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It is known that compounds with heavy fermions
have superconducting properties differing from the
properties predicted by the BCS theory. In particular,
superconductivity with an anisotropic order parameter
is realized in CeCu

 

2

 

Si

 

2

 

, UBe

 

13

 

, and UPt

 

3

 

. To explain
these features, it was suggested that the contribution of
the spin-fluctuation mechanism of Cooper instability is
important. At the same time, recent experiments with
heavy-fermion skutterudite LaFe

 

4

 

P

 

12

 

 [1], which is a
superconductor for

 

 T

 

 < 

 

T

 

C

 

 = 4.1 K, lead to the conclu-
sion that the 

 

s

 

 symmetry of the order parameter is pref-
erable. Such data stimulate works concerning analysis
of the electron–phonon mechanism of Cooper pairing
that leads to 

 

s

 

-type superconductivity (see, e.g., [2]). At
the same time, it is of current interest to examine such
a mechanism of Cooper instability in the Anderson
model that takes into account spin-fluctuation scatter-
ing and leads to the 

 

s

 

-type superconductivity. This is the
aim of our work.

Heavy-fermion compounds are usually described in
the framework of the Anderson periodic model. In this
case, the auxiliary-boson method is often used: the
Hubbard operators are represented in the form of the
product of the Fermi operator and spinless bosom oper-
ator. An advantage of such a representation is the pos-
sibility of applying the Feynman technique to calculate
Green’s functions, and a demerit of this representation
is the necessity of introducing a constraint. The neces-

sity of eliminating contributions from nonphysical
states is a source of difficulties in developing the theory
in the framework of the mentioned approach.

In this work, the Cooper instability is analyzed for
the Anderson periodic model in the strong electron cor-
relation regime in the atomic representation. To calcu-
late the scattering amplitude, we apply the diagram
technique for the Hubbard operators [3, 4]. An exact
representation obtained in this work for the Matsubara
Green’s function of 

 

f

 

 electrons makes it possible to
reveal the meaning of renormalization constants
appearing when the slave boson representation is used
and to demonstrate its limitation.

The Hamiltonian of the Anderson periodic model in
the strong electron correlation regime can be repre-
sented in the form

(1)

where the first term describes the subsystem of itinerant

electrons with the dispersion law 

 

ε

 

k

 

,  (

 

c

 

k

 

σ

 

) is the
creation (annihilation) operator of the electron in the
state with the quasimomentum 

 

k

 

 and the spin moment
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The amplitude of scattering of 

 

f

 

 electrons has been calculated for the periodic Anderson model in the strong-
correlation limit (

 

U

 

 = 

 

∞

 

) in the Cooper channel. From the condition of the existence of a pole of this amplitude,
an equation is derived for determining the critical temperature (

 

T

 

c

 

) of the transition to the superconducting
phase with the 

 

s 

 

symmetry of the order parameter. The temperature 

 

T

 

c

 

 as a function of the electron density and
hybridization parameter has been calculated by self-consistently solving the system of equations. The region of
the existence of the superconducting phase is found to adjoin the region of the existence of the unsaturated fer-
romagnetic state and does not overlap it. The results can be used to describe the transition to the superconduct-
ing phase with the 

 

s

 

 symmetry of the order parameter in heavy-fermion skutterudite LaFe

 

4

 

P

 

12

 

. In this case, the
inclusion of the scattering of fermions by spin fluctuations turns out to be substantial enough to obtain 

 

T

 

c

 

 values
close to the experimental data.
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projection 

 

σ

 

, the second term in Eq. (1) describes the
presence of the subsystem of localized electrons with
the energy 

 

E

 

0

 

 and chemical potential 

 

µ

 

, and the last
term of Hamiltonian (1) presents the hybridization of
localized and itinerant states with the hybridization
interaction parameter 

 

V

 

k

 

. The Hubbard operators 

 

X

 

mn

 

 =

 

|

 

m

 

〉〈

 

n

 

|

 

 are constructed on the basis of three single-site
states: the electron-free state {

 

|

 

m

 

〉

 

}: 

 

|

 

0

 

〉

 

 and two states

 

|σ〉

 

 with the spin moment projections 

 

σ

 

 = 

 

±

 

1/2. In the
limit of infinitely strong Coulomb repulsion, states with
two electrons at one node 

 

|

 

2

 

〉

 

 are forbidden.

To examine the Cooper instability in the Anderson
periodic model, we introduce the Matsubara Green’s
function for the itinerant and localized electrons

(2)

In these expressions, the standard notation is used [3–5].

Analysis of the diagram series for the Green’s func-
tion of 

 

f

 

 electrons shows that, after the pairing of all 

 

c

 

operators in each order of perturbation theory, a dia-
gram representation appears which is formally similar
to the representation for the Hubbard model in terms of
the effective Matsubara-frequency-dependent Fourier
transform of the hopping integral:

(3)

where 

 

ξ

 

k

 

 = 

 

ε

 

k

 

 – 

 

µ

 

. Such exact rearrangement is possible
because the hybridization interaction operator is linear

in the Fermi operators 

 

c

 

k

 

σ

 

 and .

A qualitatively similar reduction of the diagram
series for the electron Green’s function is possible for
the case of electron–phonon interaction [5]. In this
case, the diagram series corresponding to the effective
frequency-dependent fermion–fermion interaction
appears. A feature of the case under consideration is
that the introduction of the effective interaction is pos-
sible, because the interaction operator is linear with
respect to the Fermi operators rather than to the Bose
operator, as for the electron–phonon interaction.

The extension of the above analogy leads to the con-
clusion that the effective interaction (through the addi-
tional Fermi subsystem) appears in the subsystem of
the 

 

f

 

 electrons such as the indirect interaction through
the phonon subsystem appears. In this case, this effec-
tive interaction under certain conditions can be
expected to be a source of Cooper instability. To ana-
lyze this problem, we consider the collision of the 

 

f

 

electrons with the opposite projections of spin
moments in the paraphase.

The solution of the problem of the Cooper instabil-
ity is reduced to the determination of the conditions
under which a pole appears in the scattering amplitude
of the 

 

f

 

 electrons with the opposite projections of the

Gkσ τ τ '–( ) Tτc̃kσ τ( )c̃kσ
+ τ '( )〈 〉 ,–=

Dαβ fτ; gτ '( ) Tτ X̃ f
α τ( ) X̃g

β– τ '( )〈 〉 .–=

t̃k ωn( ) Vk
2Gk

0( ) ωn( ) Vk
2 iωn ξk–( ) 1– ,= =

ckσ
+

spin moments. The equation for this amplitude can be
represented in the diagram form

here, the dark squares correspond to the desired ampli-
tude Γ(k; –k |k; –k) [Γ(k + q; –k – q |k; –k) in the right-
hand side of the equation], and k and q are the 4-vectors
k = (k, iωn) and q = (q, iωm), and respectively, with
ωn = (2n + 1)πT and ωm = 2mπT, where n and m = 0, ±1,
±2, …. The bare amplitude Γ(0)(k; –k |k + q; –k – q) [the
first term of Eq. (4) for q = 0] is shown by the light
square. The line with a light (dark) arrow denotes the
Green’s function G(k) of f electrons with the spin-
moment projection σ = +1/2 (σ = –1/2). The equation
for the function G(k) with the inclusion of the above
rearrangement of the diagram series has the form

where the double solid line corresponds to the collec-
tive Green’s function G(0)(k) and the thin solid line
stands for the bare propagator G0(ωn) = (iωn – E0 + µ)–1.
The light circle with Σ inside corresponds to the opera-
tor Σ(k) and the semicircle means the force operator
P(k). The wavy line stands for the effective interaction

(ωn) defined in Eq. (3).

Solving system of Eqs. (5), we obtain the following
representation for the function G(k):

which contains the force operator P(k) in addition to the
mass operator. This operator affects the spectral charac-
teristics and renormalization of the hybridized con-
stant. It follows from the representation obtained for
G(k) that the salve-boson approximation appears if the
frequency dependence of the renormalization factor, as
well as its imaginary component, is disregarded. Since
the last factors are significant according to the analysis,
the use of the simplest approximations in the slave-
boson approach significantly distorts the real physics.

;

,

t̃k
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Taking into account scattering by spin fluctuations,
we conclude that the bare amplitude is determined by
the diagrams

and can be analytically written in the form

(7)

Here, χ is the magnetic susceptibility of the system,
 = χ – Cn/4T, and Cn = 〈∆ ∆ 〉 is the density–den-

sity correlation function. The appearance of χ and Cn is
caused by the inclusion of the relaxation on spin and
charge fluctuations [6].

Taking into account Eq. (7) for the bare amplitude,
it is easy to check that the total scattering amplitude
Γ(k + q; –k – q |k; –k) is independent of the quasi-
momentum q but depends on ωm. This property allows
one to reduce the determination of the desired ampli-
tude Γω(k) ≡ Γ(k; –k |k; –k) to the solution of the system
of equations

(8)

where

(9)

Calculating the scattering amplitude Γω(k) from the
system of Eqs. (8) and determining its pole, we arrive
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at the following equation for the transition temperature
to the superconducting phase with the s symmetry of
the order parameter (α = 3χT – Cn/4):

(10)

The analytical summation over the Matsubara frequen-
cies in this equation can be performed only for α = 0.
For finite α values, the summation was performed
numerically. Since α depends on the magnetic suscep-
tibility, this quantity is used in the theory to include
scattering on the spin degrees of freedom of the system
under consideration. This procedure of the inclusion of
relaxation processes was considered in [6], where high-
temperature superconductors were described.

In numerical calculations, G(k) is found self-consis-
tently. In the one-loop approximation, the mass opera-
tor Σ0σ, 0σ is described by one diagram

(11)

and the correction to the force operator δP0σ, 0σ is
described by two diagrams

(12)

Using the diagram technique, we arrive at the analytical
expressions

(13)

for Σ0σ, 0σ and

(14)

for δP0σ, 0σ(ωn), where β = 3χT + Cn/4. We note that the
force operator is a function of the Matsubara frequency,
whereas the mass operator is an uncertain constant
leading to the shift of the localized level. These features
are used to write expression (9) for l(q).

Taking into account Eqs. (13) and (14), the infinite
self-consistency system of equations for determining
the chemical potential, mass operator, number of local-
ized electrons, and force-operator correction
δP0σ, 0σ(ωn) is written. The numerical solution of this
system makes it possible to calculate the dependence of
the transition temperature on the superconducting
phase with the s-type symmetry of the order parameter.
The calculated Tc values are shown in two figures as
functions of the concentration for various values of the
hybridization parameter.

The calculations are performed under the assump-
tion that the bare electron band is characterized by the
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semi-elliptic density of states g(ε) =

(8/πW2) . All the energy parameters of the
system are measured in the bare band width W. The
position of the localized level corresponds to the middle
of the band. The magnetic susceptibility in the calcula-
tions is taken to be equal to the susceptibility of heavy-
fermion compounds, i.e., is more than two orders of
magnitude larger than the characteristic values of the
Pauli susceptibility for usual metals. As seen in Fig. 1,
when the spin-fluctuation scattering processes are taken
into account, a change in the hybridization parameter in
the range of 0.05–0.2 does not lead to a significant
increase in the critical temperature.

The situation is different if relaxation processes are
disregarded. The calculations show that the critical
temperature in this case increases significantly in the
mentioned region of the parameter V. The correspond-
ing behavior is shown in Fig. 2.

The results presented for the Cooper instability raise
the question of the mutual location of the regions of
various phases. The conditions of the existence of the
far-range magnetic order in the one-impurity model
were revealed by Anderson. For the Anderson periodic
model, the region of the existance of the ferromagnetic
order that was recently determined by Izyumov et al.
[7] is shown in Fig. 3. The abbreviations FM, SF, and P
are used for the ferromagnetic phase, saturated ferro-
magnetic state, and paramagnetic phase, respectively.
Small numerical differences in the shape of the bound-
aries of the SF and FM regions exist only because the
ratio of the energy parameters V and E0 to the band-
width in our analysis is taken to be one fourth of that
taken in [7]. To calculate the boundary of the supercon-
ducting-phase boundary, we use Eq. (10). In the low-
temperature limit, the contributions from scattering by

W /2( )2 ε2–

spin fluctuations can be disregarded. In this case, the
summation over the Matsubara frequencies can be per-
formed in the explicit form. As a result, we obtain

(15)

where  = (εq + E0 + Σ)/2 ± νq/2 – µ, νq = {(εq – E0 –
Σ)2 + 4(1 – nd/2)|Vq |2}1/2, and nd is the number of the
localized electrons per one site. The boundary of the
superconducting-phase region that is obtained by ana-
lyzing this equation adjoins the ferromagnetic-phase
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Fig. 1. Superconducting transition temperature in the
Anderson periodic model with the inclusion of the spin-
fluctuation scattering processes.

Fig. 2. Superconducting transition temperature in the
Anderson periodic model disregarding the spin-fluctuation
scattering processes.

Fig. 3. Phase diagram of the Anderson periodic model for
V = 0.125.

T
c

T
c
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boundary and does not intersect it (Fig. 3). Noninter-
section is important in view of the competition between
the magnetic and superconducting phases and is consis-
tent with the general conception of antagonism
between the superconductivity and magnetism.

We note that the superconducting phase exists only
when the upper hybridized band is filled. This result
easily follows from Eq. (15). Indeed, if the chemical
potential is in the lower band, the main contribution to

the integral comes from the region where  = 0. In
this case, the integral is negative and Eq. (15) has no
solution. If the chemical potential µ is in the upper
band, the principal positive integral value is collected

near the point  = 0. In this case, a solution always
exists according to numerical calculations.

According to the above results, the analysis of the
Anderson periodic model by the diagram technique for
the Hubbard operators can be reduced to the analysis of
the properties of the Hubbard model for strongly corre-
lated f electrons with the effective interaction (ωn)
depending on the Matsubara frequency. A similar con-
clusion was drawn previously in [7], where the normal
phase of the Anderson periodic model is analyzed by
the generating functional method. In view of these
facts, it is easy to understand that the mechanism of the
Cooper instability in the Anderson periodic model is
similar to the kinematic mechanism leading to s pairing
in the Hubbard model in the strong electron correlation
regime [8].

In summary, we note that the spin-fluctuation scat-
tering processes are important for describing the super-
conducting phase of heavy-fermion compounds in the
Anderson periodic model. In this work, we examined
the effect of these processes only on the superconduc-
tivity with the s symmetry of the order parameter,

because, according to [1], this order parameter of the
superconducting phase is realized in the heavy-fermion
skutterudite CeFe4P12.
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