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In the past, a maximum-entropy model was introduced and applied to the study of statistical scattering by
chaotic cavities, when short paths may play an important role in the scattering process. In particular, the
validity of the model was investigated in relation with the statistical properties of the conductance in open
chaotic cavities. In this paper we investigate further the validity of the maximum-entropy model, by comparing
the theoretical predictions with the results of computer simulations, in which the Schrödinger equation is
solved numerically inside the cavity for one and two open channels in the leads; we analyze, in addition to the
conductance, the zero-frequency limit of the shot-noise power spectrum. We also obtain theoretical results for
the ensemble average of this last quantity, for the orthogonal and unitary cases of the circular ensemble and an
arbitrary number of channels. Generally speaking, the agreement between theory and numerics is good. In
some of the cavities that we study, short paths consist of whispering gallery modes, which were excluded in
previous studies. These cavities turn out to be all the more interesting, as it is in relation with them that we
found certain systematic discrepancies in the comparison with theory. We give evidence that it is the lack of
stationarity inside the energy interval that is analyzed, and hence the lack of ergodicity—a property assumed in
the maximum-entropy model—that gives rise to the discrepancies. Indeed, the agreement between theory and
numerical simulations is improved when the energy interval is reduced to a point and the statistics is then
collected over an ensemble obtained by varying the position of an obstacle inside the cavity. It thus appears that
the maximum-entropy model is valid beyond the domain where it was originally derived. An understanding of
this situation is still lacking at the present moment.

DOI: 10.1103/PhysRevB.73.155302 PACS number�s�: 73.23.�b, 73.63.Kv, 72.70.�m

I. INTRODUCTION

The statistical scattering of waves through open chaotic
cavities has been of great interest to many groups along the
years.1,2 The investigations that have been carried out are
relevant to a variety of problems, like the electronic transport
through ballistic quantum dots, or the scattering of classical
waves �e.g., electromagnetic or elastic waves� in chaotic bil-
liards.

The approach provided by random-matrix theory has been
particularly fruitful in the study of the statistical fluctuations
of transmission and reflection of waves by a number of sys-
tems, including billiards with a chaotic classical dynamics.
Within this approach we wish to focus our attention on the
model of Refs. 2–4, which was introduced originally in the
context of nuclear physics and was then applied to the do-
main of chaotic cavities.

We recall that, very generally, we can describe a scatter-
ing process in terms of a scattering matrix S. In the model
referred to above, the statistical features of the problem are
represented by a measure in S-matrix space which, through
the assumption of “ergodicity,” gives the probability of find-
ing S in a given volume element as the energy E changes and
S wanders through that space. The problem is, of course, to
find that measure. The key assumption is made that in the
scattering process two distinct time scales occur, associated,
respectively, with a prompt, or direct, response due to the

presence of short paths, and a delayed, or equilibrated, re-
sponse due to very long paths. It turns out that the prompt, or
direct, processes can be expressed in terms of the energy
average of S, S̄, also known as the optical S matrix. The
statistical distribution of the scattering matrix S is then con-
structed through a maximum-entropy “ansatz,” assuming that
it depends parametrically solely on the optical matrix. The
notion of ergodicity, which allows replacing energy averages
by ensemble averages, e.g., �S�= S̄, is essential to the argu-
ment.

The statistical properties of the conductance predicted by
the maximum-entropy model we just described have been
studied in the past; these predictions have been also com-
pared with the results of computer simulations which consist
in solving the scalar Schrödinger equation numerically for a
number of structures.2–4 Although in those structures the two
time scales referred to above were not as well separated as in
nuclear physics problems, they seemed to us to be suffi-
ciently distinct to allow a meaningful description. It is the
purpose of the present article to investigate further the valid-
ity of the maximum-entropy model, by extending our earlier
studies in the following three ways.

First, we wish to provide further predictions of our ap-
proach for other physical quantities in addition to the con-
ductance. For this purpose we analyze the zero-frequency
limit of the shot-noise power spectrum P at zero temperature.
For one open channel �N=1� we show that the problem can
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be reduced to quadratures and, in a number of cases, we can
even study analytically the influence of direct processes on
the average, �P�, of the zero-frequency shot-noise power
spectrum over an ensemble of cavities. For an arbitrary num-
ber of channels, on the other hand, we show that �P� can be
evaluated analytically when direct processes are absent
��S�=0�.

Second, we wish to extend the computer simulations men-
tioned above in a number of ways:

�i� In some of the cavities used in the present paper the
short paths consist of whispering gallery modes �WGM�,
which were excluded in Refs. 3 and 4 by the type of cavities
that were used and the way the leads were attached. It is their
effect5,6 that we wish to describe in terms of the optical S
matrix which, as we said, is precisely a measure of the short-
time processes occurring in the scattering problem. Informa-
tion on the time scales involved could be provided by an
analysis of the structure of S�E� in the complex-energy
plane. Although we do not have direct access to the poles of
the S matrix, the complex eigenvalues of the so-called “ef-
fective Hamiltonian” �which essentially consists of the
Hamiltonian of the closed cavity plus the coupling to the
continuum� give evidence of a “sea” of fine-structure, long-
lived, resonances, plus a collection of shorter lived, more
widely separated states. This evidence is indicated in the
present paper and studied in detail in Refs. 7–9.

�ii� Earlier numerical simulations were performed for
cavities with an applied magnetic field �the unitary univer-
sality class characterized by the Dyson parameter �=2�, in
the presence of direct processes and for one channel �N=1�.
The present simulations are performed for cavities with time-
reversal invariance �the orthogonal universality class, char-
acterized by the Dyson parameter �=1�, also in the presence
of direct processes and for one �N=1� and two �N=2� open
channels.

Third, we shall pay closer attention to the discrepancies
between theory and numerical experiments. Indeed, discrep-
ancies similar to the ones that we shall observe in this paper
were already present, to a certain extent, in Ref. 3, but were
overlooked at that time.

The paper is organized as follows. In the next section we
first give a brief presentation of the maximum-entropy
model, recalling the assumptions that are used in its deriva-
tion; these considerations will be important in the discussion
to be presented in Sec. IV. We then study a number of pre-
dictions of the model with regards to the statistical properties
of the conductance and the shot-noise power spectrum at
zero temperature. In Sec. III we present the results of the
numerical simulations and the comparison with theory. Sec-
tion III A is devoted to the one-channel case �N=1� and Sec.
III B to two channels �N=2�. Finally, we discuss our results
in Sec. IV, putting particular emphasis on the discrepancies
found between theory and numerical simulations. We include
an appendix, where some of the algebraic details of the rel-
evant one- and two-channel statistical distributions are given.

II. STATISTICAL MODEL FOR THE DESCRIPTION
OF QUANTUM CHAOTIC SCATTERING IN BILLIARDS

We present below the main ideas behind the maximum-
entropy model briefly described in the Introduction. This

model was introduced in the past in the domain of nuclear
physics and was later used to study the quantum mechanical
scattering occurring inside ballistic cavities �whose classical
dynamics is chaotic� connected to the outside by means of
waveguides.2–4

The scattering problem can be described in terms of a
scattering matrix S. If the cavity is connected to two
waveguides supporting N channels each, the dimensionality
of the S matrix is 2N. As we mentioned in Sec. I, the model
proposes a measure in S-matrix space which, through the
assumption of ergodicity, describes the probability of finding
S in a given volume element as the energy E changes and S
wanders through that space. We write such a probability as

dP�S�
����S� = p�S�

����S�d���S� , �2.1�

where p�S�
����S�, referred to as the probability density, depends

parametrically on the optical matrix �S�, as detailed below. In
the above equation, d�����S� is the invariant measure for the
universality class � �we shall assume throughout that
�d���S�=1�. Here we shall consider the cases �=1 �the or-
thogonal case� and �=2 �the unitary case�, corresponding to
cavities with and without time-reversal invariance, respec-
tively, and in the absence of spin. The problem is, of course,
to find p�S�

����S�. To this end, a number of assumptions are

made, as we now explain �see Refs. 10 and 11�.
�1� The study of the statistical properties of S�E� over an

ensemble of cavities is simplified by idealizing S�E�, for real
E, as a stationary random �matrix� function of E satisfying
the condition of ergodicity.

�2� As explained in Sec. I, we assume that our scattering
problem can be characterized in terms of two time scales,
arising from the prompt and equilibrated components; the
prompt response can be described in terms of the averaged S
matrix �S�, also known as the optical S matrix.

�3� We assume E to be far from thresholds, so that, lo-
cally, S�E� is a meromorphic matrix function which is ana-
lytic in the upper half of the complex-energy plane and has
resonance poles in the lower half plane. From this follow
what we have called in the past the “analyticity-ergodicity”
�AE� properties:

��Sa1b1
�m1

¯ �Sakbk
�mk� = �Sa1b1

�m1
¯ �Sakbk

�mk. �2.2�

This expression involves, on its left-hand side, only S matrix
elements, whereas S* matrix elements are absent; on the
right-hand side, only the optical matrix �S� appears. More
generally, if f�S� is a function that can be expanded as a
series of non-negative powers of the S matrix elements, we
must have the reproducing property12

�f�S�� = f��S�� . �2.3�

One can then show that the probability density, known as
Poisson’s kernel,

p�S��S� =
�det�I − �S��S�†���2�N+2−��/2

�det�I − S�S�†��2�N+2−� , �2.4�

is such that the average S matrix is the optical matrix �S�, the
AE requirements �2.2� and hence the reproducing property
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�2.3� are satisfied, and the entropy S�p� associated with it,
S�p�	−�p�S��S�ln p�S��S�d��S�, is greater than or equal to
that of any other probability density satisfying the AE re-
quirements for the same �S�.

With regard to the information-theoretic content of Pois-
son’s kernel, we have to distinguish between �i� general
properties, like unitarity of the S matrix �flux conservation�,
analyticity of S�E� implied by causality, and the presence or
absence of time-reversal invariance �and spin-rotation sym-
metry when spin is taken into account� which determines the
universality class �orthogonal, unitary or symplectic�, and �ii�
particular properties, parametrized by the ensemble average
�S�, which controls the presence of short-time processes.
System-specific details other than the optical matrix �S� are
assumed to be irrelevant. The optical matrix �S� is the only
“physically relevant parameter” assumed in the model.

From the probability distribution of Eqs. �2.1� and �2.4�
one can find the statistical properties of the quantities of
interest over an ensemble of cavities. In this paper we shall
be concerned with the conductance and the zero-frequency
shot noise power spectrum.

The dimensionless dc conductance �g=G / �e2 /h�� at zero
temperature and for the spinless case is given by Landauer’s
formula2

g = T = tr�tt†� = 

a

�a, �2.5�

where �a �a=1, . . . ,N� are the eigenvalues of the Hermitian
matrix tt†, and the transmission matrix t is an N�N block of
the 2N-dimensional S matrix which, in turn, is written as

S = �r t�

t r�
� . �2.6�

The zero-frequency limit of the shot-noise power spec-
trum at zero temperature can be expressed as13,14

P = P0

a=1

N

�a�1 − �a�, P0 = 2 eV
2e2

h
. �2.7�

The average of P over an ensemble of cavities will be writ-
ten in the two alternative ways:

�P� = P0


n=1

N

�a�1 − �a�� �2.8a�

=�PP�
�
a=1

N
�a�1 − �a��

�
a=1

N
�a�

, �PP� = 2 eV
2e2

h
�T� . �2.8b�

Here, PP is the result that one would obtain if the noise were
a Poissonian process, i.e., if there were no correlations
among electrons and the electronic transport were com-
pletely random; T is the dimensionless conductance, Eq.
�2.5�. We see that since the shot-noise power is not deter-
mined simply by the conductance, it is only in the limit
�a�1 �a=1, . . . ,N� that we recover the Poissonian result.

It is clear that we need, for our purposes, the joint prob-
ability distribution of the �a’s. This can be found from Eq.
�2.4� as

w�S�
�1���1, . . . ,�N� = C1

�
a�b

��a − �b�

�
c

��c

� � �det�I − �S��S�†��N+1/2

�det�I − �S�S†��2N+1

�d��v�1��d��v�2�� �2.9a�

w�S�
�2���1, . . . ,�N� = C2 �

a�b

��a − �b�2� ¯�
�

�det�I − �S��S�†��2N

�det�I − �S�S†��4N �
i=1

4

d��v�i�� ,

�2.9b�

for �=1 and �=2, respectively. The quantity C� is a normal-
ization constant. The unitary matrices v�i� are the ones that
occur in the polar decomposition of the S matrix2

S = �v�1� 0

0 v�2� ��− �1 − � ��

�� �1 − �
��v�3� 0

0 v�4� � ,

�2.10�

where � stands for the N�N diagonal matrix constructed
from the eigenvalues �a �a=1, . . . ,N� of the Hermitian ma-
trix tt† �see Eq. �2.6�� and the v�i� are arbitrary N�N unitary
matrices for �=2, with the restrictions v�3�= �v�1��T and
v�4�= �v�2��T for �=1.

In what follows we study, in particular, the cases in which
the two waveguides connecting the cavity to the outside may
support one, two, or an arbitrary number of open channels.

A. The one-channel case, N=1

In this case we have only one �, which coincides with the
conductance T, whose probability distribution can thus be
written from Eqs. �2.9� as

w�S�
�1��T� =

1

2�T
�

0

2	 �
0

2	 �det�I − �S��S�†��3/2

�det�I − �S�S†��3
d
d�

�2	�2 ,

�2.11a�

w�S�
�2��T� = �

0

2	

¯ �
0

2	 �det�I − �S��S�†��2

�det�I − �S�S†��4
d
d�d�d�

�2	�4 .

�2.11b�

The polar representation of S for N=1 is written down ex-
plicitly in Eq. �A1� of the Appendix.

In the absence of direct processes, i.e., �S�=0, the T dis-
tribution of Eqs. �2.11� reduces to the well known results

w0
�1��T� =

1

2�T
, �2.12a�
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w0
�2��T� = 1, �2.12b�

for the orthogonal ��=1� and unitary ��=2� cases, respec-
tively.

The T distribution for the unitary case, Eq. �2.11b�, can be
integrated explicitly.2 As an example, for the particular case
�t�= �t��=0, corresponding to direct reflection and no direct
transmission, and assuming, for simplicity, the “equivalent-
channel” case ���r� � = ��r�� � �, one finds

w�r�
�2��T� = �1 − ��r��2�

�
�1 − ��r��4�2 + 2��r��2�1 + ��r��4�T + 4��r��4T2

��1 − ��r��2�2 + 4��r��2T�5/2 .

�2.13�

For the case of direct transmission and no direct reflection,
the result is obtained from the previous equation by replacing
��r�� by ��t�� and T by 1−T.

The ��=T� distribution for the unitary case given in Eq.
�2.13� allows us to study the effect of direct processes on the
averaged shot-noise power spectrum �P� of Eq. �2.8b�; this
case is particularly suited to gain some physical insight,
since the result for �P� can be expressed analytically in a
remarkably simple fashion. For the particular case of direct
reflection and no direct transmission ��t�= �t��=0�, and as-
suming ��r� � = ��r���, one finds, from Eq. �2.13�, the result

�P��2�

�PP��2� =
1

5

5 − 9��r��4 + 4��r��6

3 − 4��r��2 + ��r��4
, �2.14�

while for direct transmission and no direct reflection
��r�= �r��=0�, and assuming ��t� � = ��t���, one obtains

�P��2�

�PP��2� =
1

5

5 − 9��t��4 + 4��t��6

3 + 4��t��2 − ��t��4
. �2.15�

In Fig. 1 the behavior of the ratio �P��2� / �PP��2� as a function
of ��r� � = ��r��� for the direct reflection case ��t�= �t��=0�, Eq.
�2.14�, is shown as the upper solid curve; the lower solid
curve shows the case of direct transmission as a function of
��t� � = ��t��� �when �r�= �r��=0�, Eq. �2.15�. For the upper
curve, the ratio �P��2� / �PP��2� increases as a function of ��r��;
since, as ��r� � →1, w�T�→��T�, at first sight one would ex-
pect, in this limit, the ratio�P� / �PP��2� to increase towards the
Poissonian value unity. That this is not the case is due to the
fact that both �T� and �T2� tend to zero linearly with
1− ��r�� as this quantity tends to zero.

For the orthogonal symmetry class ��=1� we have not
succeeded in finding an analytical expression for the conduc-
tance distribution, even for the particular cases studied
above. For these cases, the ratio �P��1� / �PP��1� was thus cal-
culated numerically from Eq. �2.11a� and the results are also
presented in Fig. 1 for comparison with the unitary case; we
observe that the ratio �P���� / �PP���� is always larger for
�=1 than for �=2.

We wish to point out a property of the average shot-noise
power �P���� of Eq. �2.8a�, in the present one-channel case.
Poisson’s kernel of Eq. �2.4� has the property that has been

called “covariance”:11 p�S�
����S�= p

�S̃�

���
�S̃�, where S̃=U0SV0, U0

and V0 being fixed unitary matrices for �=2, with V0=U0
T for

�=1, the same transformation being applied to the optical
�S�. The invariant measure is invariant under this transforma-
tion. For �=2, one can verify that the unitary matrices

U0 = �0 1

1 0
�

and V0=1 exchange r �r��and t �t�� and their corresponding
average values appearing in �S�. For the case �=1, we have
t= t�. If we also have r=r�, as in the case of a system with
“left-right symmetry,” the matrix

U0 =
1
�2
�1 + i 1 − i

1 − i 1 + i
�

switches r and t and the corresponding optical parameters.
The above transformations keeps P= P0��1−�� invariant. As
a consequence, �P���� remains invariant under the inter-
change �r�↔ �t�, �r��↔ �t�� for �=2, and �r�↔ �t� for the
particular �=1 case mentioned above. We observe that, in-
deed, the numerators of Eqs. �2.14� and �2.15�, which are
proportional to �P��2�, do fulfill this property. However, for
the �=1 case considered here, this symmetry does not apply.

In the present one-channel case one can write down an
expression for the distribution of the “dimensionless” shot-
noise power spectrum �see Eq. �2.7��

FIG. 1. The ratio �P� / �PP� as a function direct reflection
��r� � = ��r��� �indicated in the upper horizontal line as the abscissa�
for the case �t�= �t��=0 is shown as the two upper curves. The two
lower curves show the same ratio as a function direct transmission
��t� � = ��t��� �indicated in the lower horizontal line as the abscissa�
for the case �r�= �r��=0. The dashed lines correspond to the or-
thogonal universality class ��=1� and the solid lines to the unitary
class ��=2�.
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P

P0
= ��1 − �� , �2.16�

which lies in the range 0�
�
1
4 �we are using the notation

of Ref. 13�. Since 
 is a function of the conductance, we can
make an elementary change of variables and write

w����
� = � w������
�1 − 2����=��
�

�2.17a�

� =
1

2
�1 ± �1 − 4
� . �2.17b�

Thus the distribution in question is given by:

w����
� =

w����� =
1 + �1 − 4


2
� + w����� =

1 − �1 − 4


2
�

�1 − 4

,

�2.18�

where w������ is given in Eqs. �2.11�. For �S�=0, the result of
this last Eq. �2.18� reduces to Eq. �95� of Ref. 13.

B. The two-channel case, N=2

In the two-channel case the matrix tt† is two-dimensional
and has two eigenvalues �1 ,�2, whose joint probability dis-
tribution can be written from Eqs. �2.9� as

w�S�
�1���1,�2� =

3

4

��1 − �2�
��1�2

� � �det�I − �S��S�†��5/2

�det�I − S�S�†��5

�d��v�1��d��v�2�� , �2.19a�

w�S�
�2���1,�2� = 6��1 − �2�2� ¯� �det�I − �S��S�†��4

�det�I − S�S�†��8

�d��v�1�� ¯ d��v�4�� . �2.19b�

Here, d��v�i�� is the invariant measure for the unitary matri-
ces v�i� used to represent S in its polar form, Eq. �A3�; the
explicit form of d��v�i�� is given in Eqs. �A6� and �A7�.

From the above expressions we can evaluate the probabil-
ity distribution of the conductance as

w�S�
����T� = �

0

1

w�S�
�����1,T − �1�d�1, �2.20�

and the ratio �P� / �PP� for the shot-noise power spectrum as

�P�
�PP�

=




a=1

2

�a�1 − �a��




a=1

2

�a� . �2.21�

In the absence of direct processes, �S�=0, we obtain for
w0

�����1 ,�2� the well known results:2

w0
�1���1,�2� =

3

4

��1 − �2�
��1�2

, �2.22a�

w0
�2���1,�2� = 6��1 − �2�2, �2.22b�

and for the conductance distribution w0
����T�

w0
�1��T� = �

3

2
T , 0 � T � 1

3

2
�T − 2�T − 1� , 1 � T � 2.

�2.23a�

w0
�2��T� = 2�1 − �1 − T��3. �2.23b�

C. The case of arbitrary N

In the absence of direct processes, �S�=0, various results
concerning the average and variance of the conductance are
known2 and will not be reproduced here.

Not known, to our knowledge, is the behavior of the shot-
noise power spectrum for arbitrary N, even for �S�=0. We
calculate below, for such a situation, the average �P� for the
orthogonal and the unitary cases.

The numerator of �2.8b� can be written as




a=1

N

�a�1 − �a��
0

���

= �tr�tt†�� − �tr�tt†tt†��0
���

= 

a,b=1

N

��tab�2�0
��� − 


a,b,c,d=1

N

�tabtcdtcb
* tad

* �0
���

= 

a,b=1

N

�Sab
21�Sab

21�*�0
��� − 


a,b,c,d=1

N

�Sab
21Scd

21�Scb
21Sad

21�*�0
���.

�2.24�

The notation �¯�0
��� indicates an average over the invariant

measure for the universality class �.
In the last line of Eq. �2.24� the upper indices 21 indicate

the 21 block of the S matrix in Eq. �2.6�.
Averages of monomials of the type

Q
1�1,. . .,
p�p


1��1�,. . .,
p��p���� 	 �S
1�1
¯ S
p�p

�S
1��1�
¯ S
p��p�

�*�0
���

�2.25�

were studied in Refs. 10 and 15, for �=1 and �=2, respec-
tively. We now consider these two cases separately.

In the orthogonal case, �=1, we denote Q�1�	M, just as
in Ref. 10. In that reference one finds the results

M
�

��� =

�
�

��� + �
�

��
�

2N + 1
, �
�


��� = �


���

��, �2.26a�

M
�,��

���,���� = A�M
�


���M��
���� + M
�

����M��

���� + B�M
�


���M��
����

+ M
�
����M��


��� + M
�

���M��

���� + M
�
����M��


���� ,

�2.26b�

where
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A =
�2N + 1��2N + 2�

2N�2N + 3�
, B = −

2N + 1

2N�2N + 3�
. �2.26c�

Substituting the results �2.26� in Eq. �2.24� we find for the
average of P, Eq. �2.8b�, for the orthogonal case:

�P���=1� =
�N + 1�2

2N�2N + 3�
�PP���=1�. �2.27�

In the unitary case, �=2, we denote Q�2�	Q, just as in
Ref. 15. In that reference one finds the results

Q
�

��� =

�
�

���

N
, �2.28a�

Q
�,��

���,���� =

1

�2N�2 − 1
��
�


������
���� + �
�

��
����
�����

−
1

2N��2N�2 − 1�
��
�


������
���� + �
�

��
����
�����

�2.28b�

which has to be substituted in Eq. �2.24�. For �P���=2�, Eq.
�2.8b�, we find

�P���=2� =
N2

4N2 − 1
�PP���=2�. �2.29�

For a large number of open channels, N�1, Eqs. �2.27�
and �2.29� give �P����� 1

4 �PP�����NP0 /8, just as in Refs. 13
and 14.

The ratio �P���� / �PP���� from Eqs. �2.27� and �2.29� is
plotted in Fig. 2 as a function of the number of channels N.
We observe that this ratio is always larger for the orthogonal
��=1� than for the unitary case ��=2�, just as was noticed in
the results shown in Fig. 1 for the one-channel case. This
effect indicates that time-reversal symmetry pushes the �a
distribution towards small �a’s �for N=1 this effect is given
by Eq. �2.12a�� in such a way that �P���=1� gets closer to
Poisson’s value.

III. NUMERICAL SIMULATIONS

The maximum-entropy approach that we have been dis-
cussing is expected to be valid for cavities in which the clas-
sical dynamics is completely chaotic—a property that refers
to the long-time behavior of the system—as in such struc-
tures the long-time response is equilibrated and classically
ergodic.

In Refs. 3 and 4 the scalar Schrödinger equation was in-
tegrated numerically for a number of 2D cavities in order to
examine to what extent our approach really holds. In those
references the analysis was performed for the conductance
distribution w�T�. The cavities were subjected to a magnetic
field ��=2� and they were connected to the outside by
waveguides admitting one open channel �N=1�. Moreover,
the structures were such that they obviously supported short
paths associated with direct reflection from a barrier, direct
transmission from one lead to the other, or skipping-orbit
trajectories in the presence of the magnetic field.

In what follows we consider the numerical solution of the
Schrödinger equation for 2D structures which again support
direct processes. Now the system is not immersed in a mag-
netic field, so that it is time-reversal invariant ��=1�. We
mainly study the one-channel case, N=1 �Sec. III A below�,
although we also present some results for N=2 �Sec. III B�.

In addition to the conductance distribution, the average of
the zero-frequency shot-noise power spectrum is also stud-
ied, in order to examine further the applicability of the
model. Ensembles of similar systems are obtained by intro-
ducing an obstacle inside the cavity and changing its position
�see Figs. 3, 4, and 7 below�. In all cases the optical S matrix
�S� was extracted from the data and used as an input in Eq.
�2.4�, or in the various results of Sec. II, to produce the
theoretical predictions to be compared with the numerical
experiments. In this sense all of our fits are “parameter free.”
For details of the numerical study see Refs. 7–9.

A. The one-channel case, N=1

When the energy E lies inside the interval
�2

2mW2 �N2	2 , �N+1�2	2�, each waveguide �of width W�
supports exactly N open channels. In units such that
�2 /2mW2=1, one open channel �N=1� occurs for
E� �	2 ,4	2���10,40�. We need to study S�E� in energy
intervals �E not too close to either threshold, in order to
avoid threshold singularities.

1. Statistical properties of the conductance

Figure 3 shows, as insets, the structures for which the
numerical study was performed: they consist of a Bunimov-
ich stadium connected to two waveguides directly, as in pan-
els �a�, �b�, and �c�, or through a smaller half stadium, as in
�d�. The structures are spatially asymmetric.

The histograms were obtained by solving the Schrödinger
equation inside these structures and collecting the data in the
energy interval �E= �22,23� �in the units explained above�,
and then across an ensemble of 200 positions of the obstacle,
which is also shown in the figure. In that energy interval, 20
equally-spaced points were considered: these points are far-

FIG. 2. The ratio �P� / �PP� for �=1 �upper curve� and �=2
�lower curve� for �S�=0, as a function of the number of channels N.
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ther apart than the correlation energy, as it appears from the
negligible correlation coefficient �over the ensemble� that
was obtained for the transmission and reflection amplitudes
for two successive points. The optical S matrix, obtained as

an energy plus an ensemble average of S, i.e., �S̄�, was ex-
tracted from the data and the optical reflection and transmis-
sion matrix elements are given in Table I.

The optical S matrix was substituted in Eq. �2.11a�, which
is the theoretical prediction for the conductance probability
distribution w�S�

�1��T�, giving, after normalizing to the total

number of cases, the results shown as the continuous lines in
Fig. 3. In other words, the parameters on which the theoret-
ical results depend, i.e., the optical S matrix elements, were
not obtained by a variation procedure designed to find a best
fit, but rather extracted from the numerical experiment. In
panels �a� and �b� the optical S matrix is very close to zero,
indicating a negligible presence of direct processes, so that
the continuous curve in both cases is practically given by Eq.
�2.12a�: we mainly have long lived states in these structures.

The elements of the optical S matrix grow larger as we pro-
ceed to the remaining panels.

The agreement between theory and numerical experi-
ments is very good for �a� and �b�. One observes some de-
viations in panel �c�; the deviations are largest for panel �d�,
where the optical, or direct, transmission, is largest. In �c� the
direct path between the two waveguides is obvious. In �d� the
direct path occurs inside the smaller stadium, which supports
whispering gallery modes, while the larger stadium provides
a “sea” of fine-structure states. This effect is seen in Fig. 4,
where a plot of the square of the scattering wave function for
a fixed energy E, i.e., ��E�r��2, exhibits a concentration along
the wall of the smaller stadium. Indeed, the reason for attach-
ing a small stadium to a large one in Fig. 3�d� is precisely
that the whispering gallery modes which have been seen in
calculations for small cavities, as in Refs. 5 and 6, are gradu-
ally destroyed if the size of the cavity is increased, because
of the long way the whispering gallery mode would have to
traverse �for more details the reader is referred to Ref. 7�.

FIG. 3. The distribution W �not to be confused with the width W of the waveguide used in the text� of the conductance, normalized to
the total number of cases, for the structures shown in the insets. Each bin shows the frequency that occurred in that interval. The histograms
were obtained from a numerical solution of the Schrödinger equation in the energy interval E� �22,23�, as explained in the text. The
theoretical distributions, obtained from Poisson’s kernel using the optical S matrix extracted in each of the four cases, were calculated at 15
points �in the interval 0�T�1� which were then joined to obtain the continuous curves. The agreement between theory and numerical
simulations is, in general, good; the largest deviations occur in panel �d�, where the optical, or direct, transmission, is the largest, due to
whispering gallery modes in the small cavity.
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This seems to be the reason why no effects from WGM are
seen in the stadium in Fig. 3�b�.

We wish to investigate the case of Fig. 3�d� further. For
the optical S matrix extracted from the data, the probability
of small T’s predicted by the theory is larger than that found
in the numerical simulation, and vice versa for T�1. This
effect is not a statistical fluctuation, but rather a systematic
discrepancy, as it was observed in most cases where the
transmission part of the optical S matrix is as large as that
occurring in Fig. 3�d�. To find the origin of the discrepancy
we have to realize that, in order to apply our model mean-
ingfully, an energy interval �E over which we do statistics
must be such that the “local” optical matrix �S�E�� is “rea-
sonably constant” across it, while, at the same time, such an
interval should contain many fine structure resonances: in
other words, the notion of “stationarity” should be approxi-
mately valid. Figure 5 shows the ensemble expectation value

�t�E�� of the transmission amplitude t�E� as a function of the
energy E, for the structure shown in Fig. 3�d�. Although this
quantity is certainly not expected to be literally constant, the
question is whether its variation across the energy interval
�E= �22,23� �used in Fig. 3�d�� can be considered to be the
cause of the discrepancy that we have seen between theory
and numerical experiment. The following results support our
belief that the answer to this question is positive. Figure 6
shows the conductance distribution for the same structure of
Fig. 3�d�, obtained using a number of energy intervals twice
as small. For instance, panels �c� and �d� correspond to the
two subintervals in which the original one, �E= �22,23�,
was divided. Panels �a� and �b� show the data for two other
similar subintervals. We observe that the agreement is now
very good.

2. Statistical properties of the shot-noise power spectrum

The shot-noise power spectrum at zero temperature of Eq.
�2.8b� was calculated, both numerically as well as from our
theoretical model, for the same structures shown in Figs. 3
and 6. For one channel, N=1, Eq. �2.8b� simplifies to

�P�
�PP�

=
�T�1 − T��

�T�
, �3.1�

so that in this case we do not have more information than
that contained in the conductance distribution. However, for
completeness, we present the results in Table II.

Notice that the results in the first two rows of the table,
i.e., those arising from Figs. 3�a� and 3�b� �with an optical S
close to zero�, compare well with the prediction of Eq. �2.27�
for N=1, i.e., �P� / �PP�=0.4, and with Fig. 1 for �=1 and
�S�=0.

Notice also that from row 1 �or 2� to row 4 of the table the
optical transmission increases and �P� / �PP� decreases, in

TABLE I. The optical reflection and transmission matrix ele-
ments for the four cases in Fig. 3.

Case �r̄� �t̄�= �t�̄� �r�̄�

Fig. 3�a� 0.0007−0.0651i −0.0725+0.0078i 0.0040+0.0008i

Fig. 3�b� −0.0384−0.0213i −0.0767−0.0211i −0.0388−0.0210i

Fig. 3�c� 0.1462−0.0242i −0.1236+0.3672i 0.0375+0.1035i

Fig. 3�d� 0.1106−0.1581i −0.0591−0.6055i 0.2586−0.0054i

FIG. 4. The square of the scattering wave function, i.e., ��E�r��2,
for a fixed energy. The geometric structure consists of a small sta-
dium coupled to a larger one. The geometry is the same as that
shown in Fig. 3�d�. We interpret the concentration of the wave
function along the wall of the small cavity as a whispering gallery
mode. The larger stadium provides a “sea” of fine-structure
resonances.

FIG. 5. The real �solid line� and imaginary �dashed line� parts of
the ensemble expectation value �t�E�� �an element of the “local”
optical matrix� as a function of energy, for the structure shown in
Fig. 3�d�. The question is whether the variation of these quantities
inside the energy interval �E= �22,23� is responsible for the dis-
crepancy seen in Fig. 3�d�.
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qualitative agreement with the result of Fig. 1 for �=1, �r�
literally equal to zero and increasing �t�.

B. The two-channel case, N=2

In units such that �2 /2mW2=1, two open channels
�N=2� occur in the energy interval E� �4	2 ,9	2�
��40,90�. In view of the experience gained in the one-
channel case described above, the energy interval �E
was literally reduced to a point, and the statistical properties
of the conductance and the shot-noise power spectrum
were studied across the ensemble for a fixed energy E:
more specifically, 200 samples were collected at E=75, vary-
ing, just as before, the position of the obstacle inside the
cavity.

1. Statistical properties of the conductance

The numerical simulation was done by solving numeri-
cally the Schrödinger equation for the structures shown in
Figs. 3�a� and 3�d�. The theoretical prediction for the con-
ductance distribution w�T� was obtained using Eq. �2.20�,

TABLE II. The shot-noise power spectrum of Eq. �3.1�,
N=1.

Case Numerical Theoretical

Fig. 3�a� 0.3961±0.0071 0.4000

Fig. 3�b� 0.3813±0.0084 0.4000

Fig. 3�c� 0.2979±0.0013 0.3251

Fig. 3�d� 0.2315±0.0026 0.2438

Fig. 6�a� 0.1765±0.0031 0.1959

Fig. 6�b� 0.1972±0.0041 0.2001

Fig. 6�c� 0.2576±0.0042 0.2587

Fig. 6�d� 0.2104±0.0029 0.2187

FIG. 6. The distribution W of the conductance, normalized to the total number of cases, for the same structure as in Fig. 3�d�, but using
energy intervals, shown in each panel, twice as small for the construction of the histograms. Panels �c� and �d� show the same data of Fig.
3�d�, but analyzed inside each of the two subintervals. Panels �a� and �b� show the data for two other similar subintervals. The agreement
with theory is very good.
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which in turn makes use of Eq. �2.19a� and the equations
given in the Appendix. The integrations occurring in the
equations of the Appendix were performed numerically using
a Monte Carlo method �Metropolis algorithm�. The optical S

matrix �S�E�� that was used was extracted from the data at
E=75 and across the ensemble; it is given in the following
equation for Fig. 7�a�:

�S�E�� = �
− 0.0312 + 0.0259i 0.0805 − 0.0393i − 0.1391 + 0.0599i 0.1186 + 0.0908i

0.0805 − 0.0393i − 0.1600 + 0.2470i − 0.0763 − 0.0091i 0.0982 + 0.0056i

− 0.1391 + 0.0599i − 0.0763 − 0.0091i 0.1032 + 0.0091i 0.0357 − 0.0556i

0.1186 + 0.0908i 0.0982 + 0.0056i 0.0357 − 0.0556i 0.0723 + 0.0764i
� , �3.2�

while for the cavity shown in Fig. 7�b�, the optical S matrix is given by

�S�E�� = �
0.1536 − 0.1256i 0.0469 + 0.0313i 0.0703 − 0.4275i 0.0743 − 0.2620i

0.0469 + 0.0313i 0.0777 − 0.0255i 0.0204 + 0.2628i 0.7589 + 0.1623i

0.0703 − 0.4275i 0.0204 + 0.2628i − 0.0135 − 0.1261i 0.0929 − 0.0125i

0.0743 − 0.2620i 0.7589 + 0.1623i 0.0929 − 0.0125i − 0.0452 − 0.0195i
� . �3.3�

The blocks in the two previous equations indicate the optical
transmission and reflection matrices, as in Eq. �A5�. Notice
that �S�E���0 in Eq. �3.2�, while Eq. �3.3� shows a large
direct transmission.

The results given in Fig. 7 show a strong effect of direct
processes on the conductance distribution, whose trends are
well described by Poisson’s kernel.

2. Statistical properties of the shot-noise power spectrum

The theoretical predictions for the average of the shot-
noise power spectrum of Eq. �2.21� were compared with the
results of the numerical simulation. Notice that in the two-
channel case the statistics of the shot-noise power spectrum
gives information which is not contained in the conductance
distribution. The comparison is shown in Table III for the
same cases denoted as �a� and �b� in Fig. 7. We note that case
�a�, whose �S� is close to zero, compares reasonably well
with the theoretical result ��P� / �PP�=0.31� of Eq. �2.27� for
N=2 and �S�=0.

IV. CONCLUSIONS AND DISCUSSION

The statistical properties of the dc conductance in chaotic
cavities have been investigated in the past in the framework
of the maximum-entropy model described in the previous
sections. Within the same framework, in the present paper
we have gone further by studying, in addition to the conduc-
tance, the zero-frequency shot-noise power spectrum. The
shot noise is a more complicated quantity than the conduc-
tance, in the sense that it involves electron correlations due
to the Pauli principle. We have been particularly interested in
the effect that direct processes consisting of whispering gal-
lery modes have on the conductance and on the shot-noise
power; these modes were promoted by choosing properly the
structure of the cavities and the position of the leads. This

kind of direct processes were, in fact, avoided in previous
publications by some of the present authors. For the two
symmetries ��=1,2� studied here we have found that the
ratio �P���� / �PP����, as a function of the number of channels
for �S�=0, is larger for �=1 than for �=2, indicating that
small values of the transmission eigenvalues are favored by
time-reversal symmetry.

We have found that the agreement between the theoretical
predictions and the results of computer simulations per-
formed for one and two open channels is generally good.
However, the systematic discrepancies that we have ob-
served lead us to revise the notions under which our theoret-
ical model has been constructed.

Indeed, the maximum-entropy model described in Sec. II
relies on a number of assumptions. For instance, the extreme
idealization is made of regarding S�E� as a “stationary ran-
dom �matrix� function” of energy. As a consequence, the
optical matrix �S�E�� is constant with energy and the charac-
teristic time associated with direct processes is literally zero.
The property of stationarity allows defining the notion of
ergodicity which, together with analyticity, gives the repro-
ducing property, Eq. �2.3�, which is essential for the defini-
tion of Poisson’s kernel �PK� of Eq. �2.4�.

Needless to say, in realistic dynamical problems station-
arity is only approximately fulfilled, so that one has to work
with energy intervals �E across which the “local” optical
matrix �S�E�� is approximately constant, while, at the same
time, such intervals should contain many fine-structure reso-
nances. This compromise can actually be realized in nuclear
physics, where the optical �S� arises from the tail of many
distant resonances or from a single-particle resonance that
lies so far away in the complex-E plane to act as a smooth
background on top of the fine-structure compound-nucleus
resonances; hence the huge separation between the two time
scales. In contrast, as we saw in Sec. III, such a compromise
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is difficult to fulfill for the physical systems studied here: this
we believe to be the origin of the discrepancies observed
between theory and numerical simulations. �Indeed, discrep-
ancies similar to the ones that we have observed in this paper
were already there, to a certain extent, in Refs. 3 and 4, but
were overlooked at that time.� In the present paper we give
evidence that reducing �E literally to a point and collecting
data over an ensemble constructed by changing the position
of the obstacle inside the cavity, the agreement between
theory and experiment is significantly improved, being ex-

cellent in several cases. In other words, PK gives a good
description of the statistics of the data taken across the en-
semble.

It is interesting to remark that also in Ref. 3 cases had
been found in which stationarity obviously did not hold. En-
ergy averages were out of the question in those cases, so that
an ensemble was generated by adding “noise” along the wall:
it was found that PK gave an excellent description of the data
collected across the ensemble at a fixed E. This point was
merely indicated at that time and no results were published.

Thus the results shown in the present paper give evidence
that PK is valid beyond the situation where it was originally
derived, which required the properties of analyticity, station-
arity, and ergodicity, plus a maximum-entropy ansatz. It is as
though the reproducing property of Eq. �2.3� were valid even
in the absence of stationarity and ergodicity �analyticity is
always there, of course�. Even at the present moment we are
unable to give an explanation of this fact. A few remarks are
in order in connection with this point.

Let us take the invariant measure d��S0� of Sec. II as a
model for the description of scattering by a chaotic cavity
described by the scattering matrix S0 and assumed to have
ideal coupling to the leads. Brouwer has shown �see Ref. 16,
Sec. V� that when such a chaotic cavity is coupled to the
leads by means of a tunnel barrier �nonideal coupling� de-
scribed by a fixed scattering matrix S1, say, the resulting S,
constructed using the combination law of S0 and S1, is dis-
tributed according to PK. Brouwer’s proof, being essentially
a change of variables from S0 to the final S, does not require
stationarity, or ergodicity, or the maximum-entropy ansatz;
however, it neglects evanescent modes between the barrier
and the cavity. In other words, the reproducing property,
which is fulfilled identically for the invariant measure,10,11 is
not destroyed by the presence of the tunnel barriers. The
latter certainly give rise to a nonzero �S�, so that the direct
processes described by this �S�, being produced by the tunnel
barriers, take place outside the cavity �see Fig. 2 in Ref. 16�.
In contrast, when direct processes take place inside the sys-
tem, it is not possible, in general, to write the total S as the
combination of an S0 and a fixed S1, as required by Brouw-
er’s analysis. Take, for instance, the system shown in Fig.
3�d�. If we had, say, a long “neck” between the small cavity
and the big one, then we could define scattering matrices S1
for the former and S0 for the latter and combine them disre-
garding evanescent modes to obtain the total scattering ma-
trix S. However, this is not the case for the actual system
under study. As an approximation, we might think of assign-
ing to the small and big cavities of the system of Fig. 3�d�
the scattering matrices S1 and S0, respectively, that would
occur if we added the neck between the two; the total S
obtained by combining these open-channel S1 and S0 would

TABLE III. The shot-noise power spectrum of Eq. �2.21�,
N=2.

Case Simulation Theoretical

�a� 0.2959±0.0030 0.3300

�b� 0.1144±0.0011 0.1200

FIG. 7. The distribution W of the conductance, normalized to
the total number of cases, for the structures shown in the insets and
for two open channels �N=2�: the structures in panels �a� and �b�
correspond to those shown in panels �a� and �d� of Fig. 3, respec-
tively. The structure in �a� consists of a Bunimovich stadium con-
nected to two waveguides directly, while in �b� the connection is
done through a smaller half stadium. The histograms were obtained
from a numerical solution of the Schrödinger equation for these
structures at the energy E=75, and constructing an ensemble of 200
positions of the obstacle. The optical S matrix was extracted from
the data and used to obtain, from Poisson’s kernel, the theoretical
distributions; these were computed at 50 points in the interval 0
�T�2, which were then joined to obtain the continuous curves.
The trends shown by the numerical distributions are well described
by theory.
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represent an approximation to the actual problem; however,
we are not in a position to know how close this approxima-
tion would be to the exact solution: we leave this open ques-
tion for future investigation. Once again we seem to find that
the valididty of PK for the systems studied in the previous
section goes beyond the domain in which Brouwer’s result
was derived.

Brouwer has also shown16 that PK for the S matrix can be
obtained from a Lorentzian ensemble of Hamiltonians with
an arbitrary number of levels M. In the limit M→� the
Lorentzian ensemble becomes equivalent to a Gaussian en-
semble. In this limit, in which we believe that the Gaussian
ensemble describes a chaotic cavity, the problem becomes
once again stationary in energy.

It thus seems that a derivation of PK—or at least of the
reproducing property—for chaotic cavities with a general
type of direct processes and in the absence of stationarity is,
to our knowledge, still missing.

When this work was completed, the present authors be-
came aware of a study of the shot noise problem by Savin
et al.,17 and Braun et al.18 in which results similar to those of
our Sec. II C have been obtained.
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APPENDIX: THE POLAR REPRESENTATION, THE
INVARIANT MEASURE, AND SOME STATISTICAL
DISTRIBUTIONS FOR ONE AND TWO CHANNELS

For completeness, we present the explicit parametrization
of the S matrix in the polar representation for N=1 and
N=2 and some of its applications.

The one-channel case, N=1

We write the two-dimensional S matrix in the polar rep-
resentation as

S = �− �1 − �ei�
+�� ��ei�
+��

��ei��+�� �1 − �ei��+�� � = �r t�

t r�
� �A1�

and the optical �S� as

�S� = ��r� �t��
�t� �r��

� , �A2�

where the various entries are complex numbers. For �=1
one has the restrictions �=
 and �=�. The distribution of
the conductance T=� for �=1 can be reduced to quadratures,
with the result given in the text, Eq. �2.11�.

The two-channel case, N=2

The expressions given below are used in the present work
when carrying out the numerical computations; since these
are performed for the orthogonal case, �=1, we restrict our-
selves to this universality class. For �=1 we write the four-
dimensional S matrix in the polar representation as

S = �− v�1��1 − � �v�1��T v�1��� �v�2��T

v�2��� �v�1��T v�2��1 − � �v�2��T� = �r t�

t r�
� .

�A3�

The reflection and transmission matrices r, t, etc., are two
dimensional. The matrix � is two dimensional and diagonal:
�ab=�a�ab, with 0��a�1. The matrices v�1� and v�2� are
two-dimensional unitary matrices which can be written as

v�i� = �− �1 − �̃�i�ei�
�i�+��i�� ��̃�i�ei�
�i�+��i��

��̃�i�ei���i�+��i�� �1 − �̃�i�ei���i�+��i�� � . �A4�

The optical �S� is written as

�S� = ��r� �t��
�t� �r��

� , �A5�

where the various entries are two-dimensional matrices.
The invariant measure for v�i� is given by

d��v�i�� = d�̃�i�d
�i�d��i�d��i�d��i�

�2	�4 , �A6�

with the range of variation of the parameters

0 � 
�i�,��i�,��i�,��i� � 2	 , �A7a�

0 � �̃�i� � 1, �A7b�

and is normalized as �d��v�i��=1.
The joint probability distribution of �1 ,�2 is given in Eq.

�2.19a� of the text: it is a ten-dimensional integral, with
d��v�i�� given in Eq. �A6�, the range of variation of the pa-
rameters being specified by �A7�.

*On leave from Instituto de Física, U.N.A.M., Apartado Postal 20-
364, 01000 México, Distrito Federal México.
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