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1. INTRODUCTION

Wave spectra in partly stochastic superlattices have
been intensely studied in recent years in view of wide
application of such materials in various high-tech
devices. In addition, these materials are convenient
models for developing new methods in theoretical
physics for studying media without translational sym-
metry. Several theoretical approaches have been devel-
oped to investigate such superlattices, including the
introduction of a 1D random phase [1, 2], modeling of
violation of ordering in the sequence of layers of two
different materials [3–9], numerical simulation of ran-
dom deviations of the interfaces between the layers
from their initial periodic arrangement [10–12], postu-
lation of the form of the correlation function of the
superlattice with inhomogeneities [13, 14], application
of geometrical optics approximations [15], and devel-
opment of a dynamic theory of composite elastic media
[16].

One more method for investigating the effect of
inhomogeneities in a superlattice on the wave spec-
trum, which was proposed in our earlier publication
[17], is known as the method of random spatial modu-
lation (RSM) of the superlattice period. It can be briefly
described as follows. The method of averaged Green
functions is known to be the most consistent approach
for describing the spectral properties of any inhomoge-
neous medium. The only parameter describing the ran-

dom medium and appearing in the expression for the
averaged Green function is the correlation function

 

K

 

(

 

r

 

) that depends on the distance 

 

r 

 

between two points
of the medium (

 

r

 

 = 

 

x

 

 – 

 

x

 

'). Consequently, the first stage
of solving the problem is reduced to determining func-
tion 

 

K

 

(

 

r

 

) for the superlattice containing some structural
inhomogeneities; the second stage involves the extrac-
tion of the spectral parameters from the expression for
the Green function containing this correlation function
using the standard approximate methods. We used the
random phase model for describing inhomogeneities in
the structure of a sinusoidal superlattice, which was
assumed to be a random function of all three coordi-
nates with an arbitrary correlation radius. To determine
the superlattice correlation function 

 

K

 

(

 

r

 

), we developed
an approach, which is a generalization of the well-
known method for determining the time correlation
function for a random frequency (phase) modulation of
a radio signal [18, 19] to the case of a spatial (3D in the
general case) modulation of the superlattice period
(phase). The advantage of this method is that the form
of the superlattice correlation function is not postulated
in it, but is derived from the most general assumptions
concerning the nature of random spatial modulation of
the superlattice period. It was shown that this function
in the general case has a quite complicated form, which
is determined to a considerable extent by the dimen-
sionality of inhomogeneities, the structure of the inter-
face between the layers, and so on. Knowledge of the
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correlation functions corresponding to various types
and dimensionalities of inhomogeneities allowed us to
apply the methods to studying the averaged Green func-
tions for determining the eigenfrequencies, damping
factor, and other wave parameters in superlattices [17,
20–26]. We demonstrated how the resultant differences
in the form of the correlation function for 1D and 3D
inhomogeneities are manifested in the spectrum of
waves propagating in the superlattice [21, 22, 26]. For
the first time, we investigated the effect of 3D inhomo-
geneities with anisotropic correlation properties [25]
and a mixture of 1D and 3D inhomogeneities [23, 24]
on the wave spectrum. We demonstrated nonadditivity
of the contributions from the mixture components to
the resultant modification of the wave spectrum param-
eters associated with these inhomogeneities. Analyzing
the mixture of inhomogeneities in [23, 24], we assumed
that cross correlations between inhomogeneities with
different dimensionalities are absent. The present study
is devoted to analysis of the effect of cross correlations
between 1D inhomogeneities simulating random devi-
ations of interfaces between the layers from their peri-
odic arrangement and 3D inhomogeneities simulating
random deformations of the surface of layer boundaries
on the high-frequency susceptibility of the superlattice.

The article has the following structure. In Section 2,
we introduce the distribution function for two random
quantities, which describes cross correlation between
the absolute values of these quantities and derive the
correlation function of the superlattice, which takes
into account the cross correlation between 1D and 3D
inhomogeneities. In Section 3, the high-frequency sus-
ceptibility at the boundary of the first Brillouin zone is
calculated and the dependence of the imaginary part of
the susceptibility on mean square fluctuations of inho-
mogeneities is analyzed. In Section 4, the results are
summarized and discussed.

2. DISTRIBUTION FUNCTION
AND CORRELATION FUNCTION

A superlattice is characterized by the dependence of
a material parameter 

 

A

 

 on spatial coordinates 

 

x

 

 = {

 

x

 

, 

 

y

 

,

 

z

 

}. Parameter 

 

A

 

(

 

x

 

) can be of any physical origin. It can
be the density of the material or a force constant for the
elastic system of the medium, magnetic anisotropy,
magnetization, or exchange constant for the magnetic
system. We write parameter 

 

A

 

(

 

x

 

) in the form

(1)

where 

 

A

 

 is the mean value of the parameter, 

 

∆

 

A

 

 is its
rms deviation, and 

 

ρ

 

(

 

x

 

) is a centered (

 

〈ρ

 

(

 

x

 

)

 

〉

 

 = 0) or nor-
malized (

 

〈ρ

 

2

 

(

 

x

 

)

 

〉

 

 = 1) function. Function 

 

ρ

 

(

 

x

 

) describes
both the periodic dependence of the parameter along
the 

 

z

 

 axis of the superlattice and random spatial modu-
lation of this parameter, which can generally be a func-
tion of all three coordinates 

 

x

 

, 

 

y

 

, and 

 

z.

A x( ) A ∆Aρ x( ),+=

 

In this study, we consider a superlattice with a sinu-
soidal dependence of the material parameter on the 

 

z

 

coordinate in the initial state (in the absence of inhomo-
geneities). Following [23, 24], we present function 

 

ρ

 

(

 

x

 

)
in the form

(2)

where 

 

q

 

 = 2

 

π

 

/

 

l

 

 is the wave number of the superlattice
and 

 

l 

 

is the superlattice period.
Function 

 

u

 

1

 

(

 

z

 

) describes 1D phase inhomogeneities
of function 

 

ρ

 

(

 

x

 

). The sensitivity of the profile of func-
tion 

 

ρ

 

(

 

x

 

) to the action of modulation 

 

u

 

1

 

(

 

z

 

) is different
for different points of function 

 

ρ

 

(

 

x

 

). The slightest
changes of the profile occur in the vicinity of the mini-
mum or maximum of function cos(

 

qz

 

). On the contrary,
the displacement of zero points of cos(

 

qz

 

) under the
action of function 

 

u

 

1

 

(

 

z

 

) leads to strong variations of the
profile. Zeros of function 

 

ρ

 

(

 

x

 

) correspond to the bound-
aries of the layers of the superlattice. For this reason, in
the RSM method we assume that function 

 

u

 

1

 

(

 

z

 

) simu-
lates 1D displacements of the layer boundaries from
their initial periodic arrangement.

Function 

 

u

 

3

 

(

 

x

 

) was introduced into Eq. (2) to simu-
late random deformations of the boundary surfaces of
the layers. It might seem at first sight that this function
must depend only on two coordinates 

 

x

 

 and 

 

y

 

. However,
function 

 

u

 

(

 

x

 

, 

 

y

 

) in the RSM method describes only 2D
deformations, which are homogeneous for all bound-
aries of the layers in the superlattice and, hence, have an
infinitely long correlation radius along the 

 

z

 

 coordinate.
In actual practice, we are interested in the opposite
case, when deformations of two nearest boundaries of
the layers are either uncorrelated (the correlation radii
along the 

 

z

 

 axis are much smaller than 

 

l

 

/2), or only the
boundaries of several neighboring layers are correlated.
For this reason, 

 

u

 

3

 

(

 

x

 

) must be a random function of all
three coordinates 

 

x

 

, 

 

y

 

, and 

 

z.

 

In the general case, this function exhibits anisotropy
in correlation properties since the lengths of the corre-
lation radii in the

 

 xy

 

 plane and along the 

 

z

 

 axis are deter-
mined by different physical factors. However, we will
confine our analysis to the simplest case and assume
that 

 

u

 

3

 

(

 

x

 

) is a random 3D function with isotropic corre-
lation properties. The coordinate-independent phase 

 

ψ

 

is introduced into Eq. (2) to ensure the fulfillment of
ergodicity of function 

 

ρ

 

(

 

x

 

) (see [17]); this phase is
characterized by a uniform distribution on the interval
(–

 

π

 

, 

 

π

 

). After averaging of the product of functions 

 

ρ

 

(

 

x

 

)
and ρ(x + r) over phase ψ, we obtain

(3)

where

(4)

ρ x( ) 2 q z u1 z( )– u3 x( )–( ) ψ+[ ],cos=

ρ x( )ρ x r+( )〈 〉ψ qrz χ1– χ3–( ),cos=

χ1 q u1 z rz+( ) u1 z( )–[ ],=

χ3 q u3 x r+( ) u3 x( )–[ ].=
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In [23, 24], we assumed that random functions χ1 and
χ3 are mutually uncorrelated and each of these func-
tions obeys a Gaussian distribution.

This study is aimed at an analysis of the situation
when 1D and 3D inhomogeneities are cross-correlated.
In the standard theory, the distribution function of two
random centered cross-correlated quantities χ1 and χ3
can be represented in the form [see, for example, [27])

(5)

where σ1 and σ3 are rms fluctuations of quantities χ1
and χ3, respectively, and κ is the cross-correlation fac-
tor for these quantities (–1 < κ < 1). Such a form of the
distribution function describes the situation when (for
example, for positive correlations with κ > 0) the emer-
gence of a positive fluctuation in quantity χ1 causes an
increase in the probability of a positive fluctuation in
quantity χ3 and, accordingly, a decrease in the probabil-
ity of negative fluctuation of χ3. In our case, variables
χ1 and χ3 are functions of one and three spatial coordi-
nates, respectively. As applied to our model, function (5)
describes the situation when a positive displacement
u1(z) of the boundary between two layers of the super-
lattice at a point z = z0 causes an asymmetric (i.e., pos-
itive amplitudes are on average larger than negative
amplitudes) deformation of boundary u3(x, y, z0) in the
entire (x, y) plane, which corresponds to point z = z0. A
physical mechanism leading to such correlations for 1D
and 3D inhomogeneities under investigation is difficult
to imagine.

Our task is to analyze the effect of another type of
correlations with a clear physical meaning on the spec-
trum of the system. We are speaking of those correla-
tions when an enhancement of the intensity fluctuations
for inhomogeneities of some dimensionality for posi-
tive correlations leads to enhancement of intensity fluc-
tuations for inhomogeneities of the other dimensional-
ity and vice versa, irrespective of the sign of these fluc-
tuations. In our model, this means that the increase in
the displacement of the boundary at point z = z0 irre-
spective of its sign must lead to an increase in the defor-
mation amplitudes of this boundary for all values of x
and y in the plane z = z0 irrespective of the sign of these
amplitudes. The reason for the emergence of such cor-
relations in the most general form may lie in the reason-
able assumption that any random instability in the setup
for obtaining superlattices which causes an increase in
the deviation of the thickness of a layer from the preset
value might also increase the probability that the defor-
mation of the surface of this layer increases. To simu-
late such cross correlations, we introduce here a distri-

f χ1 χ3,( ) 1

2πσ1σ3 1 κ2–( )
------------------------------------------=

× 1

2 1 κ2–( )
----------------------

χ1
2

σ1
2

----- 2κ
χ1χ3

σ1σ3
-----------–

χ3
2

σ3
2

-----+–
⎩ ⎭
⎨ ⎬
⎧ ⎫

,exp

bution function, which, in contrast to function (5),
describes correlation between absolute values |χ1| and
|χ3 | of random functions χ1 and χ3, leaving the func-
tions themselves uncorrelated:

(6)

Coefficients A, B, and C, as well as the expectations ai ≡
〈|χi |〉 of the absolute values, can be found with the help
of the normalization conditions

(7)

Here, we are using notation  for rms deviations
instead of generally accepted notation σi to emphasize
that not constants, but structural function Q1 = Q1(rz)
and Q3 = Q3(r) play the role of rms deviations in the sit-
uation considered here.

It is impossible to exactly evaluate the integrals in
Eqs. (7) for probability function (6) in contrast to func-
tion (5). For this reason, we use the following proce-
dure. The integral with respect to one variable (say, χ1)
can be evaluated exactly for each condition in (7).
Using the integral representation of error function
erf(x) in the remaining integral with respect to χ3 and
changing the integration order, we can evaluate the
integral with respect to χ3 in infinitely large limits and
thus reduce Eqs. (7) to integrals with respect to a certain
variable between 0 and 1. Assuming that the correlation
factor κ is small, we expanded the integrands in the nor-
malization integrals obtained in this way into a power
series up to the first order in κ, after which these func-
tions could be integrated exactly. As a result, we
derived from Eqs. (7) the algebraic equations, which
were used for determining the constants appearing in
function (6) (in this approximation, these constants are
independent of κ):

(8)

The mixed central second-order moment, which has the
form 〈χ1χ3〉 = κσ1σ3 for function (5), is zero for func-

f χ1 χ3,( )

=  C
1
2
---

χ1
2

A2
------

2κ χ1 a1–( ) χ3 a3–( )
AB

-------------------------------------------------------–
χ3

2

B2
-----+–

⎩ ⎭
⎨ ⎬
⎧ ⎫

.exp

f χ1 χ3,( ) χ1 χ3dd

∞–

∞

∫
∞–

∞

∫ 1,=

χi f χ1 χ3,( ) χ1 χ3dd

∞–

∞

∫
∞–

∞

∫ ai,=

χi
2 f χ1 χ3,( ) χ1 χ3dd

∞

∞–

∫
∞–

∞

∫ Qi, i 1 3.,= =

Qi
1/2

A Q1
1/2, B Q3

1/2,= =

C
1

2π
------ Q1Q3( ) 1/2– , ai

2Qi

π
--------⎝ ⎠

⎛ ⎞
1/2

.= =
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tion (6). However, the mixed central moments of abso-
lute values |χ1| and |χ3 | for function (6) is proportional
to κ:

(9)

It should be emphasized that the distribution function (6)
of two variables χ1 and χ3, which was introduced to
take into account the correlation of the absolute values
of these quantities, as well as the standard function (5)
taking into account the correlation between these quan-
tities themselves, does not lead to a change in the root-
mean-square values of these quantities. The inclusion
of correlations only indicates the emergence of stochas-
tic synchronization between χ1 and χ3 for function (5)
and between |χ1| and |χ3 | for function (6) in the config-
uration space of variables χ1 and χ3. Since χ1 and χ3 are
functions of spatial coordinates, this in turn leads to sto-
chastic spatial synchronization between intensity fluc-
tuations of 1D and 3D inhomogeneities. For inhomoge-
neities in a superlattice, this means that, for example,
for κ > 0, strong 3D deformations u3(x) of the surfaces
between the layers are concentrated in the regions of
strong 1D deviations u1(z) of the surfaces from the ini-
tial periodic distribution, while weak deformations
u3(x) are concentrated in the regions of weak deviations
u1(z). Accordingly, for κ < 0, strong 3D fluctuations
u3(x) are concentrated in the regions of weak 1D devi-

χ1 χ1〈 〉–( ) χ3 χ3〈 〉–( )〈 〉

=  κ 1 2
π
---–⎝ ⎠

⎛ ⎞ 2

Q1Q3( )1/2.

ations u1(z) of the surfaces between the layers. Such a
redistribution of deformation-induced 3D fluctuations

in space occurs without a change in the values of 

and . Figures 1a and 1b schematically illustrate the
situations corresponding to κ > 0 and κ < 0. For sim-
plicity, the case of short correlation radii r|| and r0 of 1D
and 3D inhomogeneities is depicted in the figures,
respectively (r||, r0 � l/2); in this case, the deviation of
neighboring boundaries between the layers (or their
deformations) can be regarded as mutually indepen-
dent. In this case, the effects of positive (Fig. 1a) or neg-
ative (Fig. 1b) spatial synchronization for κ ≠ 0 are
manifested even at adjacent boundaries.

For real superlattices, the probabilities of the emer-
gence of positive or negative correlations between 1D
and 3D inhomogeneities are substantially different. It
was noted above that positive cross correlations
between inhomogeneities with different dimensionali-
ties may naturally emerge in the standard conditions for
obtaining superlattices, while negative correlations
emerge only under rather specific conditions (for exam-
ple, such that an increase in the deviation of the bound-
ary between two layers from equilibrium leads to an
increase in the surface tension, suppressing random
deformations of the boundary surface).

It should be noted that constant coefficients in func-
tion (6) can also be determined in a simpler way;
namely, we can use a formal expansion of the correla-
tion part of function (6) into a power series in κ up to
the first power of κ,

(10)

and evaluate the normalization integrals (7) (which can
be evaluated exactly in the present case) using approx-
imate expression (10). After integration of Eqs. (7), the
terms proportional to κ satisfy the requirements of per-
turbation theory for κ � 1 in spite of the fact that the
term in the square brackets in relation (10), which is
proportional to κ, can be infinitely large in the range
of χi . The algebraic equations derived in this way lead
to the same values of parameters A, B, C, a1, and a3, as
those defined by formulas (8).

The superlattice correlation function K(r) with cross
correlations of 1D and 3D inhomogeneities are defined
by the formula

(11)

χ3
2〈 〉

χ1
2〈 〉

f χ1 χ3,( ) C
1
2
---

χ1
2

A2
------

χ3
2

B2
-----+–

⎩ ⎭
⎨ ⎬
⎧ ⎫

exp≈

× 1 κ
χ1 a1–( ) χ3 a3–( )

AB
------------------------------------------------– ,

K r( ) ρ x( )ρ x r+( )〈 〉ψχ1χ3
≡

=  χ1 χ3 f χ1 χ3,( ) qrz χ1– χ3–( ),cosdd

∞–

∞

∫
∞–

∞

∫

(a)

(b)

κ > 0

κ > 0

Fig. 1. Schematic diagram of (a) positive and (b) negative
spatial synchronization of 1D and 3D inhomogeneities in a
superlattice, associated with their cross correlations. The
dotted lines correspond to a periodic arrangement of the
boundaries between layers in a perfect superlattice, the
dashed lines correspond to random 1D displacements of the
boundaries, and solid curves correspond to the total effect of
1D displacements and 3D deformations of the boundary
surfaces.
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where function (6) introduced above must appear in the
form of distribution function f(χ1, χ3). In the approxi-
mation κ � 1, the coefficients in this function are
defined by formulas (8).

In the evaluation of the integrals in formula (11), the
same difficulties arise as in the evaluation of normaliza-
tion integrals in formulas (7). In both cases, these diffi-
culties can be overcome for small values of κ in two
ways: (i) by evaluating the integral with respect to one
variable exactly, transforming the integral with respect
to the other variable to an integral between 0 and 1,
expanding the resultant expression into a power series
in κ up to the first power of κ and integrating exactly the
resultant approximate expression or (ii) by substituting
directly the approximate expression for distribution
function (10) into formula (11), which makes it possi-
ble to take exactly the integrals with respect to both
variables χ1 and χ3. Both approaches lead to the same
expression for the correlation functions of the superlat-
tice in terms of structural functions Q1(rz) and Q3(r),

(12)

where the expression in the braces is the decreasing part
of the correlation function, which consists of the sum of
the product of the decreasing parts of the correlation
functions for the components of a mixture of 1D and
3D inhomogeneities,

(13)

(14)

and the cross-correlation function

(15)

Here,

is the Dawson integral.
To find structural functions Q1(rz) and Q3(r), we

must simulate the correlation properties of modeling
functions u1(z) and u3(x) or, to be more precise, the cor-

K r( ) qrz K1 rz( )K3 r( ) K13 r( )+{ },cos=

K1 rz( ) 1
2
---Q1 rz( )– ,exp=

K3 r( ) 1
2
---Q3 r( )– ,exp=

K13 r( ) 2κ
π

------ 1 2Q1 rz( )D
Q1 rz( )

2
---------------⎝ ⎠

⎛ ⎞–=

–
Q1 rz( )

2
---------------–⎝ ⎠

⎛ ⎞ 1 2Q3 r( ) ---–exp

× D
Q3 r( )

2
--------------⎝ ⎠

⎛ ⎞ Q3 r( )
2

--------------–⎝ ⎠
⎛ ⎞ .exp–

D x( ) x2–( ) t2( )exp td

0

x

∫exp=

relation properties of their gradients, which, in contrast
to u1(z) and u3(x), are homogeneous random functions.
Both functions Q1(rz) and Q3(r) were determined
in [17] (see also the refinement of coefficients in these
expressions in [21]) with the help of various forms of
model correlation functions for a random modulation.
It was shown that the form of functions Qi is asymptot-
ically independent of the modeling correlation func-
tions (both for small and large values of r), but strongly
depends on the dimensionality of inhomogeneities. In
the case of exponential modeling correlation functions
for u1(z) and u3(x), the structural functions were
obtained in the form

(16)

(17)

Here, k|| =  and k0 =  are the correlation wave-
numbers for 1D and 3D inhomogeneities, respectively,
and

(18)

where s1 and s3 are the rms fluctuations of gradients of
functions u1(z) and u3(x).

The form of the correlation functions of the super-
lattice for κ = 0 has been thoroughly studied for 1D and
3D inhomogeneities as well as for their mixture [24]. In
view of the complexity of expressions (13) and (14), we
proposed approximating expressions (see, [17] and
[22], respectively)

(19)

(20)

where L = exp(–3 ) is the asymptotic form of K3(r)
for r  ∞.

These expressions clearly show a basic difference in
the form of correlation functions for 1D and 3D inho-
mogeneities: the decreasing part of the correlation
function for 1D inhomogeneities exponentially tends to
zero as rz  ∞, while the decreasing part of the cor-
relation function for 3D inhomogeneities tends to a
nonzero asymptote L for r  ∞. For this reason, in
addition to volume regions with a finite correlation
radius r0 in the 3D case, there also exist regions with an
infinitely long correlation radius. This leads to a sharp
difference in the form of the spectra and in the damping
of waves in a medium with 1D and 3D inhomogene-
ities. For a mixture of uncorrelated 1D and 3D inhomo-
geneities, the decreasing part of the correlation function

Q1 rz( ) 2γ 1
2 k ||rz–( )exp k ||rz 1–+[ ],=

Q3 r( ) 6γ 3
2 1 2

k0r
-------– 1 2

k0r
-------+⎝ ⎠

⎛ ⎞ k0r–( )exp+ .=

r ||
1– r0

1–

γ 1

s1q
k ||

-------, γ 3

s3q
k0
-------,= =

K1 rz( ) γ 1
2k ||rz–( ),exp=

K3 r( ) 1 L–( ) γ 3
2k0r–( )exp L,+=

γ 3
2
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is equal to the product K1(rz)K3(r) of the decreasing
parts of the correlation functions of the mixture compo-
nents; for this reason, it has an asymptotic form corre-
sponding to 1D inhomogeneities (i.e., exponentially
tends to zero as r  ∞).

The dependence of the cross-correlation function
K13 on rz for rx = ry = 0 is shown in Fig. 2 for several val-

ues of  and , satisfying the condition  +  =
0.6. Function K13(rz) vanishes for rz = 0, attains its max-

imal value for a certain value of rz depending on , and

decreases as  for rz  ∞. Depending on the sign of
κ, function K13 is either added to the decreasing part of
the correlation function of a mixture of inhomogene-
ities, or is subtracted from it (in the latter case, the
decreasing part of K(r) becomes negative in the range
of large values of rz). In any case, when cross correla-
tions between 1D and 3D inhomogeneities are taken
into account, the decrease in the correlations in the
superlattice obeys a power law, while the decay of cor-
relations in the superlattice is exponential in the
absence of such correlations (κ = 0), when we have a
mixture of independent 1D and 3D inhomogeneities.
Thus, the decreasing part of the correlation function (12)
of the superlattice for κ > 0 occupies an intermediate
position between the decreasing part of the correlation
function K3(r) of a superlattice with 3D inhomogene-
ities, which tends to constant L as r  ∞, and corre-
lation function K1(rz) of a superlattice with 1D inhomo-

γ 1
2 γ 3

2 γ 1
2 γ 3

2

γ i
2

rz
1–

geneities or with a mixture of uncorrelated 1D and 3D
inhomogeneities, K1(rz)K3(r), which decay according
to an exponential law for r  ∞.

In view of the complexity of expression (15), we
approximate the cross-correlation function by a simpler
formula

(21)

where

(22)

Here, L is the same asymptote K3(r) as in formula (20)
and D(x) is the Dawson integral. The asymptotic
forms of approximate expression (21) and exact
expression (15) coincide both for small and large val-
ues of rz:

(23)

3. HIGH-FREQUENCY SUSCEPTIBILITY
OF A SUPERLATTICE

Let us consider, for example, spin waves in a super-
lattice with an inhomogeneous uniaxial magnetic
anisotropy parameter β(x) (we assume that the direc-
tion of the magnetic anisotropy axis is homogeneous).
In this case, parameters A and ∆A in expression (1) are,
respectively, the mean value of anisotropy β and its rms
deviation ∆β.

Let us consider the situation when the directions of
the external magnetic field H0, constant magnetization
component M0, and the magnetic anisotropy axis coin-
cide with the direction of the z axis of the superlattice.
Carrying out conventional linearization of the Landau–
Lifshitz equation for magnetization (Mx, My � M0,
Mz ≈ M0) and introducing circular projections for the
resonant component of the magnetization and the exter-
nal varying magnetic field, we obtain the equation for
spin waves in the form

(24)

Here, m = Mx + iMy , h = Hx + iHy , ν = (ω – ω0)/αgM0,

Λ = ∆β/α, ω is the frequency, ω0 = g[H0 + (β –
4π)M0] is the homogeneous ferromagnetic resonance
frequency, g is the gyromagnetic ratio, and α is the
exchange constant.
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Fig. 2. Dependence of the cross correlation functions K13 on
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The high-frequency spin-wave susceptibility χ(ν, k)
is proportional to the averaged Green function G(ν, k)
of Eq. (24),

(25)

where h0 is the rf field amplitude. The form of the pro-
portionality factor a(k) for spin-wave resonance in a
thin magnetic film is analyzed in detail in [20]. The
averaged Green function for Eq. (24) has the form

(26)

where M(ν, k) is the classical analog of the mass oper-
ator, which can be represented in the Bourret approxi-
mation [28] in the form [21]

(27)

Here, the correlation function K(r) for a sinusoidal
superlattice is defined by expression (12).

The left-hand side of wave equation (24) (and,
hence, of expression (26) for the average Green func-
tion and (27) for the mass operator) remain valid for
waves of other physical origin also after appropriate
redesignation of the parameters appearing in these
expressions. For example, in the scalar approximation,
for elastic waves in a superlattice with an inhomoge-
neous density p(x) of the medium (A = p, ∆A = ∆p), we

obtain ν = (ω/v)2 and Λ = ∆pω2/pv2, where v is the
velocity of the elastic waves; in the same approxima-
tion, for electromagnetic waves in a medium with inho-
mogeneous permittivity ε(x) (A = ε, ∆A = ∆ε), we

obtain ν = ε(ω/c)2 and Λ = ∆εω2/εc2, where c is the
velocity of light. Thus, all results that will be obtained
below for spin waves can easily be generalized for
waves of other physical origin.

It is well known that the spectrum ν = ν(k) of waves
in a superlattice has a band structure. Gaps (forbidden
bands) are formed in the spectrum for values of k = nq/2
corresponding to the edges of the nth Brillouin zones in
the extended zone scheme. We will confine our analysis
to the magnetic susceptibility at the edge of the first
Brillouin zone (k = kr ≡ q/2). In the absence of inhomo-
geneities and intrinsic damping of waves, the gap width
in the spectrum for k = kr (which corresponds to the
spacing between levels ν+(kr) and ν–(kr) of the split
spectrum) is equal to Λ. In this case, two δ-shaped
peaks spaced by Λ will be observed on the G ''(ν)
dependence for k = kr . With increasing rms fluctuations
γi of inhomogeneities, the gap ∆ν =  –  (where

 = Reν±(kr)) between the spectral levels decreases

χ ν k,( ) m ν k,( )〈 〉
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------------------------ a k( )G ν k,( ),= =

G ν k,( ) 1
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---------------------------------------,=
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8π
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r
------------ i k r⋅ ν r+( )–[ ]exp r.d∫–=

2

2
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and ultimately vanishes for a certain critical value of γi .
The increase in γi is accompanied by damping of ν''(k),
which, being a function of k, has a peak at k = kr . The
peaks on the G ''(ν) dependence decrease and become
closer with increasing γi , while their half-widths Γ
increase until these peaks merge into one at a certain
value of γi . The mode of variation of the spacing ∆νm

between the tops of the peaks corresponds to the change
in the difference  –  between the eigenfrequen-
cies; however, there is no exact quantitative correspon-
dence between these quantities for γi ≠ 0.

Integration in formula (27) was performed using
approximate formulas (19)–(21). At the boundary of
the first Brillouin zone of a superlattice, we obtained
the following expression for the Green function in the

two-wave approximation for Λ, ,  � (q/2)2:

(28)

Here,

is the integral exponential function, X = (ν – )/Λ is
the dimensionless frequency detuning from the value of

ν = , η1 = k||q/Λ and η3 = k0q/Λ are the dimensionless
correlation wavenumbers for 1D and 3D inhomogene-
ities, respectively, and

(29)

For κ = 0, formula (28) can be reduced to the expres-
sion for a mixture of uncorrelated 1D and 3D inhomo-
geneities, which was studied earlier [23, 24], while for
γ3 = 0 or γ1 = 0, formula (28) can be reduced to the
expressions for 1D and 3D inhomogeneities, respec-
tively [26]. (It should be noted that a misprint appeared
in the Russian version of [26] in the expression for G(ν)
corresponding to 1D inhomogeneities.)
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Figures 3a and 3b show the changes in the depen-

dences of ∆νm and Γ on  resulting from allowance for
cross correlations. Since the shape of the peaks on the
G''(ν) dependence becomes asymmetric with increas-
ing γi , these graphs depict the values of Γ correspond-
ing to the right half-width of the right peak (and,
accordingly, the left half-width of the left peak). Fine
solid curves in these figures show the dependences of
∆νm and Γ for 1D and 3D inhomogeneities; bold solid
curves describe these dependences for a mixture of
uncorrelated (κ = 0) 1D and 3D inhomogeneities and
correspond to the situation analogous to that considered
in [24]: further growth of 1D inhomogeneities ceases

for  = 0.14, while rms fluctuation γ3 of 3D inhomo-
geneities begins to increase. The dashed and dotted
curves in these figures describe the same dependences
for a mixture of 1D and 3D inhomogeneities in the
presence of positive or negative cross correlations.

Figure 3a shows that positive correlations smoothen

the curve describing the dependence of ∆νm on  as
compared to that for a mixture of uncorrelated 1D and
3D inhomogeneities; the former curve lies between

those describing the dependence of ∆νm on  for an
uncorrelated mixture and for a medium with 3D inho-
mogeneities. Negative correlations lead to a steeper

descent of the function ∆νm  as compared to that for
κ = 0 and, hence, to the closure of the gap for smaller

values of . These results match the behavior of the

γ i
2

γ 1
2

γ 3
2

γ 3
2

γ 3
2( )

γ 3
2

Γ  curves for a mixture of inhomogeneities (see
Fig. 3b): the line half-width decreases for κ > 0 and

increases for κ < 0 as compared to the Γ  curve for
an uncorrelated mixture of 1D and 3D inhomogene-
ities. Thus, positive cross correlations for which sto-
chastic spatial synchronization of intensity fluctuations
of 1D and 3D inhomogeneities takes place (see Fig. 1a)
partly suppress the effect of a mixture of 1D and 3D
inhomogeneities on the wave spectrum: the gap width
at the boundary of the Brillouin zone increases and
wave damping decreases as compared to the effect
observed in a mixture of 1D and 3D inhomogeneities
for κ = 0. Negative cross correlations for which the
intensity fluctuations of 1D and 3D inhomogeneities
have a tendency to lie in different spatial regions (see
Fig. 1b) lead to the opposite effect: the gap decreases
and the damping increases as compared to those for
κ = 0.

The Γ  curve for κ < 0 in Fig. 3b is plotted only

up to the value of  +  corresponding to the closure
of the gap in Fig. 3a since subsequent description can-
not be carried out in terms of the line half-width alone.
This is due to a peculiar resonance effect emerging at
the midpoint of the gap. This effect was observed at first
in our study of the shape of the imaginary part of the
Green function G''(ν) corresponding to expression (28),
which was derived using approximate expressions (20)
and (21) for K3(r) and K13(r). In view of qualitative nov-
elty of the effect, we calculated function G''(ν) more
rigorously to verify that the observed effect is not a
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result of approximations used by us. For this purpose,
we substituted into expression (27) for the mass opera-
tor the correlation function containing expressions (14)
and (15) for K3(r) and K13(r) containing the exact struc-
tural function Q3(r) defined by formula (17). After the
integration over angular variables, we evaluated the
integral appearing in expression (27) numerically. As a
result, we obtained the curves describing the depen-
dence G''(ν) (Fig. 4), which differ only slightly from the
dependences G''(ν) corresponding to approximate for-
mula (28). Figure 4 shows the shape of the G''(ν) curve
for κ = 0 (solid curve), κ = 0.6 (dashed curve), and κ =
–0.6 (dotted curve). It can be seen that κ = 0 corre-
sponds to a conventional curve with two peaks at fre-

quencies  and , which approximately correspond
to eigenfrequencies ν+ and ν– for given values of
parameters η1, γ1 and η3, γ3 for a mixture of inhomoge-
neities. In addition to smooth modification of the G''(ν)
curve (an increase in the peak heights and a decrease in
peak widths), positive correlations also lead to the
emergence of a resonance singularity on this curve. A
narrow dip (gap) appears at the middle of the forbidden

gap in the vicinity of point ν = , which becomes nar-
rower, but does not disappear upon a further increase in
γ3 . When κ changes its sign, this dip also reverses sign,
becoming a narrow peak.

In our opinion, the physical mechanism for the
emergence of these new resonance effects is as follows.
Let us first consider the Green function for 3D inhomo-
geneities (expression (28) for γ1 = 0, κ = 0). For X = 0,
the second term in the brackets diverges and both the
real and imaginary part of function G vanish. Thus, in
contrast to the case of 1D inhomogeneities, for which
an increase in γ1 leads to the closure of the gap, the nar-
row gap ∆ω for 3D inhomogeneities must be observed
for any γ3, decreasing upon an increase in this parame-
ter,

(30)

where ∆ω0 is the gap width for an ideal superlattice.
The effect of the narrow gap is due to the singularity

in the shape of the correlation function for 3D inhomo-
geneities (namely, the existence of correlation regions
with a finite and an infinite correlation length; the rela-
tion between these regions is determined by asymptote
L). With increasing γ3, the volume of the region with an
infinite correlation length decreases in proportion to L,
and the narrow gap in the wave spectrum of the super-
lattice, which is associated with this region, decreases
in proportion to L1/2. The effect of the narrow gap can
in fact be observed as long as the value of ∆ω exceeds
the damping associated with any other processes of
wave scattering, except their scattering at 3D inhomo-
geneities in the structure of the superlattice. The nar-

νm
+ νm

–

kr
2

∆ω
∆ω0
---------- L1/2 3γ 3

2

2
--------–⎝ ⎠

⎛ ⎞ ,exp≡≈

row-gap effect is observed neither for 1D inhomogene-
ities nor for a mixture of uncorrelated 1D and 3D inho-
mogeneities since the decreasing part of the correlation
function decreases exponentially to zero upon an
increase in rz in both cases (i.e., the correlation region
with an infinite correlation length is absent).

The actuation of positive correlations in a mixture of
inhomogeneities does not lead to the emergence of a
region with infinite-length correlations. However, this
leads to the emergence of a correlation region with
long, but weakly decaying (in proportion to r–1) corre-
lations. This effect precisely causes partial restoration
of a narrow gap in the wave spectrum of a superlattice
with a mixture of 1D and 3D inhomogeneities for κ > 0
(dashed curve in Fig. 4). For κ < 0, this effect of a par-
tially restored narrow gap reverses sign and leads to the
narrow-peak effect (dotted curve in Fig. 4). This reso-
nance looks impressive; however, in contrast to positive
cross correlations, the emergence of negative correla-
tions requires the fulfillment of rather specific condi-
tions (see Section 2).

4. CONCLUSIONS

This study is devoted to the effect of cross correla-
tions between 1D inhomogeneities simulating random
deviations of the boundaries between the layers from
their periodic arrangement and 3D inhomogeneities
simulating random deformations of the surfaces of
these boundaries on the rf susceptibility of the superlat-
tice (Green function). In this study, we take into
account a type of correlations such that, for a correla-
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Fig. 4. The shape of the imaginary part of the Green func-
tion G''(ν) for a mixture of 1D and 3D inhomogeneities with

 =  = 0.1 and η1 = η3 = 4 for κ = 0 (solid curve), κ =

0.6 (dashed curve), and κ = –0.6 (dotted curve).
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tion factor κ > 0, the buildup of intensity fluctuations
for inhomogeneities of one dimensionality leads to the
buildup of intensity fluctuations for inhomogeneities of
the other dimensionality and vice versa, irrespective of
the polarity of such fluctuations. In the most general
form, the reason for the emergence of such correlations
might lie in the assumption that any random instability
in the setup for obtaining superlattices which causes an
increase in deviation of the thickness of a layer from a
preset value, may also increase the probability that the
deformation of the surface of such a layer increases. To
simulate this type of cross correlations in a mixture of
1D and 3D inhomogeneities, we introduce the distribu-
tion function describing correlation between absolute
values |χ1| and |χ3 | of random functions χ1 and χ3, leav-
ing the functions themselves uncorrelated. The distri-
bution function introduced in this way leads to the
emergence of stochastic synchronization between |χ1|
and |χ3 | in the configuration space of variables χ1 and
χ3. Both χ1 and χ3 are functional of space coordinates;
this in turn leads to the emergence of stochastic spatial
synchronization between intensity fluctuations of 1D
and 3D inhomogeneities. This synchronization can be
in principle positive or negative depending on the sign
of the cross correlation factor κ. However, the probabil-
ities of the emergence of positive or negative cross cor-
relations between 1D and 3D inhomogeneities are sub-
stantially different for actual superlattices. Positive
cross correlations may emerge in a quite natural way
under standard conditions for obtaining superlattices
(e.g., due to random instability in the system, leading to
synchronous deviation of the position of the boundary
between the layers as well as to deformation of the sur-
face of this boundary). However, the emergence of neg-
ative cross correlations requires rather specific condi-
tions (e.g., an increase in the deviation of the boundary
between the layers from the equilibrium position must
lead to an increase in the surface tension quenching ran-
dom deformations of the surface of this boundary).
Using the distribution function introduced here, we
derived the correlation function of the superlattice con-
taining a mixture of cross-correlated 1D and 3D inho-
mogeneities. It was shown earlier [24] that the effect of
inhomogeneities on the wave spectrum strongly
depends on the asymptotic behavior of the superlattice
correlation function for r  ∞. The descending part
of the correlation function for 1D inhomogeneities
exponentially tends to zero for rz  ∞, while the
descending part of the correlation function for 3D inho-

mogeneities tends to nonzero asymptote L = exp(–3 )
as r  ∞. For this reason, in addition to regions with

a finite correlation length , regions with an infinite
correlation length also exist in the 3D case. This leads
to a sharp decrease in wave damping and an increase in
the effective gap width at the boundary of the Brillouin
zone in the 3D case as compared to the 1D case. For a
mixture of uncorrelated 1D and 3D inhomogeneities,

γ 3
2

k0
1–

the descending part of the correlation function has an
asymptotic form corresponding to 1D inhomogeneities;
i.e., it exponentially tends to zero as r  ∞. In this
study, we proved that the decreasing part of the correla-
tion function for a mixture of 1D and 3D inhomogene-
ities with a nonzero cross-correlation factor tends to
zero in accordance with a power law (r–1) as r  ∞.
Thus, as regards its asymptotic properties, this function
occupies an intermediate position between the correla-
tion function of a superlattice with 3D inhomogeneities
and the correlation function of a superlattice with 1D
inhomogeneities or a mixture of uncorrelated 1D and
3D inhomogeneities. In the next part of this study, we
analyzed the spacing ∆νm between the peaks on the
imaginary part of the Green function at the boundary of
the first Brillouin zone of the superlattice and the half-
widths Γ of these peaks for a mixture of 1D and 3D
inhomogeneities both for κ > 0 as for κ < 0. The spacing
∆νm between the peaks approximately describes the
width of the first forbidden gap in the spectrum of the
superlattice, while Γ describes the damping of waves in
the superlattice, which is associated with inhomogene-
ities (for simplicity, we assume that intrinsic damping
is zero). It was found that positive cross correlations for
which stochastic spatial synchronization of intensity
fluctuations of 1D and 3D inhomogeneities takes place
lead to partial suppression of the effect of a mixture of
1D and 3D inhomogeneities on the wave spectrum.
Indeed, the gap width at the Brillouin zone boundary
increases, while damping decreases as compared to the
effects observed in a mixture of 1D and 3D inhomoge-
neities for κ = 0. Negative cross correlations for which
the intensity fluctuations of 1D and 3D inhomogene-
ities are mainly located in different spatial regions lead
to the opposite effect: the gap width decreases and
damping increases as compared to the case when κ = 0.
We demonstrated that, in addition to a considerable
change in the functional dependences of ∆νm and Γ on

 and , the activation of cross correlations between
1D and 3D inhomogeneities leads to the emergence of
a new resonance singularity on the imaginary part of
the Green function G''(ν). For κ > 0, a narrow dip (gap)
appears on the curve describing function G''(ν) at the
center of the forbidden gap in the vicinity of point ν =

; this dip becomes narrower, but does not disappear
upon a further increase in γ3. Upon a change in the sign
of κ, this dip also changes its sign and becomes a nar-
row peak. The physical mechanism for the formation of
these new resonance effects can be described as fol-
lows. It follows from the analytic expressions derived
for G''(ν) that a narrow-gap effect should also be
observed for 3D inhomogeneities. This effect is associ-
ated with the singularity of the correlation function for
3D inhomogeneities (namely, with the existence of cor-
relation regions with finite as well as infinite correlation
lengths, whose ratio is determined by asymptote L).
With increasing γ3, the volume of the region with infi-
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nite correlation lengths decreases in proportion to L,
while the narrow gap in the wave spectrum, which is
associated with this region, decreases in proportion to
L1/2. If we supplement 3D inhomogeneities with 1D
inhomogeneities, the volume with infinitely long corre-
lations vanishes together with the narrow gap effect,
since the correlation function of the mixture of inhomo-
geneities decreases exponentially for r  ∞. The acti-
vation of positive cross correlations in a mixture of
inhomogeneities does not lead to the emergence of a
region with infinitely long correlation. However, this
leads to the emergence of a region with long correla-
tions decreasing in proportion to r–1. Precisely this
effect is responsible for partial restoration of a narrow
gap in the spectrum of a mixture of 1D and 3D inhomo-
geneities for κ > 0. For κ < 0, the narrow-gap effect
changes its sign and leads to a narrow-peak effect.
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