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1. INTRODUCTION

In 1929, von Neumann and Wigner [1] first pointed
to the existence of discrete solutions of the single-par-
ticle Schrödinger equation embedded in the continuum
of positive energy states. Their analysis was examined
by Stillinger and Herrick [2] in the context of possible
bound states (BICs) in atoms and molecules. It was
demonstrated by Newton [3] that strong coupling
between scattering channels can give rise to bound
states in continuum. Bound states in continuum can be
observed in the stationary transmission as resonant
states with a width that tends to zero as at least two
physical parameters vary continuously as was formu-
lated by Friedrich and Wintgen [4], who also gave the
example of a hydrogen atom in a magnetic field. Such
a BIC is a very fragile structure. A small perturbation
transforms it into narrow resonance. Nevertheless,
Capasso et al. [5] reported direct evidence for BICs in
a semiconductor superlattice.

For better understanding of the phenomenon of
BICs in transport through electronic devices, it is useful
to study as simple a quantum system as possible. Rob-
nik [6] showed that a simple separable two-dimensional
Hamiltonian can develop BIC under perturbation of
open channels. An explicit proof of the existence of
BICs was presented recently by Cederbaum et al. [7] in
a molecular system if the electronic and the nuclear
motions are coupled. In the present letter, we consider
open Aharonov–Bohm (AB) rings, which are good can-
didates to observe BICs for an external magnetic field,
and the energy of the incident electron can be easily
varied experimentally. Moreover, the one-dimensional
AB rings allow one to treat BICs wholly analytically. A
phenomenon of zero resonance widths at discrete val-

 

¶ 

 

The text was submitted by the authors in English.

 

ues of the energy of an incident particle and some rele-
vant physical parameter was established in many works
[8–16] since the work by Shahbazyan and Raikh,
among them external magnetic flux was considered in
[17, 18]. In this letter, we focus on the scattering wave
function in the vicinity of and at a BICs point and how
BIC participates in transport.

2. ONE-DIMENSIONAL RING

Following Xia [19], we write the wave functions in
the segments of the structure shown in the inset of
Fig. 1 as
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Fig. 1.

 

 Transmission zeros 
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 = 0 and ones 
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 = 1 of the
one-dimensional ring as a function of the wave number 

 

k

 

and flux 

 

γ

 

. The zeros (ones) are shown by dashed (solid)
lines. The thin solid lines represent the eigenenergies of the
closed ring.
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is chosen as a unit. The boundary conditions (the conti-
nuity of the wave functions and the conservation of the
current density) allow one to find all the coefficients in
(1). We write the corresponding equation in the matrix
form
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solution for the scattering wave function:
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). In Fig. 1, we show lines of the
transmission zeros (
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 = 0, dashed lines) that cross
the lines of the transmission ones (
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 = 1, solid
lines) at the points

(5)

As can be seen from the expression for the denominator

 

Z

 

 in Eqs. (1), the imaginary part of the poles vanishes at
these points. Simultaneously, at these points, there is a
degeneracy of the eigenenergies of the closed ring (
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defines the eigenfunctions of the closed ring 
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exp(ikmx). The point k = 0 is excluded from the consid-
eration since it gives zero conductance. The particular
points (5) were shown in [17] for the case of a single
lead attached to the  1d ring. To show that BICs appear
at points (5), let us consider one of the points, for exam-
ple, s0 = (k1, γ1) = 2π(1, 1). All the other points are
equivalent because of the periodic dependence of the
system on k and γ. In the vicinity of the point s0, we
write Eqs. (1) in the following approximated form:

(6)

where ∆k = k – k1, ∆γ = γ – γ1. The transmission ampli-
tude in the vicinity of the point s0 in (6) is similar to the
expressions obtained for a shifted von Neumann–
Wigner potential [20]. One can see that all the ampli-
tudes a1, 2, b1, 2 of the inner wave functions are singular
at the point s0. Such a result for the BIC points was first
found by Pursey and Weber [20].

Equations (2) and (3) allow one to show that the
point s0 corresponds to the BIC one in an open one-
dimensional ring. At this point, matrix (3) takes the fol-
lowing form:

(7)

The determinant of the matrix (s0) equals zero.

Therefore, f0 = 0. By direct substitution of the vector

 = (0 0 1 –1 –1 1), one can verify that f0 is the right

eigenvector that is the null vector. The corresponding

left null eigenvector is  = (–1 1 1 –1 0 0). It is well

known from linear algebra that, if the determinant of

matrix  is equaled to zero, then the necessary and suf-
ficient condition for the existence of a solution of equa-

tion (2) is that the vector  is orthogonal to the vector g

[21]. It holds indeed that  ·  = 0. The solution of
Eq. (2) at the point s0 can therefore be presented as
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where α is an arbitrary coefficient and yp is a particular
transport solution of Eq. (2). By direct substitution, one

can verify that  =  is the particular

solution of Eq. (2). It is worthwhile to note that this
result completely agrees with the scattering theory on
graphs [22, 23]. Texier [22] has shown that, for certain
graphs, the stationary scattering state gives the solution
of the Schrödinger equation for the continuum spec-
trum apart for a discrete set of energies where some
additional states are localized in the graph and thus are
not probing by scattering, leading to the failure of the
state counting method from the scattering.

In the vicinity of the BIC point s0, the scattering
state using (6) becomes, to the leading order of ∆k, ∆γ,

(9)

where s = (k, γ). Thus, the scattering state in the nearest
vicinity of the BIC point also is superposed of the BIC
vector f0 and of the particular solution yp. Equation (9)
shows that the limiting scattering wave state y depends
on the way s  s0. If we at first take ∆γ = 0, then we
obtain y = yp, which is a transport solution. If we, how-

ever, first choose ∆k = 0, then we have y = ; i.e.,

the scattering state is diverging the ring interior. This
formula shows that the BIC state f0 can be extracted
from the scattering state by a special limit in (9).
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3. TWO-DIMENSIONAL DEVICES

Typical open two-dimensional structures are dots or
rings with attached leads. Numerically, the transmis-
sions through them are solved by finite-difference
equations that are equivalent to the tight-binding lattice
model [24, 25]. The case of the quantum dots was con-
sidered in [16]. Here, we present the results of compu-
tations for the two-dimensional ring with symmetri-
cally attached identical leads. In Fig. 2, we show the
transmission zeros (dashed lines) and the transmission
ones (solid lines) for the single-channel transmission.

In order to find the positions and widths of the reso-
nance states, we explore the nonhermitian effective
Hamiltonian, which can be obtained by projection of
the whole system onto the Hilbert space of a closed sys-
tem [25–27]. The effective Hamiltonian in the basis of
the closed system’s eigenvectors can be written as [24,
25]

(10)

Here, Eb and |b〉 are the eigenvalues and the eigenfunc-
tions of the closed system C enumerates the left and
right leads, and p enumerates the open channels of the

leads. A formula to calculate the matrix elements 
is given in [26, 25]. Because of the energy dependence
of the effective Hamiltonian, the positions and widths

b〈 |Heff b '| 〉 Ebδbb ' Vb p,
C Vb ' p,

C e
ikp

C

.
C L R,=

∑
p

∑–=

Vb p,
C

Fig. 2. Zeros (dashed lines) and ones (solid lines) of the transmission probability of the two-dimensional ring as a function of the

wave number k =  and flux γ = BπR2/Φ0, Φ0 = 2π�c/e. R = 2.5 is the mean radius of the ring. The width of the ring and
those of the leads are equaled to a unit. The eigenenergies of the closed two-dimensional ring are shown by thin lines. The BIC
points are marked by open circles and a star.

E π2
–
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of the resonance states are defined by the following
nonlinear fixed point equations [27]:

(11)

Here, zλ are the complex eigenvalues of the effective
Hamiltonian (10) Heff |λ) = zλ|λ) with the right eigen-
states |λ). All the points at which Γλ = 0, i.e., the width
of the resonant transmission vanishes, are marked in
Fig. 2 by open circles and a star.

The equation for the scattering wave function map-
ping onto the ring interior |ψR〉 can be derived from the
Lippmann–Schwinger equation [25–27] and takes the
following form

(12)

Here, VL is the coupling matrix between the left lead
and the ring provided that a particle is incident from the
left lead in the first channel. This formula is similar to
(2) for the 1d ring. If Det(Heff – E) ≠ 0, then, in the bior-
thogonal basis |λ), the scattering wave function takes a
simple form [25, 27]

(13)

where

(14)

 are the left eigenfunctions of Heff, and yB runs over
the boundary that connects the closed ring and the left
lead with the first channel excited (p = I). We assume
that the magnetic field subjects only the ring.

Let us denote a set of physical parameters of the sys-
tem as s. For example, for the present case of the ring,
s = (E, γ), although, for the quantum dot, s might be the
energy and confined potential [16]. Let us consider the
point s0 = (E0, γ0) at which Eq. (11) is fulfilled: E0 =

(E0, γ0) and  = 0; i.e., one of the complex eigen-
values of Heff is real at this point. For E = E0, one has
the equality (Heff – E)|λ0) = 0. Comparing this equation
to (12), we see that the eigenstate |λ0) corresponds to
the solution of the Lippmann–Schwinger equation if
there was no ingoing current in the left lead. Corre-
spondingly, the state |λ0) cannot give rise to outgoing
currents because of the continuity equation for the cur-
rent density. In order to fulfill that, we have to consider
that the eigenfunction  does not overlap the first

channel of the left lead; i.e., (s0) = 0. This may also
be established by consideration of the transmission
amplitude [25]:

(15)
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Because of the symmetry of the system relative to the

left and right leads  = . In approaching the

point s  s0, the denominator E – (s)  0.

Therefore, in order for the ratio /(E – (s)) to

remain finite in (15), it is necessary that   0
for s  s0. Thus, at the BIC point, we have orthogo-
nality of the right-hand state (V |E, L, p = 1〉) in Eq. (12)
to the left eigenstate (λ0|. Then, in full correspondence
with the consideration of the 1d ring (Eq. (8)), we have
the following solution for the scattering state interior to
the ring:

(16)

where the coefficient α is arbitrary. The right eigen-
function  of the effective Hamiltonian is squared
integrable and, therefore, is the BIC function shown in
Fig. 3a. Although the BIC function is disconnected
from the first channel of the left lead, it couples with the
next channels p > 1 of the leads that are evanescent
modes. As a result, the BIC function has exponentially
small tails in the leads as might be seen from Fig. 3a.
Moreover, the coupling of the 2d ring with the evanes-
cent modes gives rise to (as Fig. 2 shows) the BIC
points being close to but different from the points at
which two eigenfunctions of the closed 2d ring classi-
fied by the magnetic quantum numbers m have the same
energy. The evanescent modes have imaginary wave
numbers kp that effectively change the Hamiltonian of
the closed ring by the matrix

via Eq. (10). Therefore, only for the limiting case of the
1d ring (d/R  0), the BIC state consists of a pair of
eigenstates of a closed ring as seen from Fig. 1 as was
confirmed by computations.

In the vicinity of s0, the value E – (E, γ) is small.
Then, we can split the summation over λ in (13) by two
parts, λ = λ0 and λ ≠ λ0, and, similar to as in (8), write
the scattering state as

(17)

where

(18)

|ψp〉 is the contribution of all the other resonances.
As it is different from the 1d ring, we can study the

behavior of singular coefficient (18) only numerically.
Let us encircle the BIC point (k0, γ0) according to the
relations ∆k = rcosφ, ∆γ = rsinφ as shown in Fig. 4a,

where k0 = , r is the radius of the encircling.
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Angular behaviors of quantities defining the parameter
α are shown in Fig. 4b, 4c. In particular, the numeric
shows that |V0(s)| ~ |s – s0|1/2. The behavior of α in Fig.
4d is very similar to the behavior of the parameter α =
∆γ/(∆k + i∆γ2/2) for the 1d ring (see (9)) except that, in
the 2d ring, we observe a phase difference. As one can
see from Fig. 4d, at φ = 0, π (∆γ = 0), the parameter
α = 0, and, at φ = φ0 < π/2, α  ∞. The angle φ0

exactly corresponds to the direction of the tangential
line of transmission zero shown by the dashed line in
Fig. 2. Therefore, in order to extract the |ψp〉 from the
scattering wave function (13), we should first put ∆γ =
0 and then take the limit ∆k  0. If we take the limit
to the BIC point along ∆γ = tan(φ0)∆k, the scattering
state transforms to the BIC state |λ0) shown in Fig. 3a.
The particular solution for the scattering wave function
|ψp〉 is shown in Fig. 3b.

4. CONCLUSIONS

Formulas (8) and (17) are the key ones that show
that the scattering wave function y is not unique since
the BIC can be superposed with the arbitrary coefficient
α to y. Such a kind of decomposition was established
recently for the scattering theory on graphs [22, 23].
Thus, at the point s0, the system becomes degenerate.
The usual transport solution with energy E = E0 is com-
plemented by the squared integrable (localized interior
to the ring) state |λ0(s0)) with the same energy E0
orthogonal to the former. The last state is, therefore,
BIC. Our consideration shows exactly that BIC is the
eigenvector of the nonhermitian effective Hamiltonian
Heff at the point at which the complex eigenvalue of Heff
becomes real and coincides with the energy of the inci-
dent particle. The scattering matrix is unique but not
analytical at the BIC points as can be seen from for-
mula (6). As seen from there, the transmission zeros
cross the transmission ones at the BIC point. Note that
these results are not restricted to only AB rings but are
applicable for any open quantum system that allows
varying at least two relevant physical parameters, for
example, the energy of the incident particles and the
shape of the billiard [16].

The bound state in continuum is disconnected from
both single channel continua. In order to realize that the
BIC is such a superposition of eigenstates of a closed
system, overlapping (14) vanishes at BIC points. Spe-
cifically, in the present case of the AB ring attached to
single channel leads, this superposition becomes an odd
function relative to the even function of the leads as
seen from Fig. 3a. For the 1d ring, nodes of the BIC are
at points of connection of the ring to the leads, i.e., at
those points, where the ratio of the lengths of the arms
is rational [22]. However, for the 2d ring, the leads are
attached exactly symmetrically, as shown in Fig. 3. It
follows then that a violation of the symmetry of the sys-
tem relative to the transport axis x leads to breakdown
of the BIC. In particular, it occurs for a system disor-
dered by impurities. In order for the BIC to survive
under this violation of symmetry, one can use the

(a) (b)

Fig. 3. The BIC function  that is the eigenfunction of the effective Hamiltonian (10) (a) and the transport solution |ψp | (b) at

the BIC point marked in Fig. 2 by a star.

ψλ0

Fig. 4. Angular behavior of quantities defining the parame-
ter (18) around the BIC point marked by a star in Fig. 2.
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geometry given in [28] in which an infinite strip is
attached to the ring. Moreover, the impurities lift a
degeneracy of the closed ring [29]. However, as shown
in [16], a condition for the BIC to survive is still
remaining. From the above, it follows that, for the sys-
tem symmetric about the y axis (the axis perpendicular
to the transport axis), all the odd eigenstates of the
closed system are BICs provided that the leads are
excited in the first even channel. Then, a perturbation
that lifts this symmetry transforms the BICs into reso-
nance states whose widths are proportional to the per-
turbation. The external magnetic field that acts on only
the ring is an example of such a perturbation.

The electron–electron interactions preserve the
degeneracy of the closed ring [29]. They modify the
energy spectrum and the coupling between the leads
and the closed ring. As shown in [13], variation of the
coupling changes the position of the BIC s0; however, it
is not important to achieve a real value of the complex
eigenvalue of the effective Hamiltonian. However, the
Coulomb interactions might be important with respect
to the fact that BICs can exhibit discrete charging sim-
ilar to that predicted for resonance trapping in quantum
dots strongly connected to the leads [30]. The strong
coupling of a closed quantum system with leads

(  � |Eb – Eb'| in terms of (10)) is hardly achievable
while the existence of BICs is free of a value of the cou-
pling between the closed system and continua.

Processes of inelastic scattering give rise to a finite
resonance width. In that sense, BIC is a very subtle phe-
nomenon for electron transmission. However, as for-
mulas (9) and (17) show, the BIC state participates in
the scattering wave function. If the above mentioned
processes are efficiently small, the BIC state can domi-
nate in the vicinity of the BIC point for a proper choice
of the physical parameters, energy, and flux, as shown
in Fig. 4d.

A.F.S. thanks Igor Abrikosov for discussions. This
work was supported by the Russian Foundation for
Basic Research (project no. 05-02-97713 “Enisey”).
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