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To date, the main attention in quantum computa-
tions is focused on qubits, i.e., physical systems with
two stationary states [1], e.g., nuclear spins 

 

I

 

 = 1/2. As
achievements, we mentioned the realization of Shor’s
factorization algorithm on 7 qubits by the NMR meth-
ods [2] and the receipt of an effectively pure state on 12
qubits [3]. One of the causes of the achieved progress is
that the quantum algorithms in binary logics are most
developed [1]. However, quantum systems with numer-
ous states are much more widespread in nature: quadru-
pole nuclei with spin 

 

I

 

 > 1/2, ions, radicals or molecular
magnets with multilevel electronic states, spin clusters
with strong spin–spin interaction, etc. Many authors
think that the use of such 

 

d

 

-level systems (qudits) in
quantum computations will be more profitable.
Although it has been already proved that any unitary
transformation of qudits can be represented in the form
of elementary logical operators (gates), particular
schemes of basic algorithms appropriate for physical
realization have not yet been developed. This is also the
case for the quantum Fourier transform, which is of key
importance in many quantum algorithms. The quantum
Fourier transform is realized by the Walsh–Hadamard
matrix [1, 4]

(1)

where

on a 

 

d

 

-dimension state vector.
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Gates are, as a rule, experimentally realized by
means of pulses of the RF magnetic field in NMR or
laser pulses in optics [1]. For quantum systems with
nonequidistant levels, the action of each such pulses is
described by the rotation matrix for two states of the
system the difference of whose energies is equal to the
pulse frequency. Klimov et al. [5] found the sequence
of laser pulses for realizing matrix (1) of the quantum
Fourier transform on qutrits (

 

d

 

 = 3). Fujii et al. [4] gave
the Jarlskog’s parameterization of 

 

QFT

 

d

 

 for 

 

d

 

 = 3, 4,
and 5, but the sequence of pulses was not obtained.
Moreover, Fujii et al. [4] concluded that qudit theory is
not realistic for 

 

d

 

 > 5, because the formulas were too
complicated. Brennen et al. [6] described the general
procedure of the representation of an arbitrary unitary

 

d 

 

×

 

 

 

d

 

 matrix in terms of the product of selective rotation
matrices. However, the procedure is laborious, because
numerous such matrices (about 

 

d

 

2

 

) must be calculated.
In this work, we show that the results that have been
already obtained for multispin systems can be applied
to multilevel systems by using the virtual spin formal-
ism proposed by Kessel et al. [7–9]. Our approach
makes it possible to represent the 

 

QFT

 

d

 

 operators in the
form of the sequences of the rotation operators by
selective RF pulses for large 

 

d

 

 = (2

 

I

 

1

 

 + 1)(2

 

I

 

2

 

 +
1)…(2

 

I

 

n

 

 + 1), where 

 

I

 

1

 

, 

 

I

 

2

 

…

 

I

 

n

 

 are virtual spins.

For a system consisting of 

 

n

 

 qubits, the network of
quantum gates for the quantum Fourier transform on

 

N

 

 = 2

 

n

 

 states is well known [1, 2, 10] (operators act
from left to right):

(2)

where 

 

H

 

i

 

 is the Hadamard operator acting on the 

 

i

 

th
spin (qubit) and 

 

B

 

ij

 

 = 

 

B

 

ij

 

(

 

θ

 

) is the operator of the con-

QFT N H1B1 2, H2B1 3, B2 3, H3…Hn 1– B1 n, B2 n,=

…Bn 2– n, Bn 1– n, Hn,
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trolled phase shift by the angle 

 

θ

 

 = 

 

π

 

/2

 

i

 

 – 

 

j

 

. In the matrix
form, they are represented as

(3)

We use the sequential numeration of levels (states)
beginning with the ground state: 1, 2, …, 

 

m

 

, …, 

 

N

 

. The
corresponding states of spins (real or virtual) are deter-
mined by the binary representation of 

 

m

 

 – 1 for the level

 

m

 

, e.g., 

 

|

 

00

 

〉

 

, 

 

|

 

01

 

〉

 

, 

 

|

 

10

 

〉

 

, and 

 

|

 

11

 

〉

 

 for two qubits of the
four-level system. The application of network (2)
implying the direct (tensor) product of matrices (3) act-
ing on different spins yields a state that is bit-to-bit inverse
to that obtained after the application of operator (1). To
reduce the result to the corresponding form, it is necessary
to apply the state permutation operator 

 

SWAP

 

 [1].
Dorai and Suter [10] demonstrated how network (2)

is realized for the quantum Fourier transform by means
of selective RF pulses using the following formula of
the transformation of operator 

 

B

 

ij

 

(

 

θ

 

) (3) to the operator
of the selective rotation of two last states:

(4)

Hereinafter, the superscript 

 

r

 

 – 

 

s

 

 means a selective pulse
at the 

 

r

 

  

 

s

 

 transition, which turns by the angle rep-
resented in the parentheses, and the superscript 

 

i

 

 or 

 

i

 

, 

 

j

 

means a selective pulse acting on the corresponding
qubit or qubits. The subscript indicates the rotation axis

 

X

 

, 

 

Y, or Z. Dorai and Suter [10] represented sequences
of pulses for two qubits:

(5)

and for three qubits:

(6)
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π
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⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

1

SWAP 2 3( )

1 4 7 9 2 5 8 10 10
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3 6
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X
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1
2
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X
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3
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⎧ ⎫

X

7–8
1
4
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⎨ ⎬
⎧ ⎫

X

5–6
1
2
---π
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⎨ ⎬
⎧ ⎫

X

3–4

3
8
---π
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⎧ ⎫

Z

1
1
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---π

⎩ ⎭
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⎧ ⎫

Z

2

SWAP 2 5, 4 7( ).

1 4 7 10 13 16 19
22 25 27 29 31

2 5 8 11 14 17 20
23 26 28 30 32

23

20 32 30 28

3 6 9 12 15 18 21 24 33 34 35 36

Using the symmetry of sequence (2), we permutate the
Hadamard operators compared to [10]. The arrows
between pulses show the time direction. The ordinal
numbers of selective RF pulses used in this operator are
shown under each pulse in Eqs. (5) and (6).

The quantum network for the quantum Fourier
transform on N = dn states of the system of n qudits with
the same number of levels was considered in [11]. Its
difference from network (2) on qubits is in the change
of the operators Hi to the operators QFTd and the oper-
ator Bij(θ) to the operator of the controlled phase shift
with a diagonal matrix in the space of two-qudit states
[5, 11, 12] of the dimension d2 with the elements

(7)

To expand the sequence of pulses to the multilevel
system, it is necessary to assign real qubits or qudits to
virtual ones. We begin with the case d = 2n. The selec-
tive pulse operators from Eqs. (5) and (6) are directly
transferred. For the Hadamard operators written in
terms of pulses acting on individual spins and the
SWAP operators presented in [10], we choose ana-
logues consisting of selective pulses. Thus, we find the
following sequence of 13 pulses for QFT4:

km Pij d d θ, ,( ) km〈 〉 ikmθ( ),exp=

k m, 0 1 2… d 1–( ), θ, , 2π/d j i– 1+ .= =

π
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⎩ ⎭
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⎩ ⎭
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⎜ ⎟
⎜ ⎟
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⎩ ⎭
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⎜ ⎟
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and the following sequence of 36 pulses for QFT8:

1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

π{ }X
3
8
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1–5

1 2 3

1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

π{ }X
3
8
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

2–6

4 5 6

1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

π{ }X
3
8
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

3–7

7 8 9

1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

π{ }X
3
8
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

4–8

10 11 12

1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

π{ }X
1
4
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1–3

13 14 15

1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

π{ }X
1
4
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

2–4

16 17 18

1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

3
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

X

1
4
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

5–7

19 20 21

1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

3
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

X

1
4
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

6–8

22 23 24

We note that the resulting matrices differ from Eq. (1)

by the phase factors exp  and exp  for d =

4 and 8, respectively.

Let us consider the case N ≠ 2n and the simplest six-
level system. In order to determine QFT6, we represent
this system as consisting of a virtual qutrit (d1 = 3) and
qubit (d2 = 2) with the states |00〉, |01〉, |10〉, |11〉, |20〉,
and |21〉. We generalize the above quantum Fourier
transform schemes for the case of two different qudits:

(8)

where k = 0, 1, 2…(d1 – 1), m = 0, 1, 2…(d2 – 1), and
θ = 2π/d1d2 in Eq. (7). Using scheme (8), we obtain the
following sequence of 33 selective pulses for QFT6:

1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

π{ }X

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1–2

25 26

1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

3
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

X

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

3–4

27 28

1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

5
4
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

X

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

5–6

29 30

1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

7
4
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

X

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

7–8

31 32

2π{ }Z π{ }Y

⎝ ⎠
⎜ ⎟
⎛ ⎞

2–5

33 34

2π{ }Z
4–5 3π{ }Y

4–7.
35 36

i
11π

8
---------⎝ ⎠

⎛ ⎞ i
29π
16

---------⎝ ⎠
⎛ ⎞

d1 QFTd

SWAP
d2 P(d1, d2, θ)

1

QFTd2
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2
3
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

3
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

4
3
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

3–5

1 2 3

13
6
------π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

2
2

3
-------⎝ ⎠

⎛ ⎞arccos
⎩ ⎭
⎨ ⎬
⎧ ⎫

X

11
6
------π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1–3

4 5 6

4
3
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

3
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

X

2
3
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

1–5

7 8 9

π{ }Z
1–3 2

3
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

3–5

10 11

2
3
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

3
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

4
3
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

4–6

12 13 14

13
6
------π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

2
2

3
-------⎝ ⎠

⎛ ⎞arccos
⎩ ⎭
⎨ ⎬
⎧ ⎫

X

11
6
------π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

2–4

15 16 17

4
3
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

3
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

X

2
3
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

2–6

18 19 20

π{ }Z
2–4 2

3
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

4–6

π{ }Z
1–2

21 22 23

π{ }Z
3–5 2π{ }Z

1–3 7
3
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Z

4–6
7
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

1–2

24 25 26 27

3π{ }X
1
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

3–4

3
2
---π

⎩ ⎭
⎨ ⎬
⎧ ⎫

Y

5–6

28 29 30

Pulses with rotation about the z axis are realized in

the form of a composed z pulse [10]  ≡

    . Other meth-
ods also exist, in particular, by means of the phase shift
of following pulses [2] or by means of two phase-

shifted π pulses    [13]. Selec-
tive pulses on forbidden transitions with ∆m > 1 can
also be realized using several sequential pulses as dis-
cussed, e.g., in [9]. It is worth noting that the presented
sequences of pulses are not the only possible
sequences.

The above expressions show that the number of
operations increases when we pass from pulses acting
on real spins to pulses acting on individual transitions
in the multilevel system. This completely agrees with
the general theory of quantum computations [14],
according to which the fundamental advantages of
quantum algorithms are manifested on systems consist-
ing of many quantum objects. The situation can be par-
tially improved by using the possibility of parallel
action on uncoupled levels [15].

In conclusion, we note that the results obtained
above are also important for other quantum algorithms,
because the QFTd operators enter into the basic two-
qudit gate, the SUM gate [12], which is a generalization
of the basic two-qubit gate CNOT:

(9)

where E1 is the identity matrix in the state space of the
first, control, qudit. We emphasize that, in contrast to
Eq. (8), both QFTd operators in Eq. (9) act on the sec-
ond, working, qudit and the angle acquires another
value. Finally, the sequences obtained in this work after
the replacement of RF pulses by laser pulses [1, 5, 6]
are suitable for realizing the quantum Fourier transform
on ions or atoms in traps and other multilevel quantum
systems.
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