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Two Ising models on a rectangular lattice ��1 model and �2 model� linked to three- and four-spin interac-
tions are used to describe the sequence of tilted phase transitions in monolayers of amphiphilic long-chain
molecules on an air-water surface. Starting from Morse atom-atom potentials self-consistent equations for
basic thermal averages are derived in terms of a mean-field approximation. We employ the model for
CH3�CH2�18COOH at two values of the molecule density and obtain all known tilted phases, including an
intermediate one.
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I. INTRODUCTION

Insoluble molecular monolayers at an air-water surface
�Langmuir monolayers� exhibit very rich thermodynamical
behavior.1–7 To describe the phase transitions in monolayers
of long-chain molecules, various theoretical8–15 and
computational16–19 techniques are used. Among condensed
states of Langmuir monolayers are phases with collective tilt
about the water surface of long-axis amphiphilic molecules
in a favorite direction. In the tilted phases the heads of am-
phiphilic molecules are packed in a centered rectangular lat-
tice, the tilt is along one of a two symmetry directions of the
lattice, and a backbone plane of the molecules about their
long axis is either twofold orientational disordered or her-
ringbone �pseudoherringbone� ordered. It is seen that we
have four possible angular positions. To obtain the tilted
phase transitions in the monolayers of long-chain molecules
two Ising models are used ��1 model and �2 model�.

Our model consists of a two-dimensional orthorhombic
array �n� of amphiphilic molecules. The array of molecules
can be represented by a two-dimensional lattice n=n1a1
+n2a2, where n1 and n2 are integers and unit-cell vectors are

a1 = �b/2,a/2�, a2 = �b/2,− a/2� , �1�

where a and b are the lattice spacing of a face-centered rect-
angular lattice �Fig. 1�. The molecules are regarded as a rigid
body; i.e., bond lengths and angles are fixed. The angular
position of the molecules is represented by the Eulerian
angles �n= ��n ,�n ,�n�. The azimuth and the tilt of the long
axis of the molecules are described accordingly: �n, �n, and
�n describe the rotation of the molecule about the long axis
�Fig. 1�. The coordinates of the ith atom of the molecule at
the n site,

rni = n + T��n�r0i, �2�

where T��n� is the Euler rotational matrix and r0i the coor-
dinates of the atom for the case �=�=�=0. Atoms of
nearest-neighbor �NN� molecules at sites n and m interact
through a pair potential of the form

Vni,mj = V0�exp�− 2��R − rni,mj�� − 2 exp�− ��R − rni,mj��� ,

�3�

where rni,mj = �rni−rmj� is the distance between atoms i and j,
the molecules, and V0, R, and � are interaction parameters
which depend on the type of atoms. The parameters for hy-

drogen, carbon, and oxygen atoms are given in Table I.

II. THE MODEL

Taking into account the symmetry of the lattice we as-
sume that in the high-temperature phase a molecule may
occupy one of four equilibrium angular positions

�n = ���1n + 1�/2 + �0�2n, �n = �0, �n = �0�2n, �4�

where �1n ,�2n= ±1, �0, �0, �0 are angles which minimize
the system energy in the phase. Summing Eq. �3� over all
atoms, we obtain the potential as a function �1n and �2n
only:

V��1n,�2n;�1m,�2m� = �
i,j

Vni,mj . �5�

Then for any configuration ��1n�, ��2n� the system energy is

FIG. 1. Schematic diagram showing the rotational position of
long-chain zigzag molecules. Angles � and � are the tilt angle and
tilt direction of the chain, respectively, and � characterizes the ro-
tation angle about the long axes of the molecule. The black circles
indicate the positions of a head of the chain molecules. Lattice
spacings a and b are parameters of a face-centered rectangular lat-
tice; integers 1,…,6 are the numbers of neighbors of a central
molecule.
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E =
1

2�
nm

V��1n,�2n;�1m,�2m� . �6�

In order to simplify expression �6�, we introduce the projec-
tion operators �1n

± = �1±�1n� /2 and �2n
± = �1±�2n� /2. Then

using the identity22

V��1n,�2n;�1m,�2m� = V��1n,�2n;�1m,�2m���1n
+ + �1n

− �

��2n
+ + �2n

− ���1m
+ + �1m

− ���2m
+ + �2m

− � = �1n
+ �2n

+ �1m
+ �2m

+

Vnm�+ , + ; + , + � + �1n
+ �2n

+ �1m
+ �2m

− Vnm�+ , + ; + ,− � + ¯

+ �1n
− �2n

− �1m
− �2m

− Vnm�− ,− ;− ,− � , �7�

where Vnm�+, + ; + , + �=V��1n=1,�2n=1;�1m=1,�2m=1�,
Vnm�+, + ; + ,−�=V��1n=1,�2n=1;�1m=1,�2m=−1� , . . .,
Vnm�−,−;− ,−�=V��1n=−1,�2n=−1;�1m=−1,�2m=−1�,
we can write Eq. �5� in terms of �1n and �2n:

E = E0 + �
n

�B1�n��1n + B2�n��2n + B3�n��1n�2n�

−
1

2�
nm

�J1�n,m��1n�1m + J2�n,m��2n�2m

+ D1�n,m��1n�2n�1m�2m� + �
nm

�J3�n,m��1n�2m

+ C1�n,m��1n�2n�1m + C2�n,m��1n�2n�2m� , �8�

where sums run over NN molecules and coefficients E0,
B1 , . . . ,B3, J1 , . . . ,J3, C1, C2, and D1 consist of linear com-
binations of products ±1 and the potentials �5�. The coeffi-
cients B1, B2, and B3 are equal to zero due to the symmetry
of the system �see the Appendix�. To paraphase, the mini-
mum E0=E0�� ,� ,�� with respect to the angles gives equi-
librium �0 ,�0 ,�0 for Eq. �4�. We have obtained Hamiltonian
of two superposed Ising models ��1 and �2� coupled by two-,
three-, and four-spin interactions.

III. MEAN-FIELD THEORY

The simplest way of getting an approximate analytic ex-
pression for the thermodynamic properties of the model is

usually by means of the mean-field �MF� approximation. In
the MF approximation the Hamiltonian �8� can be written as

EMF = HMF + � . �9�

The term HMF is a function of the variables �1n and �2n,

HMF = − �
n

�H1�n��1n + H2�n��2n + H3�n��1n�2n� ,

�10�

where

H1�n� = �
m

�J1�n,m��̄1m − J3�n,m��̄2m − C1�n,m��1m�2m� ,

H2�n� = �
m

�J2�n,m��̄2m − J3�n,m��̄1m − C2�n,m��1m�2m� ,

H3�n� = �
m

�D1�n,m��1m�2m − C1�n,m��̄1m

− C2�n,m��̄2m� ,

and �̄1n, and �̄2n, and �1n�2n are the thermal averages at site
n.

The second term from Eq. �9�,

� = E0 +
1

2 �
n,m

�J1�n,m��̄1n�̄1m + J2�n,m��̄2n�̄2m

+ D1�n,m��1n�2n�1m�2m� − �
n,m

�C1�n,m��̄1n�1m�2m

+ C2�n,m��̄2n�1m�2m + J3�n,m��̄1n�̄2m� , �11�

is a constant with regard to the variables �1n, �2n.
The single-site partition function produced by Hamil-

tonian �10� is

Zn = 4�cosh�h1n�cosh�h2n�cosh�h3n�

+ sinh�h1n�sinh�h2n�sinh�h3n�� , �12�

where h	n=H	�n� /T. We have chosen a unit system with the
Boltzmann constant equal to unity.

The basic averages are obtained by a self-consistent
method from a request that an approximate free-energy func-
tion

TABLE I. Interaction parameters.

H-Ha C-Ca O-Oa H-Cb H-Ob C-Ob

V0 �K� 6.01 33.72 61.52 14.22 19.21 45.55

R �Å� 2.91 3.70 3.25 3.34 3.06 3.52

k �Å−1� 1.6 1.9 1.3 1.75 1.45 1.46

aThe potential parameters for the H-H and C-C interactions and the potential parameters for the O-O inter-
actions were taken from Refs. 20 and 21, respectively. We fitted these potentials to the potential �3� by
requiring the two potentials to have the same well depth, equilibrium separation, and second derivative with
respect to a distance at the equilibrium separation.

bAll mixed parameters were obtained through combining rules V0
ij =	V0

iiV0
j j, �ij =

1

2
��ii+� j j�, Rij

=
�iiRii+� j jRjj

�ii+� j j
.
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F = − T ln Sp exp�− EMF/T� = − T�
n

ln Zn + � �13�

be minimized by the correct choice of the averages23

�̄1n = �tanh h1n + tanh h2n tanh h3n�/D ,

�̄2n = �tanh h2n + tanh h1n tanh h3n�/D ,

�1m�2m = �tanh h3n + tanh h1n tanh h2n�/D ,

D = 1 + tanh h1n tanh h2n tanh h3n. �14�

Whenever we obtain several solutions of the system �14�, we
select the solution which minimizes the free energy given by
Eq. �13�. Note that in writing the free energy �13� as we
have, we have missed terms which are uncoupled with vari-
ables �1n and �2n because one cannot change the minimiza-
tion conditions �14�.

IV. PHASE DIAGRAM

Let us use the model in order to consider successive phase
transitions in Langmuir monolayers of eicosanoic acid �
CH3�CH2�18COOH or C20�. First, fatty acid molecules have
simple structure. Second, C20 monolayers are known to ex-
hibit a variety of positionally ordered tilted phases. Third, in
a first approximation for a given length of the molecules we
can neglect the effect of the molecule-liquid interface. The
parameters of atom-atom interactions between different
chains are listed in Table I. Bond angles are constrained ideal
valence angles. Bond lengths are set equal to the following
values: lCC=1.53 Å, lCH=1.04 Å, lCO=1.25 Å, and lOH
=1.04 Å. At first, we calculate equilibrium angles �0, �0, and

0 and equilibrium parameters a and b of the lattice. For the
surface area per molecule, S0=20.01 Å2, the minimum E0 of
Eq. �8� yields the following equilibrium angles: �0=32°, �0
=1.7°, and 
0=180° and a=4.81 Å and b=8.33 Å lattice
constants. This lattice is the hexagonal lattice slightly
stretched in the next-nearest-neighbor �NNN� direction.

Next, using the equilibrium values we obtain the coupling
constants J1, J2, J3, C1, C2, and D1. They are shown in Table
II for the nearest neighbors enumerated according to Fig. 1.

Third, we calculate solutions of Eqs. �14� as a function of
temperature. Finally, we choose the solutions that give the
minimum to the free energy �13�. Figure 2 shows the calcu-
lated phase diagram plotted as a function of temperature.
Before describing the solutions of Eqs. �14�, it is useful to
find a thermal average of atom coordinates. Using Eq. �4� in
Euler’s matrix T��n�, we can write

X̄ni = �̄1n�cos �0 cos �0 cos �0 − sin �0 sin �0��r0i�x

+ �1n�2n�cos �0 cos �0 sin �0 + sin �0 cos �0��r0i�y

− �̄1n cos �0 sin �0�r0i�z,

Ȳni = − �1n�2n�sin �0 cos �0 cos �0 + cos �0 sin �0��r0i�x

+ �̄1n�sin �0 cos �0 sin �0 − cos �0 cos �0��r0i�y

− �1n�2n sin �0 sin �0�r0i�z,

FIG. 2. C20 phase diagram versus temperature at area per mol-
ecule, S0=20.01 Å2. Dashed lines separate phases from each other.
The phases presented are disordered untilted paraphase “para,”
tilted hexatic phase Ov, one-dimensional crystal phases L2h, L2�, and
I the intermediate phase.

TABLE II. Coupling coefficients �8�, measured in units of K. Numbers of columns correspond to numbers
of the nearest neighbors according to Fig. 1.

1 2 3 4 5 6

J1 121.3 121.3 121.3 121.3 −52.5 −52.5

J2 −60.3 −60.3 −60.3 −60.3 71.8 71.8

J3 −14.9 −14.9 14.9 14.9 30.5 −30.5

J4 14.9 14.9 −14.9 −14.9 −30.5 30.5

C1 79.4 −79.4 79.4 −79.4 0.0 0.0

C2 79.4 −79.4 79.4 −79.4 0.0 0.0

C3 −2.7 2.7 2.7 −2.7 0.0 0.0

C4 2.7 −2.7 −2.7 2.7 0.0 0.0

D1 52.2 52.2 52.2 52.2 85.6 85.6
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Z̄ni = − sin �0 cos �0�r0i�x + �̄2n sin �0 sin �0�r0i�y

+ cos �0�r0i�z, �15�

where X̄ni, Ȳni, and Z̄ni are the average coordinates of the ith
atom of the molecule at the n site.

Let us list the phases given.
�i� The simplest solution of Eqs. �14� describes a

paraphase. In this phase neither �̄1n nor �̄2n �nor anything
else� is ordered. The average tilt of the molecules equal zero,
which is easy to see from Eq. �15�, and in this sense,
paraphase is untilt phase.

�ii� Ov phase �tilt direct NNN� in which �1 is ordered
ferromagnetically �̄1n=�1�0 but �̄2n=�1n�2n=0. The tran-
sition temperature Tc and the corresponding structure of or-
dered phase is determined by the wave vector k0 for which
the Fourier transform of the interactions J1�n ,m�,

J1k = �
m

J1�n,m�exp�ik�n − m�� , �16�

takes on the maximum value and Tc=J1k0
. The transform

�11� under nearest-neighboring chain-chain coupling is given
by the following expression:

Tc = 2J1�a1�cos 2��1 + 2J1�a2�cos 2��2

+ 2J1�a1 − a2�cos 2���1 − �2� ,

where the wave vector k=�1b1+�2b2 is written about the
reciprocal lattice vectors

b1 = 2��1/b,1/a�, b2 = 2��1/b,− 1/a� , �17�

and J1�a1�, J1�a2�, and J1�a1−a2� are the coupling constants
along the vectors ±a1, ±a2, and ±�a2−a1� accordingly. The
Ov phase structure is described by the wave vector k1
= �0,0�.

�iii� L2h phase �tilt direct NN� in which �1 is ordered
ferromagnetically �̄1n=�1, but �2n and product �1n�2n are
ordered antiferromagnetically �̄2n= ±�2, �1n�2n= ±�3. The
L2h phase structure is described by the wave vectors k1
= �0,0� and k2=k3= �0.5,0.5�. It should be noted that the
parameters of H-H and C-C interactions from Table I were
obtained by requiring the temperature of the phase transition
Ov→L2h to be 310 K approximately.24,25 Initial data for the
fit used the atom-atom parameters from Ref. 20.

�iv� The direction of the tilt in chiral phase I is interme-
diate between NN and NNN ones. In Table III the order
parameters and corresponding wave vectors at the beginning
and at the ending of the phase are shown. Note that in this
phase an ordering of molecules is sinusoidally modulated
according to the wave vectors of Table III.

�v� The phase L2� �tilt direct NNN� in which �1n�2n is
ordered ferromagnetically �1n�2n=�3 but �1n and �1n are
ordered antiferromagnetically �̄1n= ±�1, �̄2n= ±�2. The L2�
phase structure is described by the wave vectors k3= �0,0�
and k1=k2= �0.5,0.5�.

In addition to the phases shown in Fig. 2 we also take into
consideration the L2d phase �tilt direct NN� in which �1n�2n
is ordered ferromagnetically �1n�2n=�3�0 but �̄1n=0 and
�̄2n=0. As the surface area per molecule, S0, increasing to
20.92 Å2 and above, the Ov phase free-energy minimum
about the angles �0, �0, and 
0 and lattice parameters a and
b exceeds 1 for L2d phase and therefore the paraphase
→L2d phase transition occurs. For the density, equilibrium
angles are equal to �0=43°, �0=5.6°, and 
0=180° and equi-
librium lattice parameters are equal to a=4.95 Å and b
=8.53 Å. For these values phase transition paraphases
→L2d→L2h→L� take place at 351 K, 302 K, and 295 K,
respectively. Note that the lattice is obtained by a stretching
hexagonal lattice in the NN direction.

V. SUMMARY

In conclusion, we have developed an Ising-like model for
a two-dimensional rectangular lattice of long-chain mol-
ecules. Two coupling Ising models allow us to describe the
sequence of tilted phase transitions in the monolayers. Tilted
phase transitions of Langmuir monolayers are due to a freez-
ing of the jumps of the long chains between fourfold-
degenerated angular positions. Both the succession of order-
ing and its structure depend on the density of long chains by
means of coupling constants. The lattice distortion plays a
crucial role in determining the phase transition sequence.
The distortion of the lattice has been indirectly taken into
consideration by minimization of free energy with respect to
lattice constants. The model has been used to describe suc-
cessive tilted phase transitions of eicosanoic acid monolay-
ers. We have just chosen such densities of chains for which
all known phase transitions for these monolayers can be ob-
tained. The temperatures of phase transitions calculated in
the MF approximation can be regarded as acceptable for the
approximation.

APPENDIX

The coefficient E0 from Eq. �8� is

TABLE III. The order parameters and wave vectors in the inter-
mediate phase.

T �K� 354 346

�1n 0.61 0.21

�2n 0.24 0.03

�1n�2n 0.76 0.71

k1 �0.02,0.47� �0.43,0.45�
k2 �0.49,0.48� �0.48,0.48�
k3 �0.3,0.41� �0.03,0.34�
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E0 =
1

16 �
n,m

�Vnm�+ , + ; + , + � + Vnm�+ , + ; + ,− � + Vnm�+ , + ;− , + � + Vnm�+ ,− ; + , + � + Vnm�+ , + ;− ,− � + Vnm�+ ,− ; + ,

− � + Vnm�+ ,− ;− , + � + Vnm�+ ,− ;− ,− � + Vnm�− , + ; + , + � + Vnm�− , + ; + ,− � + Vnm�− , + ;− , + � + Vnm�− ,− ; + , + �

+ Vnm�− , + ;− ,− � + Vnm�− ,− ; + ,− � + Vnm�− ,− ;− , + � + Vnm�− ,− ;− ,− �� .

The coefficients B1�n�, B2�n�, and B3�n� from Eq. �8� are

B1�n� =
1

16�
m

�Vnm�+ , + ; + , + � + Vnm�+ , + ; + ,− � + Vnm�+ , + ;− , + � + Vnm�+ ,− ; + , + � + Vnm�+ , + ;− ,− � + Vnm�+ ,− ;

+ ,− � + Vnm�+ ,− ;− , + � + Vnm�+ ,− ;− ,− � − Vnm�− , + ; + , + � − Vnm�− , + ; + ,− � − Vnm�− , + ;− , + � − Vnm�− ,− ;

+ , + � − Vnm�− , + ;− ,− � − Vnm�− ,− ; + ,− � − Vnm�− ,− ;− , + � − Vnm�− ,− ;− ,− �� ,

B2�n� =
1

16�
m

�Vnm�+ , + ; + , + � + Vnm�+ , + ; + ,− � + Vnm�+ , + ;− , + � − Vnm�+ ,− ; + , + � + Vnm�+ , + ;− ,− � − Vnm�+ ,− ;

+ ,− � − Vnm�+ ,− ;− , + � − Vnm�+ ,− ;− ,− � + Vnm�− , + ; + , + � + Vnm�− , + ; + ,− � + Vnm�− , + ;− , + � − Vnm�− ,− ;

+ , + � + Vnm�− , + ;− ,− � − Vnm�− ,− ; + ,− � − Vnm�− ,− ;− , + � − Vnm�− ,− ;− ,− �� ,

B3�n� =
1

16�
m

�Vnm�+ , + ; + , + � + Vnm�+ , + ; + ,− � + Vnm�+ , + ;− , + � − Vnm�+ ,− ; + , + � + Vnm�+ , + ;− ,− � − Vnm�+ ,− ;

+ ,− � − Vnm�+ ,− ;− , + � − Vnm�+ ,− ;− ,− � − Vnm�− , + ; + , + � − Vnm�− , + ; + ,− � − Vnm�− , + ;− , + � + Vnm�− ,− ;

+ , + � − Vnm�− , + ;− ,− � + Vnm�− ,− ; + ,− � + Vnm�− ,− ;− , + � + Vnm�− ,− ;− ,− �� .

These coefficients are equal to zero because in the sums for any term we have an opposite one. For example, for B1�n� we have
Vnn+a1

�+, + ; + , + �−Vnn−a1
�−, + ;− , + �=0, Vnn−a2

�+, + ; + , + �−Vnn+a2
�−, + ;− , + �=0, . . ., Vnn+a1

�+, + ; + ,−�−Vnn−a1
�−, + ;− ,

−�=0, and so on.
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