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Spectroscopic properties of large open quantum-chaotic cavities
with and without separated time scales
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The spectroscopic properties of an open large Bunimovich cavity are studied numerically in the framework
of the effective Hamiltonian formalism. The cavity is opened by attaching two leads to it in four different ways.
In some cases, the transmission takes place via standing waves with an intensity that closely follows the profile
of the resonances. In other cases, short-lived and long-lived resonance states coexist. The short-lived states
cause traveling waves in the transmission while the long-lived ones generate superposed fluctuations. The
traveling waves oscillate as a function of energy. They are not localized in the interior of the large chaotic
cavity. In all considered cases, the phase rigidity fluctuates with energy. It is mostly near to its maximum value
and agrees well with the theoretical value for the two-channel case.
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I. INTRODUCTION

During the past years, much interest has been devoted to
the study of the spectral properties of small cavities coupled
to a small number of channels. As a function of the coupling
strength between cavity and attached leads, the results ob-
tained show the resonance trapping effect in theoretical [1]
as well as in experimental [2] studies. Short-lived whispering
gallery modes are formed by attaching the leads in a suitable
manner to cavities of different shapes with a convex bound-
ary [3]. These direct processes can result in deterministic
transport as signified by a striking system-specific suppres-
sion of shot noise [4]. The corresponding pathways are lo-
calized inside the cavities: the whispering gallery modes near
to the convex boundary and the bouncing ball modes around
the shortest pathway between the two attached leads [3].

The whispering gallery modes can be characterized well
by classical values such as pathway length and traveling time
[3]. The last value is related to the lifetime of the correspond-
ing state, for example, to the lifetime of the whispering gal-
lery mode. That means the shorter the pathways of the direct
modes, the shorter the lifetimes of the corresponding reso-
nance states and the better these states are separated from the
other resonance states of the system by their lifetimes. It
follows immediately from these relations that it is easy to
identify the whispering gallery modes inside a small system,
i.e., in a cavity whose attached leads have a width that is
relatively large as compared to the area of the cavity. It
might, however, be difficult to identify them in a large sys-
tem that is relatively weakly coupled to the leads due to its
large area and relatively small width of the attached leads.
Here the pathway between the two attached leads is long.
The question arises, therefore, whether or not whispering
gallery modes can be identified also in large cavities.

Guided by the results of previous calculations for small
cavities [3,4], we have chosen billiards of Bunimovich type
for the study of this question. We opened these billiards by
attaching two leads to them and used four different geom-
etries for the positions and orientations of the leads with the
aim to study the transmission through the cavity under dif-

1539-3755/2006/73(6)/066222(6)

066222-1

PACS number(s): 73.23.—b, 73.63.Kv, 05.60.Gg, 03.65.Yz

ferent conditions. The spectroscopic study is based on the
method of the effective non-hermitian Hamilton operator H
that describes the spectroscopic properties of an open quan-
tum system, i.e. of a quantum system that is opened by em-
bedding it into a common continuum of scattering wave
functions [5]. This means that in the present case leads are
attached to the closed cavity for the propagation of the scat-
tering wave functions corresponding to one channel in each
lead. In some of the open cavities, the expectation value
(t(E)) of the transmission amplitude #(E) shows an oscilla-
tory behavior. The oscillation length depends on the geom-
etry of the attached leads. It may be large for bouncing ball
modes when the distance between the input and output leads
is small. It is, however, much smaller in the case of the
whispering gallery modes that appear in a small attached half
stadium and are characterized by a relatively large distance
between the input and output leads.

The paper is organized in the following manner. In Sec. II,
we provide a few of the basic equations that describe the
different time scales in open quantum systems. The time
scales are determined by the lifetimes of the resonance states
which are obtained from the eigenvalues of the effective
Hamiltonian H_ ¢ describing the open quantum system. They
depend on the manner which the leads are attached to the
quantum billiard. We show further the results of numerical
simulations for the transmission through the four different
cavities. In the case of whispering gallery modes and bounc-
ing ball modes between the two attached leads, (¢(E)) oscil-
lates with a period that is determined by the momentum k
and the geometry of the open cavity. In Sec. III, we consider
the eigenfunctions of the effective Hamiltonian. The eigen-
functions are biorthogonal with the consequence that, in the
regime of overlapping resonances, the real and imaginary
parts of the eigenfunctions may decouple, to a certain degree.
We relate this decoupling to the phase rigidity of the scatter-
ing wave function which expresses the distortion of the scat-
tering wave function by the overlapping of the different reso-
nance states. As for the transmission, we calculate the
expectation value of the phase rigidity. For isolated reso-
nances, the real and imaginary parts of the eigenfunctions are
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related to one another in the standard manner and the trans-
mission takes place by standing waves. In the overlapping
regime, however, the real and imaginary parts of the eigen-
functions decouple from one another and eventually travel-
ing waves arise. When fully evolved, the traveling waves are
superposed by long-lived standing waves. The traveling
waves are described by the so-called optical S matrix. The
results are summarized in the last section.

II. EIGENVALUES OF THE EFFECTIVE HAMILTONIAN
AND SEPARATED TIME SCALES

A. Eigenvalues and transmission

The energies and widths of the resonance states of an
open quantum system can be obtained from the poles of the
S matrix or directly from the eigenvalues z; of the corre-
sponding effective Hamilton operator H. [5]. For a quantum
billiard with two attached leads, the effective Hamiltonian is

[6]

1
Heyg=Hg+ X Ve Veps (1)
¢ ceri  ET-He

where Hp is the Hamiltonian of the closed quantum billiard,
H¢ is the Hamiltonian of the left (C=L) and right (C=R)
lead, and E*=E+i0. The second term of H.g takes into ac-
count the coupling of the eigenstates of Hy via the modes
propagating in the leads when the system is opened. It intro-
duces correlations between the states of an open quantum
system which appear additionally to those of the closed sys-
tem [5]. The (real) eigenvalues E} of the Hamiltonian Hy are
the energies of the discrete states of the closed system, while
the (complex) eigenvalues z, of H.g provide the positions Ey
and widths T’y of the corresponding resonance states of the
open system. There is a one-to-one correspondence between
the number of eigenstates of Hy and that of H .

Since the effective Hamiltonian (1) depends explicitly on
the energy E, so do its eigenvalues z,. The energy depen-
dence is small, as a rule, in an energy interval that is deter-
mined by the width of the resonance state. The solutions of
the fixed-point equations

E) =Re(z)) =k, 2)
and of
F)\ ==2 Im(Z)\)‘E=E}\ (3)

are numbers that coincide approximately with the poles of
the S matrix. The width I'y determines the time scale char-
acteristic of the resonance state N. The amplitude for the
transmission in the one-channel case is [6]

£ £
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N E_Z)\

(4)

where the eigenfunctions of H.y are denoted by ¢, and the
scattering wave functions in the leads by §€. According to
(4), the transmission is resonant in relation to the effective
Hamiltonian Hg. This holds for narrow resonance states as
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well as for the short-lived and long-lived resonance states
that appear after redistribution of the spectroscopic proper-
ties of the system. Such a redistribution is studied first nu-
merically in a nucleus [7] and then analytically, by using
statistical assumptions and neglecting the energy dependence
of the z,, in a large chaotic system [8]. It is caused by branch
points in the complex energy plane [9]. That means the ei-
genvalues z) of H.y determine the time scale of the transmis-
sion.

The coupling matrix elements Vpc,Vp between billiard
and attached leads can be calculated in the tight-binding ap-
proach [6,10]. When they are small, it is Ey~E) and Iy
~ 1"())\, where Eg is the position of the isolated resonance state
and I’ 2 its width that is determined by the V¢, V5. For large
Ve, Vep, however, Eg and E, as well as Fg and I'y may be
very different from one another due to reordering processes
taking place in the system at strong coupling to the environ-
ment (full opening of the quantum billiard). In this regime,
short-lived and long-lived resonance states coexist [5]. Ex-
amples are short-lived bouncing ball modes or whispering
gallery modes that may coexist with long-lived resonance
states in a small quantum billiard [3].

Whispering gallery modes may appear in small chaotic as
well as regular billiards with a convex boundary when fully
opened and the leads are attached to them in a suitable man-
ner. Examples are billiards of Bunimovich and circular type
[3]. The whispering gallery modes are localized near to the
boundary of the billiard. They have an approximately equal
distance in momentum k from one another, and their posi-
tions in energy are determined by the number of nodes which
increases with increasing energy. The widths are proportional
to the length of the pathway along the convex boundary (ex-
cept for threshold effects) [3]. A shot-noise analysis has
shown that they support direct transport processes [4]. They
determine, therefore, the optical S matrix. The long-lived
states however feature indeterministic processes correspond-
ing to the universal prediction of the random matrix theory
[4]. They cause the fluctuations of the transmission probabil-

1ty.

B. Numerical simulation

In this section, we show the results of numerical simula-
tions for the transmission through a cavity of Bunimovich
type with leads attached in four different ways. The calcula-
tions for the transmission are performed by using the bound-
ary element method [11]. The eigenvalues of H. are ob-
tained by applying the tight-binding lattice Green function
method given in Ref. [12] and using the general relation
between H.; and the Green function. The energies and
widths of the resonance states are obtained by solving the
fixed-point equations (2) and (3). The ensemble average (r) is
performed from 200 different positions of an internal ob-
stacle by keeping fixed the area of the billiard. The energy
interval considered is divided usually into 20 energy bins.

In Fig. 1, we show the ensemble expectation values (#(E))
of the transmission as a function of the energy E in the
region E=14-26 for the four cavities shown in the insets of
Fig. 2. The oscillating contribution from the short-lived
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FIG. 1. The ensemble expectation value (#(E)) as a function of
the energy E for the cavities (a), (b), (c), and (d) shown in the insets
of Fig. 2. The cavities consist of a Bunimovich stadium connected
to two wave guides directly, as in panels (a), (b), and (c), or through
a smaller half stadium, as in (d). Full lines, Re{#(E)); dashed lines,
Im(#(E)). Most (t(E)) show oscillations that are related to the dis-
tances between the input and output leads. The energy is in units
#i2/2m and d=1 is the width of the wave guide.

states as well as the shifts between Re{#(E)) and Im{#(E)) can
be seen clearly in the cavities (¢) and (d). Interesting is the
geometry of the cavity (b) where the transmission (t(E))
changes its nature at E~21.

In Fig. 2, we show the eigenvalues of the effective Hamil-
tonian (1) for the four cavities. The values E\ and I') of the
short-lived states are calculated by solving the fixed-point
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equations (2) and (3). We have resonance states with well
separated time scales in Figs. 2(c) and 2(d). In these cases,
(t(E)) is large and oscillates. In Fig. 2(a), separated time
scales cannot be identified and (#(E)) is relatively small. In
Fig. 2(b), separated time scales can be identified but the dif-
ference between the short-lived and the long-lived states is
smaller than in (c) and (d). Furthermore, the widths of the
long-lived states are spread in (b) over a comparably large
range and the widths of the short-lived states show an irregu-
larity around E=21. At this energy, (¢(E)) changes its nature
as can be seen from Fig. 1(b). In any case, Figs. 1(b) and
2(b) show that the sensitivity of (#(E)) against parameter
variations is large when the direct pathway between the input
and output leads is large and not well separated from other
pathways through the interior of the cavity. This sensitivity
can be seen also in comparing the results for the cavities (a)
and (d). While there is almost no separation of the pathways
through the small attached half stadium from those through
the large Bunimovich stadium in (a), both parts are well
separated in (d). As a consequence, we see whispering gal-
lery modes in the small attached stadium in (d) but not in (a).
The short-lived states determine the value of the so-called
optical S matrix.

III. EIGENFUNCTIONS OF THE EFFECTIVE
HAMILTONIAN AND PHASE RIGIDITY

A. Eigenfunctions and transmission

The scattering wave function \Pg is a solution of the
Schrodinger equation (H—-E)WE=0 in the total function
space with the hermitian Hamilton operator H. It reads [5,6]

V|
Vi=gl+ E b+ §c <§c| Vi (¢}\|_ |Z§C>
(S
The ¢, are complex and biorthogonal [5],
(hrlpyr) = )= O\ars (6)
Kenldol=4,=1: Ke\lb)l=B) =0. (7)

Equation (5) shows that the scattering wave function \PC in
the interior region of the quantum dot is determined, above
all, by the complex eigenfunctions ¢, of H.g,

(¢)\| 4 §c>

WE(r) E P () (8)

At the energy E = E,, the eigenfunction ¢, (r) of the effective
Hamiltonian H . gives the main contribution. This holds true
especially at the energy of a narrow resonance state. As a
numerical example, the eigenfunction ¢, of a whispering
gallery mode is shown in Fig. 3 for the cavity (d) and com-
pared with the corresponding scattering wave function \I’E at
the energy E,. The scattering wave function contains contri-
butions from other eigenfunctions also at E=FE,. Neverthe-
less, it shows, at this energy, the typical structure of the whis-
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FIG. 2. The solutions of the fixed-point equations (2) and (3) for the resonance states of the four different cavities. The short-lived states
are marked by crosses, the long-lived ones by dots. A clear separation of the time scales can be seen in (c) and (d). The neighboring
short-lived resonance state in (c) lies at Ey—i/2 I'\=27.74—6.89i. In the insets, the cavities are shown. In order to see the differences
between the four open cavities, the attached leads are also shown up to an arbitrary distance L. The eigenvalues are calculated with L=0.

pering gallery mode. As can be seen from the figure, it is
localized not inside the large Bunimovich cavity but outside
of it in the small half stadium.

The real and imaginary parts of the eigenfunctions ¢, are
more or less decoupled in the regime of overlapping reso-
nances [13]. The value

f dr{|Re ¢>\(")|2 —[Im d’x(")“z 1

Ay

_|@lew
XN

=

j dr{Re (1) -+ [1m ¢,(1)|°
)

is a measure for the biorthogonality of the eigenfunctions of
H,. The phase rigidity |p|*> of the scattering wave function
W(r) is considered in e.g., Refs. [14,15]

f dr¥(r)?

— — 6210

| aneor

J dr{|Re \I~f(r)|2 — [Im ‘17(7’)|2]

J drl|Re \I~f(r)|2 + [Im ‘?(r)|2]
(10)

where 6 is an angle providing that Re W(r) and Im V() are
orthogonal. The value p is related to the r, according to (8).

For an isolated resonance state, Ay=1 and r\=1 at the
energy E=FE,. At this energy, the transmission probability
shows a peak. Approaching a branch point in the complex
energy plane [5] where two eigenvalues 2\, and 2\, coalesce,
A, — and r,—0[13,16]. Here, the widths bifurcate: one of
the states aligns with the channel wave function and becomes
short-lived while the other one becomes long-lived [5].
Eventually, the short-lived and long-lived resonance states
differ strongly from one another and do not cross in the
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FIG. 3. The eigenfunction ¢, of the effective Hamiltonian H,
at the energy E=E) of the whispering gallery mode N (left) and the
scattering wave function ‘I’Ié at the same energy E (right). Ex—i/2
I'\=19.53-2.25i. The ¢, is shown up to the attached lead (L=0)
while the \Ifg is shown, for illustration, also in the lead up to an
arbitrary finite value L.

complex energy plane [13]. Therefore again, as for nonover-
lapping resonances, Ay—1 and ry,—1 at the energies E
=E, of the long-lived states. In the transmission through the
cavity, the short-lived states determine the smooth “back-
ground” while the long-lived states cause the superposed
peaks (fluctuations) in the transmission probability [9].

This picture can be translated to that of “standing” and
“traveling” waves. Standing waves

N
#(r) = 2N)2>) cos[(6, + k,r)] (11)
n=1

cause the Porter-Thomas statistics for the intensity [17]. Tun-
ing the frequency to a resonance, an intensity pattern is gen-
erated that closely follows the profile of this resonance. In
this situation, the resonances are isolated from one another
and Ay— 1, n—1.

When the cavity is fully open, the local field can be
viewed as a sum of a number of traveling modes arriving at
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a point from various scattering processes [17],

N
¥(r) = 2N expli(6, + k)], (12)
n=1

where the phases 6, are completely random and the wave
vectors k, are uniformly distributed. Both Re(¢) and Im()
are independent Gaussian variables leading to the Rayleigh
distribution for the intensity I(r)=|y(r)|*. It applies to a
monochromatic wave propagating in an open system (travel-
ing wave excited by a monochromatic source [17]). In the
corresponding description of this situation with the effective
Hamiltonian formalism, short-lived and long-lived resonance
states coexist in the system and determine, respectively, the
smooth background and the superposed peaks (fluctuations)
of the transmission probability [9]. The short-lived resonance
states are strongly related to the channel wave functions
(scattering states in the leads) due to the large overlap inte-
gral of their wave functions with those of the channel wave
functions. The transmission induced by these states shows,
therefore, the same dependence on the momentum k as the
scattering wave functions §g in the leads (traveling waves).
Obviously, the “monochromatic source” by which the travel-
ing wave is excited according to [17] is, in the one-channel
case, the channel wave function & since it causes the align-
ment of one of the wave functions ¢, in approaching the
branch point in the complex energy plane [5]. The traveling
waves determine the optical S matrix.

B. Numerical simulation

The distribution of the phase rigidity is calculated by
means of (10). We take the expectation value (|p|?) for an
ensemble of 200 cavities with different positions of the ob-
stacle in the interior and for 20 different energy values inside
the energy interval considered. The results are almost the
same in all cases considered, i.e., for the four different open
cavities in the energy interval [22, 23] and, in addition, for
the cavity (b) in the energy interval [20.5, 21.5]. A typical
result is shown in Fig. 4. It agrees well with the theoretical
value (full line in Fig. 4) for a chaotic cavity and two chan-
nels [15]. The phase rigidity is mostly near to its maximum
value in the two-channel case. This corresponds to the fact
that the transmission is caused by either standing waves or
traveling waves with superposed fluctuations. The transition
between the two scenarios takes place in a comparably small
region according to the examples studied in [9,18].

IV. SUMMARY

The spectral properties of an open cavity depend strongly
on the manner the leads are attached to it. We studied the
eigenvalues and eigenfunctions of the effective Hamiltonian
H_;; describing a large cavity of Bunimovich type with two
leads attached in four different ways and one channel in each
lead. The transmission is resonant in all cases in relation to
the effective Hamiltonian of the open quantum system. In
some cases, the transmission takes place via standing waves
in the cavity with an intensity that closely follows the profile
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FIG. 4. The ensemble and energy averaged phase rigidity (10)
for resonance states of the cavity (c). Energy interval [22, 23]. The
full line is calculated from the equation for the phase rigidity dis-
tribution in the case of a chaotic cavity with energy averaging and
two channels [15]. The results for the cavities (a), (b), and (d), see
insets in Fig. 2; in the same energy interval [22, 23] as well as those
for the cavity (b) in the energy interval [20.5, 21.5] are nearly the
same.

of the resonances. In other cases, two different types of reso-
nance states appear which differ by their lifetimes. The short-
lived states cause traveling modes while the long-lived states
appear as fluctuations of the transmission probability. The
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short-lived states, including the whispering gallery modes,
cannot be identified in the interior of large cavities where the
pathway between input and output leads is large. Therefore
their widths are relatively small in this case, and it is impos-
sible to identify them in the “sea” of long-lived resonance
states.

The optical S matrix is related to the short-lived states
(traveling waves) as can be seen from the eigenvalues and
eigenfunctions of H.g. This relation is, however, not neces-
sarily true also in the opposite direction: the eigenvalues of
H, ¢ may show separated time scales while the optical S ma-
trix is, nevertheless, small. In such a case, the short-lived
modes exist, according to our numerical results, inside the
cavity, and their spectroscopic properties are very sensitive
against small parameter changes. In the four cases studied by
us, ballistic modes do not appear in the interior of the large
chaotic cavity.

In all considered cases, the phase rigidity fluctuates as a
function of energy but is mostly near to its maximum value.
The distribution is characteristic of the two-channel case.
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