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1. INTRODUCTION

In recent years, much attention has been devoted to
investigations into the properties of quantum magnets
representing the so-called spin-gap systems, in which an
energy gap appears for certain reasons in the spectrum of
elementary excitations. Examples of such systems are
offered by the spin-Peierls magnet CuGeO

 

3

 

 [1, 2], two-
dimensional (2D) Heisenberg magnet CaV

 

4

 

O

 

9

 

 [3], and
2D spin systems such as SrCu

 

2

 

(BO

 

3

 

)

 

2

 

 [4] and
(C

 

4

 

H

 

12

 

N

 

2

 

)Cu

 

2

 

Cl

 

6

 

 [5].

As is well known, the energy spectrum of exchange-
coupled spin pairs (dimers) with the spin 

 

S 

 

= 1/2 com-
prises the singlet and triplet states separated by an
energy gap that is determined by the value of the cou-
pling parameter. In the case of systems with antiferro-
magnetic (AFM) coupling of spin moments, the singlet
state corresponds to the lower energy level. At the same
time, the spectrum of magnetic excitations of a homo-
geneous AFM chain is gapless. For these reasons, the
magnetic susceptibilities of systems of the two types
exhibit different temperature dependences: the suscep-
tibility of a dimeric magnet vanishes as 

 

T

 

  0,
whereas that of the homogeneous AFM chain at 

 

T 

 

= 0
is nonzero. In a “dimerized” chain with the coupling
parameters 

 

J 

 

and

 

 J

 

*, the spectrum of magnetic excita-
tions exhibits an energy gap 

 

∆

 

 ~ 

 

|

 

J

 

 – 

 

J

 

*

 

|

 

 and the mag-
netic susceptibility decays according to an exponential

 

law for 

 

T

 

  0 [6]. In such cases, magnetoelastic cou-
pling plays a key role in the singlet state formation.

Evidently, an analogous situation can be expected to
occur in a 2D spin system featuring AFM exchange
interactions. Indeed, a sharp decrease in the susceptibil-
ity with decreasing temperature has been observed in
many quasi-2D quantum magnets (see, e.g., [4, 5, 7, 8]).
One obvious reason for this behavior of the magnetic
susceptibility is the special energy structure of spin
clusters in such systems. In particular, in systems with
square lattices, an important role is played by the char-
acter of the energy spectrum of a four-spin square
plaquette. In the case of AFM coupling, the intrinsic
energy levels are such that the singlet spin state corre-
sponds to a lower energy level [9], whereas the other
levels are separated by an energy gap that is determined
by the magnitude of the exchange interaction. For this
reason, the magnetic susceptibility of a separate
plaquette vanishes as 

 

T

 

  0. On the other hand, the
spectrum of spin-wave excitations of a 2D square lat-
tice is free of energy gaps and the corresponding mag-
netic susceptibility at

 

 T 

 

= 0 is nonzero.

In this context, it was of interest to study the condi-
tions of formation of the ground singlet state with a
gapped energy spectrum of elementary excitations in
2D quantum magnets. In such systems, the mechanism
of the singlet phase formation is related to the possibil-
ity for a set of spins to form “clusters” (this situation
probably takes place in (C

 

4

 

H

 

12

 

N

 

2

 

)Cu

 

2

 

Cl

 

6

 

 [5]), rather
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than to a specific topology of exchange bonds (as, e.g.,
in SrCu

 

2

 

(BO

 

3

 

)

 

2

 

 [4]). Here, by the cluster, we imply a
group of spins in which the character of mutual interac-
tions is substantially distinct from that of the interac-
tions between spins belonging to different groups.
Below we present the results of an analysis of this prob-
lem in a simplified variant, whereby spin clusters have
the form of plaquettes of a 2D square lattice.

The paper is organized as follows. In Section 2, we
consider the influence of plaquette deformation in a
square lattice on the ground state of a 2D quantum mag-
net. In Section 3, the Hubbard operator technique is
used to construct a plaquette representation that allows
all the intraplaquette quantum fluctuations to be taken
into consideration. Section 4 describes the derivation of
a dispersion equation for the spectrum of elementary
excitations in the plaquette-deformed singlet phase.
Section 5 presents a solution to the dispersion equation
in a low-temperature phase and gives an analysis of the
modification of the gapped spectrum on approaching
the point of transition to the magnetic phase. In Sec-
tion 6, we construct the plaquette representation with
allowance for the self-consistent field effects. Section 7
is devoted to calculations of the spectrum of collective
excitations in the AFM phase and to an analysis of the
evolution of this spectrum in the vicinity of a transition
to the singlet phase. Section 8 summarizes the main
results.

2. PLAQUETTE DEFORMATION
OF A 2D QUANTUM MAGNET

First, let us qualitatively analyze the influence of
magnetoelastic coupling (MEC) on the ground state of
a 2D quantum magnet in the presence of plaquette
deformation and formulate the corresponding model
concepts.

We assume that, prior to the MEC onset, the spin
moments with 

 

S

 

 = 1/2 occur at the nodes of the ideal
square lattice with the parameter a

 

0

 

. The interaction
between these spins is described in terms of the Heisen-
berg Hamiltonian with two exchange parameters, 

 

I 

 

> 0
and 

 

J

 

 > 0:

(1)

where 

 

S

 

f

 

 is the vector operator corresponding to a spin
moment occurring at the 

 

f

 

th node. The first and second
terms on the right-hand side of Eq. (1) refer to the
exchange interactions between spins that are the nearest
and next-to-nearest neighbors. The signs at 

 

I

 

 and 

 

J

 

 are
selected to establish AFM coupling of the spins
involved in the interaction.

H
1
2
--- I S f S f δ1+( )

δ1

∑
f

∑=

+
1
2
--- J S f S f δ2+( ),

δ2

∑
f

∑

 

With allowance for the MEC, the minimum free
energy is attained in a deformed state of the lattice. This
situation takes place, for example, in systems where the
exchange integral is a linear function of the relative dis-
placements of spins. Then, the exchange energy gain
(which also linearly depends on the relative displace-
ments) exceeds the quadratic loss in the elastic energy.
This mechanism of magnetostriction is well known and
frequently encountered in magnetically ordered sub-
stances [10].

In systems with developed quantum fluctuations,
such as frustrated quasi-2D antiferromagnets, allow-
ance for the MEC may lead to more radical changes.
This is related primarily to the possibility of a change
in the structure of the ground state in the spin sub-
system. The mechanism of this modification is deter-
mined by a competition between the tendency toward
“singletization” (at the expense of quantum fluctuations
in frustrated low-dimensional antiferromagnets) and
the opposite trend of retaining the spontaneously bro-
ken symmetry in the presence of a long-range magnetic
order.

The aforementioned competition can be illustrated
by variations in the exchange energy observed in the
course of inhomogeneous plaquette deformation of a
square lattice depicted in Fig. 1. In the initial state, the
spin moments occur at the points of intersection of
dashed lines and form the long-range AFM order,
whereby the average value of the spin moment projec-
tion onto the quantization axis at the points denoted by
open and filled circles are positive and negative, respec-
tively. In a deformed state (with the spin moments
shifted along the trajectories indicated by arrows), the
spins are grouped into four-spin clusters (plaquettes)
depicted by cross-hatched squares with a side length of

 

1 4

 

a

 

0

 

a

 

2 3

 

Fig. 1. 

 

Schematic diagram of the plaquette deformation of a
square lattice (see text for explanations).
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.

 

a

 

 < 

 

a

 

0

 

. This kind of distortion of the initial lattice will
be referred to below as plaquette deformation.

For the Néel phase with an undistorted lattice, the
exchange energy per plaquette is –2

 

I

 

 (for simplicity, we
restrict the consideration to a lattice where only the
nearest neighbors are involved in the interaction). In the
state where the spin moments of each plaquette form a
spin singlet, the exchange energy per plaquette has the
same value (–2

 

I

 

). These simple estimates show that the
singlet phase is not preferred to the Néel state if the
parameter 

 

I 

 

remains unchanged. As will be seen below,
more rigorous calculations confirm this conclusion.

A different situation takes place if the plaquette
deformation involves an increase in the intraplaquette
(

 

I

 

  

 

I

 

in

 

 > 

 

I

 

) and a decrease in the interplaquette
(

 

I

 

  

 

I

 

ex

 

 < 

 

I

 

) exchange integrals. In this case, the
energy of the Néel phase is 

 

E

 

N

 

 = –

 

I

 

in

 

 – 

 

I

 

ex

 

, whereas that
of the plaquette singlet phase is 

 

E

 

S

 

 = –2

 

I

 

in

 

. As can be
seen, the magnetic energy gain upon breakage of the
Néel state, 

 

∆

 

E

 

 = 

 

E

 

N

 

 – 

 

E

 

S

 

 = 

 

I

 

in

 

 – 

 

I

 

ex

 

, is positive and the
singlet phase with plaquette deformation is preferred.
This scenario of a plaquette singlet phase formation is
an evident generalization to the 2D case of the afore-
mentioned dimerization upon the spin-Peierls transi-
tion in a linear chain.

The above considerations outline a qualitative pat-
tern and do not determine the conditions of a transition
to the singlet phase. In order to study the problem in
more detail, it is necessary to determine the spectrum
of elementary excitations in the plaquette-deformed
state of a frustrated 2D quantum magnet. Then, the sta-
bility of the singlet phase can be judged based on the
criterion of positive definiteness of the energy spec-
trum. In addition, the knowledge of the energies of ele-
mentary excitations makes possible the calculation of

 

the contribution due to quantum fluctuations to the
observed characteristics of the system under conside-
ration.

3. PLAQUETTE REPRESENTATION

In determining the spectrum of elementary excita-
tions in a plaquette-deformed state, it is necessary to
take into account the difference between the exchange
integrals of spins belonging to the same and different
plaquettes. At the point of breakage of the spin-ordered
state, this difference can be so large that the intra-
plaquette interactions would provide for the main con-
tribution to the Hamiltonian. Extrapolating this situa-
tion to the ultimate case, we arrive at a “plaquette” vari-
ant of perturbation theory, in which the operator
describing an ensemble of plaquettes with exact allow-
ance for all interactions in a separate plaquette is a zero-
order Hamiltonian, while the interplaquette interactions
play the role of perturbations.

In order to determine the form of a Hamiltonian in
the representation corresponding to the plaquette vari-
ant of perturbation theory, let us assign all spin
moments to plaquettes as depicted in Fig. 1. Each
plaquette is characterized by a 2D vector 

 

l

 

 = (

 

nb

 

, 

 

mb

 

),
where 

 

n

 

 and 

 

m

 

 are positive and negative integers and

 

b = 2a0 is the parameter of a new square lattice with the
basis set including four spins. In this description, the
spin moments acquire double numbering: l indicates
the plaquette in which the spin moment occurs, and the
other index refers to the node number in the plaquette.
Accordingly, the vector operators of four spin moments
in the lth plaquette are written as S1(l), S2(l), S3(l), and
S4(l). The order of numbering nodes is indicated on the
bottom left plaquette in Fig. 1. 

Within the framework of the adopted distribution of
spins over plaquettes, Hamiltonian (1) can be repre-
sented as

(2)

where H0 describes the noninteracting plaquettes or
those interacting only by means of a self-consistent
field (see below) and Hint describes the interplaquette
interactions. The h0(l) operator is a one-plaquette
Hamiltonian describing all the exchange interactions in
the lth plaquette:

(3)

where Iin and Jin are the exchange integrals of intra-
plaquette interactions (see Fig. 2). In the linear approx-

H H0 H int, H0+ h0 l( ),
l

∑= =

h0 l( ) I in S1 l( )S2 l( ) S2 l( )S3 l( )+[=

+ S3 l( )S4 l( ) S4 l( )S1 l( ) ]+

+ J in S1 l( )S3 l( ) S2 l( )S4 l( )+[ ],

Iin Jin

J

J1

Iex

Fig. 2. Identification of the exchange interaction constants
in a plaquette-deformed state (see text for explanations).
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imation with respect to the displacements of spins,
these integrals are defined as

(4)

where k1 and k2 are the parameters characterizing the
relative rates of variation of the exchange integrals in
response to the change in distances to the first and sec-
ond coordination spheres:

(5)

It will be assumed that the linear size a of a contracted
plaquette can be expressed via the initial size a0 using
the relative linear deformation δ as a = (1 – δ)a0.

In order to construct the plaquette representation, let
us introduce a basis set of the eigenstates of one-
plaquette Hamiltonian (3). Solutions to the Schrödinger
equation (to simplify writing, the plaquette index is
temporarily omitted)

(6)

determine 16 eigenstates [9] with the functions |ΨSM〉
characterized by the total spin moment S and its projec-
tion M onto the quantization axis z. For brevity, below
we present only the |ΨSM〉 functions belonging to differ-
ent multiplets of a spin plaquette and having the maxi-
mum projection M = S for a given spin moment S (i.e.,
the |ΨSS〉 functions). Then, one-plaquette wavefunc-
tions with smaller M are obtained from |ΨSS〉 by apply-
ing (the appropriate number of times) the operator of

reduction of the total moment projection (S– =  +

 +  + ) and multiplying by the corresponding
normalization coefficient.

The lowest one-plaquette state with the minimum
energy corresponds to the first spin singlet A1,

(7)

and has the energy E1 = E(A1) = –2Iin + Jin/2. The next
on the energy scale is the first spin triplet

(8)

I in 1 k1δ+( )I , J in 1 k2δ+( )J ,= =

I I r( ) r a0= , J J r( )
r 2a0=

,= =

k1

a0

I
----- ∂I r( )

∂r
------------⎝ ⎠

⎛ ⎞
r a0=

,–=

k2

2a0

J
------------ ∂J r( )

∂r
-------------⎝ ⎠

⎛ ⎞
r 2a0=

.–=

h0 ΨSM| 〉 E ΨSM| 〉=

s1
–

s2
– s3

– s4
–

Ψ00
1( )| 〉 Φ1| 〉≡ 1

2 3
---------- – – + +| 〉 2 – + – +| 〉–{=

+ – + + –| 〉 + – – +| 〉 2 + – + –| 〉–+

+ + + – –| 〉 },

T1: 

Ψ1 1,
1( )| 〉 Φ2| 〉, E2≡ E T1( ) I in– J in/2,+= =

Ψ1 0,
1( )| 〉 Φ3| 〉, E3≡ E T1( ),=

Ψ1 1–,
1( )| 〉 Φ4| 〉, E4≡ E T1( ).=⎩

⎪
⎨
⎪
⎧

The component of this triplet that corresponds to the
maximum projection of the total spin moment is
described by the function

(9)

The second singlet state A2 occurs above the first triplet,
corresponds to the wavefunction

(10)

and has the energy E5 = E(A2) = –3Jin/2. This level is
followed by two degenerate spin triplets

(11)

with the energies E(T2) = E(T3) ≡ Ep = –Jin/2, p = 6, 7,
…, 11. The components of these triplets that corre-
spond to the maximum projection M = 1 of the total
spin moment are described by the functions

(12)

The maximum energy Ep = E(D) = Iin + Jin/2 (p = 12,
13, …, 16) corresponds to the states of the spin quintet
D with S = 2,

in which two functions can be written in the adopted
notation as

(13)

Φ2| 〉 1
2
--- – + + +| 〉{ + – + +| 〉–=

+ + + – +| 〉 + + + –| 〉 }.–

Ψ00
2( )| 〉 Φ5| 〉≡ 1

2
--- – – + +| 〉{ – + + –| 〉–=

– + – – +| 〉 + + – –| 〉 },+

T2: 

Ψ1 1,
2( )| 〉 Φ6| 〉,≡

Ψ1 0,
2( )| 〉 Φ7| 〉,≡

Ψ1 1–,
2( )| 〉 Φ8| 〉,≡⎩

⎪
⎨
⎪
⎧

T3: 

Ψ1 1,
3( )| 〉 Φ9| 〉,≡

Ψ1 0,
3( )| 〉 Φ10| 〉,≡

Ψ1 1–,
3( )| 〉 Φ11| 〉,≡⎩

⎪
⎨
⎪
⎧

Φ6| 〉 1

2
------- – + + +| 〉 + + – +| 〉–{ },=

Φ9| 〉 1

2
------- + – + +| 〉 + + + –| 〉–{ }.=

D: Ψ2 2,| 〉 Φ12| 〉, Ψ2 1,| 〉 Φ13| 〉, Ψ2 0,| 〉 Φ14| 〉,≡ ≡ ≡{
Ψ2 1–,| 〉 Φ15| 〉, Ψ2 2–,| 〉 Φ16| 〉 },≡ ≡

Ψ2 2,| 〉 Φ12| 〉≡ + + + +| 〉,=

Ψ2 0,| 〉 Φ14| 〉≡ 1

6
------- – – + +| 〉{ – + – +| 〉+=

+ – + + –| 〉 + + – –| 〉 + – – +| 〉 + – + –| 〉 }.+ + +



238

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 102      No. 2      2006

VAL’KOV et al.

Here, |Ψ2, 2〉 is the function with the maximum projec-
tion of the total spin moment and |Ψ2, 0〉 is the function
with the minimum projection that plays a substantial
role in description of the spectral properties of the AFM
phase. The above expressions for the energies of states
show that the first singlet |Φ1〉 is the ground state for
Iin > Jin (otherwise, the second singlet |Φ5〉 is the ground
state).

The basis set {|Φq〉, q = 1, 2, …, 16} determines the
Hilbert space in which the operators defined for each
single plaquette are operative. Each operator can be
expanded over the basis set operators that are conve-
niently represented by the Hubbard operators,

(14)

whose action on the |Φq〉 state is defined by the relation

(15)

Taking into account the properties of the Hubbard oper-
ators and restoring the plaquette index, the spin opera-
tors can be represented as

(16)

where the representation parameters (p, q) in short
writing denote the matrix elements of the spin operator:

(p, q) = 〈Φp | |Φq〉. By the same token, we intro-

duce a representation for the coordinate operators (l)
as

(17)

In terms of the Hubbard operators, Hamiltonian H0
acquires the diagonal form:

(18)

Now let us express the perturbation Hamiltonian in
the plaquette representation. Operator Hint describes the

X pq Φp| 〉 Φq〈 |,=

X pq Φq '| 〉 δqq ' Φp| 〉.=

Si
+ l( ) γ i

⊥ p q,( )Xl
pq,

pq

∑=

Si
– l( ) γ i

⊥ p q,( )Xl
qp, i

pq

∑ 1 2 3 4,, , ,= =

γ i
⊥

γ i
⊥ Si

+

Si
z

Si
z l( ) γ i

|| p q,( )Xl
pq,

pq

∑=

γ i
|| p q,( ) Φp〈 |Si

z Φq| 〉.=

H0 EpXl
pp.

p 1=

16

∑
l

∑=

exchange coupling of spin moments belonging to dif-
ferent plaquettes and can be written as

Here,

(19)

are the two-component vectors connecting the center of
the lth plaquette to a half of the nearest neighbor
plaquettes and to a half of the next-to-nearest neighbor
plaquettes. The interaction between spins belonging to
different plaquettes in this approximation (linear with
respect to the relative deformation) is characterized by
three exchange parameters (see Fig. 2):

(20)

Using representations (16) and (17), the interaction
operator can be written as a sum of two components,

(21)

Here, the transverse part of Hint has the following oper-
ator structure:

(22)

where the summation over ∆i is restricted to the four
vectors given by Eqs. (19). The subscripts α and β
denote the so-called root vectors [11, 12] correspond-
ing to certain transitions between the one-plaquette
states |Φp〉. The definition of a root vector α reduces to
that of a sequence of two one-plaquette state numbers.
It is assumed that the Hubbard operators Xpq obey the
following relation: Xpq ⇔ Xα(p, q) ≡ Xα. The root vectors
are 16-dimensional, which is determined by the dimen-
sion of a basis set on which the Hubbard operators are
constructed. The components of a root vector α corre-
sponding to the transition from |Φq〉 to |Φp〉 are defined
as αi(p, q) = δip – δiq . Introduction of the root vectors

H int Iex S4 l( ) S1 l ∆x+( )⋅[{
l

∑=

+ S3 l( ) S2 l ∆x+( )⋅

+ S2 l( ) S1 l ∆y+( ) S3 l( ) S4 l ∆y+( ) ]⋅+⋅

+ J S4 l( ) S2 l ∆x+( ) S3 l( ) S1 l ∆x+( )⋅+⋅[

+ S3 l( ) S1 l ∆y+( ) S2 l( )S4 l ∆y+( ) ]+⋅

+ J1 S4 l( ) S2 l ∆x y–+( )⋅ S3 l( )+ S1 l ∆x y++( )⋅[ ] }.

∆x b 0,( ), ∆y 0 b,( ),= =

∆x y+ b b,( ), ∆x y– b b–,( )= =

Iex 1 k1δ–( )I , J , J1 1 k2δ–( )J .= =

H int H int
⊥ H int

|| .+=

H int
⊥ 1

2
--- Vαβ

⊥ ∆i( )Xl
αXl ∆i+

β ,
αβ
∑

l∆i

∑=
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substantially simplifies the diagram technique for the
Hubbard operators [11, 12].

The sum with respect to α and β in Eq. (22) implies
the summation over all the intraplaquette transitions
taking place in plaquettes with the indices l and l + ∆i .
For the subsequent considerations, it is important to

note that the matrix elements (∆i) can be repre-
sented in a form with separated indices as the scalar
products

(23)

of the components of an 8-vector

(24)

and another 8-vector obtained upon the multiplication

of the vector C⊥(–β) and the matrix (∆i) defined as
the direct sum

(25)

of the four-row matrices (∆i) representing the param-
eters of interplaquette interactions

(26)

In a similar manner, the longitudinal part of the

Vαβ
⊥

Vαβ
⊥ ∆i( ) C⊥ α( ) V̂

⊥ ∆i( )C⊥ β–( ),{ }=

C⊥ α( ) γ 1
⊥ α( ) γ 2

⊥ α( ) γ 3
⊥ α( ) γ 4

⊥ α( ) γ 1
⊥ α–( ),,, , ,[=

γ 2
⊥ α–( ) γ 3

⊥ α–( ) γ 4
⊥ α–( ) ], ,

V̂
⊥

V̂
⊥ ∆i( ) v̂ ∆i( ) v̂ ∆i( )⊕=

v̂

v̂ ∆x( )

0 0 0 0

0 0 0 0

J Iex 0 0

Iex J 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

v̂ ∆y( )

0 0 0 0

Iex 0 0 J

J 0 0 Iex

0 0 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

v̂ ∆x y–( )

0 0 0 0

0 0 0 0

0 0 0 0

0 J1 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

v̂ ∆x y+( )

0 0 0 0

0 0 0 0

J1 0 0 0

0 0 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.=

interaction operator can be written as 

(27)

where 4-vectors C||(λ) are constructed using the param-

eters of the  operator representation as

(28)

It should be noted that the sum over λ in Eq. (27) for the
longitudinal part of the interaction operator involves in
the general case both the pairs of noncoinciding indices
of one-plaquette states and the coinciding indices. This
situation takes place, for example, in systems featuring
a long-range order with nonzero average values of the

operator  (see below). In this case, a part of the diag-

onal matrix elements 〈Φp | |Φp〉 is nonzero, which
accounts for the aforementioned feature in the longitu-
dinal interaction.

4. DISPERSION EQUATION
In order to determine the spectrum of collective

excitations of a plaquette-deformed magnet, we use a
diagram technique for the Hubbard operators [11, 12]
and introduce the Matsubaru Green functions:

(29)

In the loopless approximation, the Fourier image of
Dαβ(k, iωn) is expressed via Green’s function
Gαβ(k, iωn) as [11, 12]

where b(β) is the so-called terminal factor. The equa-
tion for Gαβ(k, iωn) in the graphical form appears as

(30)

In writing this equation in an analytic form, it is impor-
tant to take into account that the product of the repre-
sentation parameters for the nonmagnetic phase van-

ishes, (α) (±α) = 0, for all root vectors α and all
indices i and j. This property follows from the fact that

|Φq〉 are the eigenstates of the operator  of z-projec-

tion of the total spin moment. Since the operator 
dopes not change the value of the z-projection of the
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total spin moment of the plaquette, while  increases
this value by unity, the matrix elements of these opera-
tors between one-plaquette states |Φq〉 cannot simulta-
neously differ from zero. Therefore, the collective exci-
tations determined by the transverse and longitudinal
parts of the interaction (i.e., the transverse and longitu-
dinal oscillations) do not interact and can be deter-
mined independently.

Transverse Oscillations 

Upon writing the analytic expressions correspond-
ing to diagram (30), we obtain

(31)

where α, β, and β1 are the root vectors corresponding to
the intraplaquette transitions for which the transverse
representation parameters are nonzero. The functions
entering into Eq. (31) are defined as

(32)

where k are the wavevectors belonging to the first Bril-
louin zone on a square lattice with the unit cell param-
eter b.

In solving system of equations (31), we will take
into account the split structure (23) of the matrix ele-
ments. Introducing the 8-vector Zβ(k, iωn) with the
components

(33)

we obtain the following matrix equation for the vector
components:

(34)

Here, the matrix elements (iωn) are defined as

(35)

Si
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α
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and the matrix (k) can be represented as

(36)

where (∆i) is the matrix transposed with respect to

(∆i). Equation (34) leads to the following dispersion
equation determining the spectrum of transverse excita-
tions (upon the analytic continuation iωn  ω + iδ,
δ  +0):

(37)

Longitudinal Oscillations 

A dispersion equation for the longitudinal oscilla-
tions is derived using a procedure analogous to that out-
lined above for the transverse component. Omitting the
details, we only present the final form of this dispersion
equation:

(38)

Here, (ω) is a 4 × 4 matrix with the elements defined
as

, (39)

and the matrix (k) can be represented as

(40)

where (∆i) is a matrix transposed with respect to
(∆i).

5. THE SPECTRUM OF ELEMENTARY 
EXCITATIONS IN A PLAQUETTE SINGLET 

PHASE

Let us consider the solutions of Eqs. (37) and (38) in
a low-temperature region where T � Iin, Jin. In this case,
the population of the upper one-plaquette states is
exponentially small:

.

Therefore, the spectrum of elementary excitations is
determined by the collectivization of transitions
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between the ground and excited one-plaquette states.
This circumstance is described by the terminal factors
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) with
one argument (
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 or 
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) equal to unity do not contain
exponentially small terms. In the case under consider-

ation, there are 16 nonzero parameters (

 

α

 

) determin-
ing the elementary excitations:

(41)

Taking into account these quantities, we conclude that

the 8-dimensional (

 

ω

 

) matrix has a quasi-diagonal
form,

(42)

where 
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 and 

 

v

 

 are defined as

(43)

An analogous representation for the (
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) matrix as
the direct sum of two matrices is

(44)
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where x = , y = , m31 = (x + y)J + xyJ1, and
m42 = (x + y*)J + xy*J1. Taking in to account that

(45)

we eventually arrive at a representation of the determi-
nant of the eighth power via a product of two identical
determinants of the fourth power. As a result, one part
of the spectrum of transverse oscillations is determined
from a simpler equation,

(46)

and the complete spectrum is obtained by doubling
branches. This degeneracy is related to the obvious

identity of the equations of motion for  and  in the
singlet phase. In the nearest-neighbor approximation,
Eq. (46) can be written as

(47)

where

Substituting the expressions for u and v into Eq. (46),
we obtain a cubic equation with respect to ω2(k) (mea-
sured in the units of (Iin)2):
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Solving the cubic equation (48), we determine three
branches of the spectrum of collective excitations:

(50)

where

(51)

The other three branches are determined from an
analysis of the dispersion equation for the longitudinal

oscillations. Since the operators , , and  in the
singlet phase are equivalent, the dynamics generated by
these operators are identical. Therefore, nonzero repre-
sentation parameters γ ||(α) connect the same one-
plaquette states as parameters γ⊥(α).

As a result, the dispersion equation in this case is
identical to Eq. (46). This provides another three
branches of the low-temperature spectrum. Thus, the
complete spectrum of excitations in a plaquette singlet
phase at T � Iin exhibits three triply degenerate
branches.
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Figure 3 shows the pattern of evolution of the spec-
trum of excitations (the triple degeneracy of branches is
not depicted) in a plaquette singlet phase with increas-
ing Iex/Iin ratio. At Iex = 0, where all plaquettes are inde-
pendent, the spectrum exhibits one branch with the
energy Iin and two degenerate branches with the ener-
gies 2Iin (depicted by dashed curves in Fig. 3). At a
finite but small Iex/Iin ratio, a dispersion appears that
leads to splitting of the upper branches. Thin solid
curves in Fig. 3 show the spectrum for Iex/Iin = 1/9, and
thick solid curves, for the limiting case of Iex/Iin = 3/8.
In the latter case, the lower branch becomes activation-
less. For Iex/Iin > 3/8, the spectrum loses positive defi-

niteness (  becomes negative), which corresponds to
the transition to a state with long-range AFM ordering.

The inclusion of the frustrated-spin-type interac-
tions involving the next-to-nearest neighbor spin
moments leads to the stabilization of a nonmagnetic
phase. The corresponding analytic expressions are not
presented here for being rather lengthy. It should be
noted that the instability also primarily appears at k =
(0, 0), where the ω2 value is given by the formula

(52)

The condition of positive definiteness of the spectrum
yields the following boundary of stability of a plaquette
singlet phase:

(53)

The stable plaquette singlet phase is formed at J/I >
(J/I)c . With neglect of the deformation, the plaquette
singlet phase is formed at J > 5I/12. In the absence of
frustrated spin interactions, a transition from the
plaquette singlet phase will take place at kδ = 5/11 that
corresponds to Iex/Iin = 3/8.

In the region of J/I < (J/I)c , a plaquette singlet phase
does not correspond to the ground state of the system.
In this case, the system exhibits spontaneous symme-
try-breaking with the formation of a long-range AFM
order and an additional deformation of the lattice. In
order to describe such a state, it is necessary to modify
the plaquette representation and take into account the
influence of the magnetic structure on the basis set
functions describing the one-plaquette states. Here, a
necessary criterion of the correct description of the
magnetic phase is the existence of a Goldstone boson in
the system. This situation is considered in the next
section.
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Fig. 3. Evolution of the spectrum of excitations in a
plaquette singlet phase with increasing Iex/I in ratio (see text
for explanations).
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6. PLAQUETTE REPRESENTATION
WITH ALLOWANCE

FOR SELF-CONSISTENT FIELD

In order to take into account the possible AFM order
in the 2D spin system, let us modify the scheme of con-
struction of the plaquette representation so as to include
the ordering effects. The order parameter must be deter-
mined either from the condition of minimization of the
system energy or from the solution of the self-consis-
tent equation.

The appearance of a long-range AFM order results
in a self-consistent field beginning to act on each spin
plaquette. Assuming that the ground state of the system
has the Néel character, for certainty we will set

(54)

Using the well-known procedure of self-consistent
field introduction (in the diagram form of perturbation
theory, this corresponds to the exact allowance for all
one-tail diagrams [15]), the rule of modification of the
unperturbed Hamiltonian H0 can be written as

(55)

where  = (2Iex – 2J – J1)σ is the self-consistent field
and Dz(l) is the AFM ordering operator that acts on the
plaquette spin moments as described by the relation

(56)

The renormalized eigenfunctions of a one-plaquette
Hamiltonian, which satisfy the Schrödinger equation
(the plaquette index is omitted)

, (57)

can be found in the form of a superposition of the
unmodified one-plaquette states:

(58)

The eigenfunctions of a separate plaquette upon modi-
fication depend not only on Iin and Jin, but also on the
interplaquette interaction parameters Iex, J, and J1.
The self-consistent equation for equilibrium magneti-
zation is

(59)
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z Φ̃1 σ( )〈 〉 ,=

where  is the ground-state function of a
plaquette occurring in the self-consistent field. The sys-
tem energy per plaquette is given by the formula

(60)

As is known [13, 14], the frustrated spin interactions
tend to suppress the long-range AFM ordering. In the
simplest approximation, the point of breakage of the
magnetic order corresponds to the critical exchange
parameter Jc = I/2. In the case under consideration, the
solution to the self-consistent equation (59) shows that
a state with spontaneously violated symmetry exists

only in the region of J <  = 0.417I. Thus, allowance
for the intraplaquette quantum fluctuations led to a shift
of the transition point toward lower J values.

The appearance of plaquette deformation in the lat-
tice induces an additional mechanism of spontaneous
violation of magnetization order with the subsequent
transition of the spin ensemble to a singlet state. This
mechanism is related to a different change in the intra-
and interplaquette exchange integrals upon plaquette
deformation. Figure 4 shows a decrease in the sublat-
tice magnetization as a result of the plaquette deforma-
tion of nonfrustrated (thick solid curve) and frustrated
(J/I = 0.3) antiferromagnets for three values of the rel-
ative rate of decrease in the exchange integrals: k2/k1 =
0 (1), 1 (2) and 3 (3). As can be seen, the critical values
of relative deformation significantly depend on the k2/k1
ratio and decrease with increasing rate of frustrated
spin interactions.

It should be noted that the magnetization corre-
sponds to a minimum in the dependence of the system
energy on σ. In the nonfrustrated case, the energy per
plaquette is Emin = –2.336I. A decrease in the ground
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Fig. 4. Plots of the magnetization of the AFM sublattice ver-
sus plaquette deformation parameter k1δ for nonfrustrated
(thick solid curve) and frustrated (J/I = 0.3) antiferromag-
nets for three values of the relative rate of decrease in the
exchange integrals: k2/k1 = 0 (1), 1 (2) and 3 (3).

k1δ
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state energy as compared to that (ENeel = –2I) of the
Néel phase in the usual description is also caused by
taking into account the nearest quantum fluctuations.

Allowance for the self-consistent field in the pres-
ence of a long-range AFM order does not change the

form of the transverse interaction term ( ), but mod-

ifies the longitudinal interaction component ( ).
This is related to the fact that a nonzero magnetization
of the sublattice leads to nonzero longitudinal represen-

tation parameters (α). As a result, the terms with
coinciding indices must be taken into account in sum-
ming over the pair indices of one-plaquette states. The
renormalization of a zero-order Hamiltonian related to
the inclusion of the self-consistent field effects involves

replacement of the diagonal Hubbard operators in 

according to the following rule:   ∆  =

 –  [11, 15].

7. SPECTRUM OF EXCITATIONS
IN THE MAGNETIC PHASE AND THE ENERGY

OF ZERO-POINT OSCILLATIONS

In order to determine the spectrum of elementary
excitations and corrections to the energy due to the
zero-point quantum oscillations in the phase with spon-
taneous symmetry-breaking and plaquette deformation,
let us use the above representation for the magnetic
phase and restrict consideration to the low-temperature
case. Then, the spectral problem is conveniently solved
using a Bose analog of the Hamiltonian. The strict
theory of construction of the Bose Hamiltonian analog
with recourse to an indefinite metric is presented
in [16, 17].

In the case under consideration, the interaction
between quasi-particles is ignored and the passage to
the Bose Hamiltonian analog is provided by replacing
the Hubbard operators with the Bose operators accord-
ing to the following scheme:

(61)

where bp(l) ( (l)) is the p-type boson annihilation
(creation) operator in the plaquette representation. The

Bose operators  for p ≠ 0, q ≠ 0 contain at

least the product of two operators,  

(l)bq(l) and, hence, the Hamiltonian terms with such
operators describe the interaction between quasiparti-
cles. Therefore, a quadratic form of the Hamiltonian
can be obtained by retaining in the sums over the root
vectors α and β only the terms corresponding to the
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transitions between one-plaquette states, one of which
is the plaquette ground state.

Taking into account the above considerations, a qua-
dratic form of the Hamiltonian can be written as

(62)

where (∆i) denotes the matrix element

(∆i) introduced above with α = α(1, p + 1) and β =
β(q + 1, 1). Analogous notations are used for the other
matrix elements in expression (62). In the momentum
representation, this quadratic form appears as

(63)

where

(64)

The complete Hamiltonian describing the spectrum
of transverse oscillations has the usual structure, H⊥ =

 + , where the energy operator of noninteracting
one-plaquette bosons is given by the following expres-
sion:
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Here, the primed sum with respect to p is taken over the
indices for which the representation parameters of spin
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operators (1, p + 1) and (p + 1, 1) for i = 1, 2, 3,
4 are nonzero.

In order to calculate the energy spectrum and the
contribution of zero-point oscillations to the ground
state energy, let us perform a unitary transformation of
the Hamiltonian as [18]

(66)

The problem of diagonalization reduces to the alge-
braic problem of determining eigenvalues,

(67)

where

(68)

With the new operators, the Hamiltonian acquires the
following form:

(69)

where the quantum additive to the ground-state energy
is determined as

(70)

A similar procedure is used to calculate the spec-
trum of longitudinal oscillations. A quadratic form of
the Hamiltonian for this case can be obtained from

expression (63) by replacing    and elim-
inating the factor 1/2. The resulting quadratic form of
the complete Hamiltonian is a direct sum of two inde-
pendently diagonalized quadratic forms.

Figure 5 shows the results of numerical calculations
of the low-energy part of the spectrum of oscillations in
the magnetic phase for three values of the plaquette
deformation parameters. For simplicity, we restricted the
consideration to the case of J = 0. In the case of J ≠ 0, the
character of evolution of the spectrum of elementary
excitation is qualitatively similar. At the point of transi-
tion, where k1δ = 0.45, the spectrum exhibits threefold
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degeneracy (two transverse branches and one longitudi-
nal branch) that exactly corresponds to the solution
obtained previously using a cubic equation (curve 1).

A decrease in the degree of plaquette deformation in
the AFM phase leads to removal of the threefold degen-
eracy, whereby the two branches of transverse oscilla-
tions retain the Goldstone character and the longitudi-
nal branch (dashed curve in Fig. 5) exhibits the activa-
tion character. For k1δ = 0.3, the transverse and
longitudinal branches are depicted by curves 2a and 2b;
the limiting case of nondeformed antiferromagnet is
illustrated by curves 3a and 3b.

The obtained data concerning the evolution of the
spectrum of oscillations show that an acoustic boson
exists (in accordance with the Goldstone theorem) in
the presence of plaquette deformation unless the long-
range AFM order is broken. On approaching the point
of a transition to the singlet phase, the longitudinal
(optical) mode exhibits softening. At the transition
point and in the singlet phase, the energy spectra of the
transverse and longitudinal oscillations fully coincide.
An increase in the degree of plaquette deformation in
the singlet phase leads to the appearance of an activa-
tion energy. Thus, the oscillation spectrum in the singlet
phase is gapped and threefold degenerate. The gap
width grows with increasing stability of the singlet
phase, that is, with the system moving away from the
transition point.

In order to determine the equilibrium value of the
parameter of plaquette deformation δ and to construct
the phase diagram of a 2D quantum magnet with frus-
trated spin coupling, let us take into account the energy
contribution related to the lattice distortion. In the case
under consideration, this deformation energy per

3

2

1

0
(0, 0) (π, π) (π, 0) (0, 0)

3b

3a

2b

2a

1

E/Iin

Fig. 5. The results of numerical calculations illustrating the
evolution of the low-energy part of the spectrum of oscilla-
tions in the AFM phase (see the text for explanations).
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plaquette can be written as Eel = 2Cδ2, where C/  is
the effective constant of elastic interaction. Then, the
equilibrium relative deformation δ is determined from
the equation

(71)

where Em is the magnetic energy of the spin system. At
the point of the transition to the singlet phase, the
parameter δ is not only a solution to Eq. (71), but also
corresponds to the critical product (k1δ)c . The two con-
ditions are met provided that

(72)

This relation determines the boundary between the
AFM and plaquette singlet phases. The coefficient µ is
given by the formula

(73)

and depends on the model parameters J/I and k2/k1.

Figure 6 presents the phase diagram of a frustrated
plaquette-deformed 2D quantum magnet, where curve 1
shows the phase boundary for the nonfrustrated quan-
tum magnet. The pairs of curves 2–4 represent the lines
of the phase transitions in the frustrated quantum mag-
nets with J/I = 0.1, 0.3, and 0.4, respectively, where
solid lines refer to the case of k2 = 0 (whereby the
dependence of the exchange integral on the distance is
ignored) and dashed lines, to k2/k1 = 1 (equal relative
rates of variation of the exchange parameters I and J).
This phase diagram quantitatively illustrates that small

a0
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2δ+ 0,=
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2.=

µ 1
4 k1δ( )c

------------------
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k1 values (indicative of the exchange integrals slowly
varying with deformation) and large elastic constants C
correspond to a quantum magnet with plaquette-
deformed AFM phase and renormalized sublattice
magnetization in the ground state. As k1 increases
and/or C decreases, the quantum magnet exhibits a sec-
ond-order phase transition from the AFM to the singlet
phase.

8. CONCLUSIONS

The results presented in this paper show that the
inclusion of MEC effects in a 2D spin system on a
square lattice can be a decisive factor in the mechanism
of a singlet ground state formation with a gapped spec-
trum of elementary excitations. It should be empha-
sized that it is the MEC that introduces a difference
between the intra- and interplaquette exchange interac-
tions and thus accounts for the appearance of a branch
with the activation character in the spectrum. Although
frustrated spin interactions break the long-range AFM
order, these interactions alone are insufficient for elim-
inating the gapless excitations.

The second important issue is the choice of the type
of lattice deformation. The consideration was restricted
to the case of plaquette deformation for two reasons.
First, the square lattice symmetry to a certain extent
instigates this type of deformation. Second, the energy
factors rendering the plaquette singlet state preferable
also justify the adopted scenario of “singletization” of
a 2D quantum magnet with MEC. Using the Hubbard
operator technique within the framework of the devel-
oped plaquette representation, it is possible to com-
pletely take into account the strong one-plaquette cor-
relations and thus correctly describe the tendency
toward a second-order phase transition from the AFM
to the singlet phase in a plaquette-deformed quantum
magnet.

The third important point in the proposed theory
consists in that the excitation spectrum has been calcu-
lated using the complete (rather than truncated) set of
one-plaquette states. Only this approach leads to the
excitation spectrum satisfying the necessary symmetry
conditions. In particular, a Goldstone boson exists in
the phase with spontaneously broken symmetry in
accordance with the Goldstone theorem. In this context,
it should be recalled that this boson exists provided that
not only the first (lowest) excited one-plaquette states,
but also the highest states of the plaquette quintet, are
taken into consideration.

To summarize, a model has been proposed that
describes the phase transition on a square spin lattice
from the AFM to the singlet state with respect to the
MEC parameter. The spectrum of elementary excita-
tions in both singlet and AFM phases was calculated
within the framework of the common approach. In par-
ticular, It is established that the transition from the
AFM to singlet phase is related to softening of the lon-
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Fig. 6. The phase diagram of a frustrated plaquette-
deformed 2D quantum magnet (see text for explanations).
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gitudinal branch of oscillations. In the singlet phase, the
spectral gap plays the role of a parameter characterizing
the distance to the phase transition point.
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