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1. 

 

Bloch oscillation (BO) of a quantum particle in a
periodic potential are one of the most fascinating phe-
nomena of quantum physics [1]. Since the pioneering
experiment [2] in 1996, this phenomenon has been
intensively studied for the cold atoms in optical lattices
[3], with recent emphasis on the effect of the quantum
statistics (Fermi or Bose) and the atom–atom interac-
tions. In particular, the dynamics of the degenerate
Bose gases, on which we will focus here, was studied
experimentally in the works [4–6]. It should be stressed
from the very beginning that, when addressing this
problem theoretically, one has to distinguish between
the quasi-one-dimensional lattices (created by two
counterpropagating laser beams) and truly 1D lattices
(or so-called modulated quantum tubes). Indeed, in the
former case, the number of the atoms per one well of
the optical lattice can be as large as 10

 

3

 

–10

 

4

 

 and the
mean field approach (based on Gross–Pitaevskii or
nonlinear Schrödinger equation) is generally justified.
This is not the case of the truly 1D lattices, where only
a few atoms occupy each well, and, hence, a micro-
scopic analysis is required. For a tilted infinite lattice,
such an analysis, based on the Bose–Hubbard model,
was presented in our recent works [7–9], where two
regimes of BO—quasiperiodic and irreversibly decay-
ing—were identified.

When referring to the typical laboratory experiment,
an additional complication comes from the presence of
harmonic confinement. Clearly, harmonic confinement
should modify BO of Bose atoms, and the aim of this
work is to estimate its effect. At the same time, the par-
abolic lattices are of their own interest, because they
also allow the dipole oscillations of BEC to be studied.
The recent experiment [10] has shown that there is a
fundamental difference between the dipole oscillations
in the quasi- and truly 1D lattices. While in the former
case the main effect of the periodic potential can be
taken into account by simply replacing the atomic mass

with its effective mass in the ground Bloch band [11],
one observes a rapid dissipative decay of oscillations in
the latter case. In the present paper, we also briefly dis-
cuss the dipole oscillations of BEC in truly 1D lattices,
partially overlapping in this part with recent theoretical
work [12].
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 We consider atoms in the parabolic lattice 
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), where the atoms are set into
motion by a sudden shift of the trap origin. The relevant
parameters of the system are the hopping matrix ele-
ment 

 

J

 

, the “parabolicity” 

 

ν
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, and the initial
shift 
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0
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. Neglecting the atom–atom interactions,
the dynamics of the system is described by the pendu-
lum model [3, 13],

(1)

where 
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l
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t

 

) is the complex amplitude of the atoms in the

 

l

 

th well of the optical lattice. The separatrix of the pen-
dulum corresponds to the shift

(2)

If the initial shift 

 

l

 

0

 

 < 

 

l

 

*, the pendulum shows oscilla-
tions around the trap origin and, referring to the original
system, this regime is regarded as the dipole oscilla-
tions of the atoms. If 

 

l

 

0

 

 > 

 

l

 

*, the pendulum is in the rota-
tional regime, and the dynamics of the atoms can be
regarded as BO in a local static field 

 

F

 

 = 

 

ν

 

l
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. We begin
with BO and shall assume for a moment the absence of
any atom–atom interactions.

Because the local static force 

 

F

 

 is not homogeneous,
we have an additional process of dephasing of BO in a
parabolic lattice, as compared to the paradigm case of a
tilted infinite lattice. When discussing the mean atomic
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momentum, one can estimate this effect of dephasing
by evaluating the sum

(3)

where 

 

m

 

 = 

 

l

 

 – 

 

l

 

0

 

 and 

 

γ

 

 is the width of the atomic wave
packet (measured in the lattice period). Replacing the
sum with the integral, we obtain

(4)

where

(5)

It is seen in Eq. (5) that the dephasing time 

 

τ

 

γ

 

 is defined
by both the wave packet width and by the trap fre-
quency. Based on this result, one might conclude that a
narrow wave packet is preferable for studying BO in the
parabolic lattices. This is, however, not exactly true,
because a narrow wave packet implies a lower contrast
of the interference pattern measured in the laboratory
experiments. Thus, one has to find a compromise
between the contrast and dephasing when preparing the
initial wave packet.

The irreversible decay of BO according to Eq. (4) is
a consequence of our approximation of the sum by the
integral. Without this approximation, the decay of
oscillations is followed by periodic revivals with the
period 

 

T

 

ν

 

 = 2

 

π

 

�

 

/

 

ν

 

 [14]. One of these revivals is illus-
trated in the upper panel of Fig. 1, which shows the
dynamics of the mean momentum of the noninteracting

p t( ) m
2
/2γ 2

–( ) ωB νm+( )/�t[ ],sinexp
m

∑∼

p t( ) t
2
/2τγ

2
–( ) ωBt( ),sinexp∼

τγ �/γν.=

 

atoms in the parabolic lattice with parabolicity 

 

ν

 

 =
0.04

 

J

 

. As the initial state of the system, we choose here
the ground state of the atoms in the parabolic lattice
with a slightly tighter confinement 

 

ν

 

' = 4

 

ν

 

, which was
then shifted by the distance 

 

l

 

0

 

 = 8

 

l

 

* = 80. Note that, by
changing 

 

ν

 

', we change only the dephasing time
(through the change of the wave packet width 

 

γ

 

 = 

 

γ

 

(

 

ν

 

')),
while the revival time is defined exclusively by the
parameter 

 

ν

 

.

 

3.

 

 Next we address the effect of atom–atom interac-
tions. In the case of quasi-one-dimensional parabolic
lattices, Bloch and dipole oscillations of the interacting
atoms were studied in number of the papers by using
the mean-field approach [13, 15–19]. As known, the
mean-field approach is justified in the limit of large
occupation number   

 

∞

 

 and vanishing interaction

 

W

 

  0. This limit leads (in the simplest case) to the
nonlinear discrete Schrödinger equation,

(6)

where 

 

g = WN is the macroscopic interaction constant.
In the present work, we focus on the case of truly one-
dimensional lattices, where the mean occupation num-
ber  ~ 1. Clearly, the mean field approach is not appli-
cable here and one has to treat the system microscopi-
cally by using, for example, the Bose–Hubbard model,

(7)

The main question we address below is the effect of
atom–atom interactions on the Bloch dynamics
depicted in the upper panel of Fig. 1.

First we shall discuss the initial conditions in some
more detail. Throughout the paper we shall consider the
ground many-body state of the atoms in a parabolic lat-
tice as the initial wave packet (which is shifted then by
the distance l0). Clearly, along with the ratio J/ν, this
state is also defined by the ratio of the interaction con-
stant to the hopping matrix element. Namely, it is
essentially given by the symmetrized product of the sin-
gle-particle atomic state for W < J, while it is close to
the Mott insulator state for W � J. In what follows, we
restrict ourselves to a relatively weak interaction. Then
the ground state of the system can be well approxi-
mated by the many-body wave function

(8)
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Fig. 1. Bloch oscillations of N = 5 atoms in the parabolic lat-
tice with parabolicity ν = 0.04J: (a) the mean momentum of
noninteracting atoms; (b) the mean momentum of interact-
ing (W = 0.2J) atoms; (c) macroscopic coherence of the sys-
tem of interacting atoms. The initial shift l0 = 8l* = 80.
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where |n〉 = |…, n–1, n0, n1, …〉 is the Fock basis and al

satisfy the stationary Gross–Pitaevskii equation

(9)

For example, for N = 5, ν = 0.04J, and W = 0.2J, the
overlap of the state (8) with the exact ground state |Ψ0〉
is |〈Ψ0 | 〉|2 = 0.97. We note that the state (8) is com-
pletely coherent and is analogous to the super-fluid
state in a homogeneous lattice. We shall characterize
the macroscopic coherence of the given many-body
state |Ψ〉 by the maximal eigenvalue λ of the single-par-
ticle density matrix

(10)

Then the macroscopic coherence of the state (8) is λ = 1.
We proceed with the dynamics. The middle panel in

Fig. 1 shows the mean momentum of N = 5 interacting
atoms (W = 0.2J). In comparison with the noninteract-
ing case (upper panel), a qualitative change is noticed.
This change can be understood by analyzing the mac-
roscopic coherence of the system, shown in the lower
panel. It is seen that the macroscopic coherence oscil-
lates with some characteristic period TW . In the case of
an infinite tilted lattice, these oscillations were studied
in [7]. The origin of the oscillations was shown to be the
Stark localization of the single-particle wave functions
which, together with discreetness of the atom number,
leads to the following expression for the macroscopic
coherence:

(11)

In Eq. (11),  is the mean number of atoms per lattice
site [20] and the limit Fd � J is implicitly assumed.
Since for the considered local static force Fd = νl0 =
3.2J the Stark localization is not complete, the oscilla-
tions of the macroscopic coherence irreversibly decay
in time. Nevertheless, if this irreversible decay of
coherence is slow on the time scale of the dephasing
time, one can observe the revival of BO of the interact-
ing atoms—the effect which attracts much attention
because it provides an independent and accurate
method for measuring the microscopic interaction con-
stant W.

4. Let us now turn to the case l0 < l*. In this case, one
deals with the dipole oscillations of BEC, where the
characteristic frequency is obviously given by the fre-
quency of small pendulum oscillations ω0 = (νJ)1/2/�.
(We recall in passing that the frequency of BO was
given by ωB = νl0/� ≈ 2ω0l0/l*, l0 � l*.) For vanishing
atom–atom interactions, these dipole oscillations are
shown in the upper panel of Fig. 2, where l0 = l*/2 = 5
and the other parameters are the same as in Fig. 1. The
dephasing time τγ is again given by Eq. (5) but with the
parameter ν replaced by the nonlinearity parameter

 = ν/8 [21] (the latter parameter also defines the
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revival time). The middle and lower panels in Fig. 2
refer to the interacting atoms. The exponential decay of
the macroscopic coherence is noticed. The other point
to which we want to draw the attention of the reader is
that a moderate interaction stabilizes the dipole oscilla-
tions against the dephasing. In the mean-field approach
(which reduces the Bose–Hubbard model to the dis-
crete nonlinear Schrödinger equation), this phenome-
non was predicted in [13].

5. In conclusion, we have shown that the dynamics
of cold atoms in parabolic lattices is governed by the
relation between two characteristic times—the dephas-
ing time τγ and the decoherence time τW .

The dephasing time is inverse proportional to the
widths γ of the initial wave packet and the nonlinearity

 which, in turn, is defined by the initial shift l0 of the
wave packet relative to the separatrix l*. Namely,  =
ν/8 for l0 � l* and  = ν for l0 � l*, where ν = Mω2d2

is the parabolicity of the lattice. It is interesting to esti-
mate the dephasing time in the typical laboratory exper-
iment. Taking, as an example, the recent experiment
[10] with Rubidium atoms in the array of axially mod-
ulated quantum tubes, we have ν = 0.0014ER and J =
0.38ER for the modulation amplitude (depth of the opti-
cal lattice) of one recoil energy. This gives the separa-
trix l* = 33 and the period of small dipole oscillations
T0 = 12.1 ms. If we assume a dilute gas (which, in fact, is
not the case realized in the cited experiment), the width

of the initial wave packet is γ ≈ (J/4ν)1/4 = /2 ≈ 3
and, hence, the dephasing time τγ = 85 ms for dipole
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Fig. 2. Dipole oscillations of N = 4 atoms in the parabolic
lattice with parabolicity ν = 0.04J: (a) the mean momentum
of noninteracting atoms; (b) the mean momentum of inter-
acting (W = 0.2J) atoms; (c) the macroscopic coherence of
interacting atoms. The initial shift l0 = l*/2 = 5.
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oscillations and τγ = 10.6 ms for BO. Note that these are
the upper estimates for the dephasing time, and for an
initial shift l0 close to the separtrix, the dephasing times
are substantially smaller. It is also worth noting that
there is a maximal shift l0 above which the single-band
approximation (used throughout the paper) might be
questioned. The crucial parameter here is the energy
gap between the Bloch bands (∆ = 0.5ER for the speci-
fied parameters). The analysis of BO in a parabolic lat-
tice beyond the single-band approximation will be a
subject of a separate paper.

The decoherence time τW is defined by the charac-
teristic density of atomic gas  and by the value of the
macroscopic interaction constant W [22]. The latter, in
turn, is defined by the s-wave scattering length and by
the degree of confinement of the atoms in the wells of
the optical potential. In particular, in experiment [10],
quantum tubes were created by two crossing quasi-1D
optical lattices with the amplitude V = 30ER. For axial
modulation with V = ER, this gives W = 0.73ER. For this
relatively high value of the interaction constant, a few
atoms per tube is enough to destroy the dipole/Bloch
oscillations on a very short time scale. This qualita-
tively explains the results of the experiment [10], where
the number of atoms per quantum tube was around 20.
To observe the effects discussed in the paper, one has to
decrease both the atomic density and the transverse
confinement (for example, for the transverse confine-
ment V = 3ER, the interaction constant W = 0.17ER).

We would also like to stress that in this work we
restrict ourselves to considering the initial state of the
system to be a Bose–Einstein condensate (i.e., the mac-
roscopic coherence λ ≈ 1 at t = 0). This is in no way a
general case, and for different initial states (realized,
for example, for deeper optical lattices) the dynamics of
the atoms may fundamentally differ from the discussed
Bloch and dipole oscillations.
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