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Temporal shape manipulation of intense light pulses by coherent population trapping
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We describe how to control the temporal shape of adiabaton using peculiarities of propagation dynamics
under coherent population trapping. Temporal compression is demonstrated as a special case of pulse shaping.
The general case of unequal oscillator strengths of two optical transitions in an atom is considered.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) and co-
herent population trapping (CPT) can facilitate coherent con-
trol of light under propagation through a medium [1,2]. In
addition to their fundamental interest, investigations of these
processes are stimulated by practical possibilities, such as
manipulating a group velocity of light and light storage in
atomic medium [3,4], enhanced nonlinear optical processes
[5], quantum memory [4], and so on.

The CPT is a quantum interference effect and takes place
under resonance interaction of two laser fields (probe and
coupling) with three-level atomic systems. The essence of
this effect is that under certain conditions atoms are trapped
into the coherent superposition of two lower states |1) and
[2), which is called the CPT state [6,7]. Under the CPT con-
dition the medium becomes coherent and possesses unusual
properties, many of which contradict with the intuitive
views. The CPT leads to the maximal coherence at the Ra-
man transition and the medium becomes transparent for the
probe and coupling pulses [5,8]. This phenomenon allows
recording, storing, and reading of information about strong
optical pulses [9,10], controling the degree of excitation of
spatially localized regions inside an absorbing three-level
medium [11] and generating matched pulses [12,13],
dressed-field pulses [14], and adiabatons [15]. Experimental
observation of adiabatons was reported in [16].

Recently it was shown how EIT can be used for coherent
control of the weak pulse shape [17]. The idea is following.
Under EIT the weak probe pulse propagates with a slow
group velocity depending on an intensity of the coupling
field. If the intensity of the coupling field depends on time,
different points of the probe pulse experience different val-
ues of intensity of coupling field and travel with different
propagation velocities, giving rise to temporal reshaping of
the probe. A proper choice of the temporal shape of the cou-
pling pulse allows control and manipulation of the probe
pulse envelope. In the same way authors of [18] suggested
manipulating the retrieval of stored weak light pulses. In this
paper we generalize this method for controling the temporal
shape of the intense probe pulse using the peculiarities of the
CPT propagation dynamics. Temporal compression of adia-
batons is demonstrated as a special case of pulse tailoring.
Also the general case of unequal oscillator strengths of two
optical transitions in an atom is considered.
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II. PRINCIPAL EQUATIONS

We consider the interaction of two copropagating pulses
with three-level atoms as shown in Fig. 1. Pulses propagate
along an axis z in one direction. The propagation direction is
z. A probe pulse [with the slowly varying envelope E,(z) and
frequency w,] is tuned on resonance with |3)-|1) transition,
and the coupling pulse [E,(z), w,] is tuned so that exact two-
photon resonance between states |1)-|2) is achieved. The
coupling pulse is switched on earlier and switched off later
than probe. For the sake of simplicity and in order to obtain
analytical results, we restrict our model to the interaction
time much shorter than any relaxation times of medium and
ignore inhomogeneous broadening.

The joint time-space evolution of atoms and pulses is de-
scribed by the Schrodinger equation for atomic amplitudes
a;,3 and reduced wave equations for Rabi frequencies
which should be solved self-consistently. For the case when
the fields are in resonance with their respective transitions,
Maxwell-Schrédinger equations are

a, 0 0  G\\|a
dJ ,
—la, |=i[ O 0 G, |{ar ], (1)
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as Gy G, 0 /\a;
J(G K,d\a
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Here {=z, 7=t—z/c—space and time coordinates in a frame
moving with light velocity ¢ in empty space; 2Gi,
=E, ,d, ,/h—the Rabi frequencies of fields; E| ,—the probe

FIG. 1. The three-level system coupled by two resonant pulses
with Rabi frequencies G| and G,. w; and w, are the frequencies of
the probe and control pulses. The transition |1)-|2) is dipole
forbidden.
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FIG. 2. Propagation of the adiabatons (g,=GT;,g.=G,T;) for
different propagation distances within the medium in the case K;
# K5: K,/ K|=1.25—dash-dot line, K,/K;=0.75—dashed line.

and coupling field strengths; d,; ;3;—the electrical dipole mo-
ments of the relevant atomic transitions; K,
=27Nw 5|d33|*/ fic—the field-atomic coupling constants;
N—the atomic concentration. Initially all atoms are in the
ground state |1): a; 5 3(7=—2,{)=(1;0;0). Further we shall
consider the values G , to be real due to the proper choice of
the phases of the basis wave function.

The solution of Egs. (1) and (2) gives the complete evo-
lution of the atom-field system. The analytical solution of the
equation system (1,2) is possible only in adiabatic approxi-
mation [8,15]. In this case |a;| <1 and G,/G,=-a,/a,. The
condition |as| <1 means, that the population of intermediate
state |3) is close to zero in the interaction of pulses with
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FIG. 3. The compression of the probe pulse in the case K;
=K,. Temporal profiles of the normalized Rabi frequencies of the
probe g,=G T, and control (dashed line) g.=G,T) pulses at differ-
ent propagation distances within the medium. (a) At the input of
medium z=0; (b) at some distance within the medium; (c) at the
output of medium z=L.
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FIG. 4. The time evolution (numerical solution) of the Rabi
frequency of probe pulse g, at the different depths in the medium:
(a) z;=L/9; (b) z,=L/2; (c) zz3=L. The solid line, K;=K,; dashed
line, K;=4K,; dashed-dot line, 4K;=K,.

atoms. The population is trapped in a coherent superposition
of states |1) and [2)—the effect of CPT. Under CPT pulses
do not interact with medium [2,7]. It means that pulses can
propagate practically without absorption.

In the adiabatic approximation the solution of Egs. (1) and
(2) can be presented as [8]

cos 0
% sin @
@)= otlor |’ ®)

(Gl)zz\/(KlG%+K2G%)|§:()<Sin 0>' @
G2 K(6) cos 6

Here K(0)=K, cos’[8(7,z)]+K, sin’[ #(7,2)]; € is the mixing
angle (tan 6=G,/G,), which can be expressed through the
border conditions

025803-2



BRIEF REPORTS

o

o
Ta

o

0.6

03}

S %9
~
-

03

(®)

FIG. 5. Flat-top pulse (the case K;=K,): Time evolution of nor-
malized Rabi frequencies of probe g, (continuous curve) and cou-
pling g. (dashed-line curve) pulses at medium input (a) and at me-
dium output (b). Rabi frequencies are normalized to a maximal
value of [G3(7)+G(n)]".

0(7,{) = 6(7y,0) = arctan[ G, (7,,0)/G,(7,0)],

at the time moment 7, satisfying characteristic equation

{(1,m0) = K[ 0(0,¢ = 0)][ (K\G3 + KyGYdT'.

The solution (3), (4) can be applied only within the area
of adiabaticity which is limited by the relation [15]

9G, G,
G2_ - G]_
or or

< (G5 + G, (5)

In contrast to the usual steady state solution which does
not depend on initial conditions, the space-time evolution of
the probe and coupling pulses under CPT conditions depends
on the pulse forms at the input of medium. In our paper [8]
the case of Gaussian pulses was analyzed, assuming that
T,<T, (T, is the probe and coupling pulse duration). The
Rabi frequencies of both pulses are comparable.

In a case of equal coupling constants (K;=K,), when T
< T, and the amplitude of the coupling pulse is constant, the
probe and coupling pulses have complementary envelopes
and propagate without shape variation and with equal group
velocity. Such pulses are called adiabatons [15].

Under unequal coupling constants K , (unequal oscillator
strengths of two optical transitions in the atom) the adiaba-
tons are not shape preserving but undergo a front sharpening
(Fig. 2): under K; <K, a back edge becomes steeper (dash-
dot line), and under K, > K, a leading edge becomes steeper
(dashed line).
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FIG. 6. Two-peaked pulse (the case K;=K,): time evolution of
normalized Rabi frequencies of probe g, (continuous curve) and
coupling g, (dashed-line curve) pulses at medium input (a) and at
medium output (b).

III. TEMPORAL SHAPE CONTROL OF THE PROBE
PULSE BY CPT: COMPRESSION OF PULSES

Since under CPT the space-time evolution of the probe
pulse depends on the temporal shape of the coupling pulse,
we can manipulate the shape of the probe pulse by proper
choice of the coupling pulse envelope at the entry of me-
dium. In this regard CPT can be viewed as a way of the
coherent control of temporal pulse shaping. In particular, it is
possible to choose such coupling pulse shape, that the trail-
ing edge of the probe pulse travels faster than the leading
one. This results in the compression of a probe pulse. Figure
3 demonstrates an example of the temporal compression of
probe pulse using coupling pulse with the envelope shown in
Fig. 3(a) (dashed line). The parameters of numerical simula-
tion are close to experimental values reported in [16] for lead
vapour medium. In our case 7\=1 ns, G|"*=2/3 cm™!, os-
cillator strength of probe transition 0.2, medium length
10 cm. A time evolution of pulses is much similar to adiaba-
tons propagation [15]. Pulse propagation in this case can be
treated as adiabatonic pair extended to time shape variation
(quasiadiabatons) since both pulse envelopes vary coherently
and travel with equal velocity. As in [17] the compression
can be connected with the manipulation of propagation ve-
locities. Exactly, the leading edge of probe pulse is slowed
down more strongly than the trailing one. As a result the
probe pulse is compressed in time under propagation through
the medium and its amplitude increases. A factor of compres-
sion is limited by the adiabaticity condition (5) and its mag-
nitude can amount to several times.
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Note that the compression effect is independent on the
detailed temporal structure of the coupling pulse. The com-
pression takes place also under a linear growth of amplitude
of the coupling pulse.

The pulse compression takes place also in the case of
unequal coupling constants K ,, which are defined by the
oscillator strengths of transitions (Fig. 4). The optimal com-
pression takes place for the common case of strong probe
transition (K;>K,). The numerical simulation shows that at
certain length of medium the distortion (a temporal oscilla-
tion) of pulse shape takes place, especially at the case of
different coupling constants (K; # K,). This distortion is an
evidence that adiabaticity conditions break down.

Pulse compression is a particular case of temporal shap-
ing. In the general case, the proper choice of the temporal
shape of the coupling pulse allows us to obtain probe pulse
with different temporal shapes at output. For example, we
can obtain a flat-top pulse (Fig. 5) or two-peaked pulse (Fig.
6) like in [17]. In contrast to [17] in our case the coupling
pulse shows strong reshaping at propagation [see dashed line
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at Figs. 5(a), 5(b), 6(a), and 6(b)]. The same effects take
place in the case of unequal coupling constants. For the re-
sults presented we have checked that under adiabatic condi-
tions the numerical solution of the Maxwell-Schrodinger
equations and obtained analytical expression provide exactly
the same results.

In conclusion, we have shown that temporal pulse com-
pression can be achieved using CPT schemes. In the same
way it is possible to manipulate retrieval of stored strong
light pulses [19]. These processes present both fundamental
interest and applications in nonlinear optics, because the
compressed pulse as a light source can increase the effi-
ciency of nonlinear processes. Let us notice that practical
realization of this phenomenon benefits from use of photonic
crystal waveguides, which provide high field intensity at
great length.
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