉, (21)

7 To be regorous, equation (18) is not strictly equivalent to equation (17) in the sense that it also has solutions with
negative E.
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where n = (n1, . . . , nL/2). Substituting (23) in the stationary Schrödinger equation with the
Hamiltonian (4), we obtain a system of rather complex equations on the coefficients cn, which
can be solved analytically only in the thermodynamic limit. In this limit, as it is easy to show, the
whole eigenvalue problem factorizes to L/2 eigenvalue problems of the form (17) and, hence,
the whole spectrum is given by the direct sum of L/2 linear spectra.

A remark about the total quasimomentum, which is a global symmetry of the system in
the absence of random potential, is in turn. The substitution (15) corresponds to zero total
quasimomentum. To get nonzero values of the total quasimomentum, one should use a slightly
different ansatz,

|	κ〉 =
N/2∑
n=0

cn|N − 2n − m, . . . , nk + m, . . . , n′
k, . . . , 0〉 ,

k′ = modL(−k), m = 1, . . . , L − 1.

(22)

Ansatz (22) leads to the eigenvalue equation of the form (16) but with different coefficients an

and bn. In particular, considering the thermodynamic limit, equation (17) changes to

2(Ek + g)(n + m)cn + g
√

n(n + m)cn−1 + g
√

(n + 1)(n + m + 1)cn+1 = Ecn. (23)

We note, in passing, that if the spectra associated with different single-particle excitation energy
and different total quasimomentum are superimposed,

E =
∑
k,m

{
E(k,m)(g)

}
, (24)

one typically finds a multiple degeneracy of the levels at U = 0 (see figure 8 below).
It is interesting to compare the discussed Bogoliubov spectrum of an infinite system

with the low-energy spectrum of a finite system. For this reason we calculate numerically the
spectrum of N = 25 atoms in a lattice with L = 5 sites.8 A few first levels of this system are
depicted in the left panel of figure 7 where, to facilitate a comparison, we subtract the energy
E0 = −JN + UN(N − 1)/2L and rescale energy axis on the basis of the frequency ω1 = ω1(U).
The Bogoliubov spectrum, calculated by using equations (23) and (24), is depicted in the right
panel of figure 7. Both similarities and differences are evident. The first two levels are seen to
coincide in the whole interval 0 � U � 1. On the other hand, multiple degeneracy of the levels
around U = 0.13 in the right panel is removed in the left panel. This is, in fact, not surprising.
Indeed, let us consider the lowest group of levels, showing the degeneracy. These levels are
associated with the quasimomentum Fock states |0, 2, 21, 2, 0〉, |0, 2, 22, 0, 1〉, |1, 0, 22, 2, 0〉,
and |1, 0, 23, 0, 1〉. (Here we use a different notation for the Fock states, corresponding to the
Brillouin zone −π < κ � π.) These states belong to different spectra, labelled by k and m in
equation (24), and are decoupled within the Bogolubov approach. However, for the considered
finite system these states are coupled by interaction, where the coupling matrix elements are of
the order of g/N.

8 For L = 5 there are two different frequencies ωk. In this sense, L = 5 is the simplest generic case to discuss the
Bogoliubov spectrum.
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Figure 7. Left panel: first few energy levels of N = 25 atoms in a lattice with
L = 5 sites, as function of the on-site interaction constant. (Only the levels
corresponding to zero total quasimomentum are shown.) Right panel: first few
energy levels of the Bogoliubov spectrum, calculated on the basis of equations
(23) and (24).

4.3. Persistent current

In this subsection, we critically review the result of section 2 about the persistent current, carefully
checking validity of the perturbative approach. The left panel in figure 8 shows the low-energy
levels for N = 7 and L = 9 (the whole spectrum is shown, i.e., no symmetry selection according
to the total quasimomentum). Remarkably, even for such a small number of atoms one still has
a qualitative agreement with the Bogoliubov spectrum. Our states of interest in figure 8 are the
supercurrent and the intermediate states |κ(m)〉, which originate from the point marked by an
asterisk. It is seen, by comparing with figure 2(a), that (i) the splitting between these levels
matches well equation (6) and (ii) the coupling of these states to the other states of the system
is negligible, which is indicated by the absence of the avoided crossings. In addition to the case
ε = 0, the right panel in figure 8 shows the spectrum of the atoms in the presence of a weak
scattering potential (should be compared with figure 2(b)). Again, no avoided crossings with the
other levels are seen. Hence, the approach of section 2 is well justified.

The above visual analysis of the spectrum can be made quantitative by considering the
overlap of the supercurrent state |κ〉 with the exact eigenstates,

Q(U) = N
max
n=1

(|〈κ|	n(U)〉|2) . (25)
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Figure 8. Low-energy levels of N = 7 atoms in a lattice with L = 9 sites
for magnitude of the scattering potential ε = 0 (left panel) and ε = 0.2 (right
panel). The state with supercurrent (κ = 2π/L) corresponds to the lowest level in
the group of levels marked by an asterisk. ‘◦’ corresponds to the quasiparticle
energy h̄ω1.

For κ = 0 the quantity (25) is obviously maximized by the ground state |	0(U)〉, which is
expected to coincide with the Bogoliubov state ground. The solid line in figure 9 shows the overlap
of the state |κ = 0〉 with the ground Bogoliubov state. A monotonic decrease of Q = Q(U), seen
in the figure, is due to population of the single-particle quasimomentum states with κ �= 0, and
is often referred to as the quantum or Bogoliubov depletion of the BEC [18, 22]. Additionally,
the dashed and dash-dotted lines in figure 9 depict the overlap of the states |κ = 2π/L〉 and
|κ = 4π/L〉 with the Bogoliubov states, originating from these supercurrent states, which
we calculate by substituting the single-particle excitation energy Ek = J(1 − cos(2πk/L)) in
equation (17) by

Ek = 0.5J[cos(κ + 2πk/L) + cos(κ − 2πk/L) − 2 cos κ] ∼ (2πk/L)2 cos κ. (26)

Finally, the series of dots correspond to the quantity (25). It is seen that for κ = 0 dots perfectly
follow the solid continuous line. Thus the ground state of the system is indeed well approximated
by the Bogoliubov state. With exception of two narrow avoided crossings this is also the case for
the state of our interest κ = 2π/L. However, for higher initial quasimomentum κ = 4π/L, the
Bogoliubov state is seen to be completely destroyed by the large number of avoided crossings.
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Figure 9. Overlap of the states |κ = 0〉 (solid line), |κ = 2π/L〉 (dashed line),
and |κ = 4π/L〉 (dash-dotted line) with the Bogoliubov states, originating from
these supercurrent states. Dots (guided by the solid lines) show the quantity
(25), calculated for these three values of the initial quasimomentum. The system
parameters are the same as in figure 8(a).

5. Conclusions

Within the formalism of the Bose–Hubbard model, we have considered time evolution of the
atomic supercurrent in a ring optical lattice with weak on-site disorder. For vanishing atom–
atom interactions, weak disorder induces Rabi oscillations of the atomic current, where the
atoms periodically change their velocity to the opposite one. For non-vanishing atom–atom
interactions, the supercurrent dynamics depend crucially on the initial quasimomentum κ (i.e.,
the initial velocity of the atoms). Namely, for a high quasimomentum κ ∼ π/2 the supercurrent
exponentially decays as the interaction constant U exceeds some critical value, while for a low
quasimomentum κ � π/2 the oscillatory behaviour of the supercurrent changes to a persistent
current.

The explanation for these effects is found in the structure of low- and high-energy spectra of
the Bose–Hubbard model. It is shown that the low-energy spectrum of the system is regular, and
the positions of the energy levels can be found by using a Bogoliubov approach. In contrast, the
high-energy spectrum shows a transition from regular to a chaotic one if U exceeds its critical
value. Using the results of the random matrix theory, we show that this transition is reflected in
the exponential decay of the supercurrent with the decay constant proportional to U2.
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