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1. INTRODUCTION

A starting point in most discussions concerning the
mechanisms of magnetoresistance, metal–insulator
transition, and ferromagnet–paramagnet (FM–PM)
transition in manganites is the model of double
exchange [1]. According to Anderson and Hasegawa [2]
and de Gennes [3], the physics of double exchange con-
sists in the hopping amplitude 

 

t

 

 depending on the spin
configuration in two nearest neighbor sites. The double
exchange model provides an intuitively clear explana-
tion both for the interrelation of spin and charge
degrees of freedom and for the mobility of carriers. The
main problem consists in the fact that this model cannot
quantitatively describe the magnitude of the conductiv-
ity change upon the metal–insulator transition [4].
Indeed, in a PM state (

 

T 

 

> 

 

T

 

C

 

), the angle between two
adjacent spins is 90

 

°

 

 and, hence, the amplitude of the
hopping integral

 

 t

 

eff

 

 decreases by a factor of cos(90

 

°

 

/2) =
0.7 as compared to the value in the FM state, which
implies the same decrease in the conductivity. How-
ever, as is well known, a decrease in the conductivity
upon the FM  PM transition in experiment reaches
2–3 orders of magnitude. The discrepancy reaching
orders of magnitude indicates that some other factors
are responsible for a change in the conductivity
observed upon the FM  PM transition. Another
conclusion is that the quasiparticle band width also
decreases by a factor of 0.7 relative to the value in the
FM state. This implies a small increase in the density of

 

states at the Fermi level (

 

E

 

F

 

) in the PM phase. This con-
clusion also contradicts experimental facts that give
evidence for the formation of a pseudogap at 

 

E

 

F

 

 when
the temperature increases above 

 

T

 

C

 

. Indeed, the con-
ductivity is determined by the density 

 

n

 

 and mobility 

 

µ

 

of charge carriers (electrons) as 

 

σ

 

 = 

 

ne

 

µ

 

. In the double
exchange model, a change in the carrier mobility is the
predominant factor, since it is related to the correspond-
ing change in the amplitude of the hopping integral. An
additional decrease in the mobility can be related to the
influence of Anderson localization (e.g., to a disorder in
the arrangement of spins of 

 

t

 

2

 

g

 

 electrons). However,
neither of these factors has any significant influence on
the density of states at 

 

E

 

F

 

. Experimental data on the
Hall effect [5] and the angle-resolved photoemission [6]
clearly indicate that the metal–insulator transition takes
place due to a change in the density of carriers (i.e., in
the density of states at 

 

E

 

F

 

), rather than in the mobility.
This discrepancy between the conclusions following
from experiment and the double exchange model can-
not be considered quantitative alone.

Another direction of research is related to ab initio
calculations of the electron spectrum of manganites as
dependent on the type of magnetic and orbital ordering,
doping level, and distortions of the crystal structure. A
distinctive feature of these calculations is a realistic
approach to the band structure of manganites. However,
the applicability of the one-electron approach to calcu-
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lations of the band structure of LaMnO

 

3

 

 is disputable.
Indeed, in accordance with estimates [7], the magni-
tude of the single-site Coulomb interaction

 

 U

 

 is about
8 eV in both LaMnO

 

3

 

 and SrMnO

 

3

 

, while the energy of
charge

 

 pd

 

 fluctuations is 

 

∆

 

 = 4.5 eV for LaMnO

 

3

 

 and
2 eV for SrMnO

 

3

 

. According to the scheme of Zaanen–
Sawatzky–Allen [8], these compounds should be clas-
sified as charge-transfer insulators in which electron
correlations form the insulating ground state. In fact,
one-electron calculations within the framework of the
density functional theory (LSDA DFT) [9] stipulate a
metallic state for the cubic structure in accordance with
the partly filled 

 

d

 

 band. An analogous result is obtained
for undoped cuprates of the La

 

2

 

CuO

 

4

 

 type [10].

A permanent disadvantage of the one-electron cal-
culations (LSDA, LDA+U) is also related to the fact
that a giant exchange splitting of quasiparticle states
with respect to spin (~3 eV for 

 

t

 

2

 

g

 

 states of manganese)
is introduced in order to explain the formation of a
larger magnetic moment in FM and antiferromagnet
(AFM) phases. This leads to some incorrect conclu-
sions concerning AFM and PM phases. For example, it
was stated [9] that the spectra of quasiparticles with
various spin projections in AFM differ from each other.
This is a rather strange result, since the AFM back-
ground is identical for the charge carriers with various
spin projections. For the PM phase, no exchange gap is
present in the spectrum of quasiparticles, and both the
spin-polarized model and LDA calculations lead to the
metallic state.

In searching for answers to the aforementioned
challenges, we have studied the band structure of man-
ganites using a substantially modified, generalized tight
binding method which was previously developed for
layered cuprates [11]. Since the differences in the phys-
ics of manganites and cuprates are obviously very sub-
stantial, it is clear that they cannot be reproduced by
merely changing parameters of the basic method. In
addition to two differences of purely technical charac-
ter, which are related to a three-dimensional nature of
the cubic crystal structure of LaMnO

 

3

 

 and to high-spin
many-electron terms of the 

 

d

 

5

 

, 

 

d

 

4

 

, and 

 

d

 

3

 

 configurations
of manganese, there is another important difference
related to the orbital ordering in manganites. As a
result, manganites feature the coexistence of various
magnetically and orbitally ordered states [12], this sit-
uation having no analog in cuprates.

In order to develop a generalized tight binding
method for the calculation of a quasiparticle spectrum
in orbitally ordered LaMnO

 

3

 

, we constructed a two-
sublattice configuration space on high-spin states corre-
sponding to the ground states of a cell with different
numbers of electrons. Then, using the method of Hub-
bard operators acting in the space of high-spin states,
we calculated the dispersion for AFM, FM, and PM
phases.

The results of our calculations indicate that, despite
the Mott–Hubbard correlation gap in the spectrum of
quasiparticles, the ground state of undistorted cubic
LaMnO

 

3

 

 possessing the AFM order would be metallic
merely due to the degeneracy of 

 

e

 

g

 

 orbitals (the Hub-
bard model for 

 

U

 

  

 

∞

 

 with 1/4 filling stipulates a
metallic state). The existence of Jahn–Teller distor-
tions, which introduce 

 

∆ε

 

 splitting into the 

 

e

 

g

 

 level,
leads to the insulating ground state. The orbital order-
ing in AFM and PM phases results in the subbands of
two different types separated by an energy gap on the
order of 

 

∆ε

 

 appearing on top of the valence band. The
FM phase exhibits differences between the spectra of
quasiparticles with different spin projections. However,
this is not a simple shift of spin subbands analogous to
that in LSDA calculations. The differences in the FM
phase are related to a redistribution of the spectral
intensity between the states of carriers with different
spin projections. At the same time, the spectra of quasi-
particles in AFM and PM phases remain doubly degen-
erate with respect to spin.

This paper is organized as follows. Section 2 gives
formulation of the many-electron model and introduces
the Hamiltonian for a two-sublattice state of the orbital
antiferromagnetism. Section 3 is devoted to exact diag-
onalization of the many-electron Hamiltonian in the
basis of high-spin configurations: 

 

d

 

5

 

p

 

6

 

 (

 

S

 

 = 5/2), 

 

d

 

4

 

p

 

6

 

 +

 

d

 

5

 

p

 

5

 

 (

 

S 

 

= 2), 

 

d

 

3

 

p

 

6

 

 + 

 

d

 

4

 

p

 

5

 

 + 

 

d

 

5

 

p

 

4

 

 (

 

S 

 

= 3/2). In Section 4,
the construction of Hubbard operators on this basis is
describes and a dispersion equation of the generalized
tight binding method for the band structure of quasipar-
ticles is obtained. Section 5 gives an analysis of
obtained band structures of the AFM and PM phases of
undoped LaMnO

 

3

 

 and the FM and PM phases of doped
La

 

1 – 

 

x

 

Sr

 

x

 

Mn

 

x

 

O3 manganites with a hole dopant concen-
tration of x ≈ 0.2–0.3. The final Section 6 contains the
main conclusions.

2. FORMULATING THE PROBLEM 
AND CONSTRUCTING THE HAMILTONIAN

Let us begin with some statements, which we
believe to be necessary for the formulation of the prob-
lem under study in view of the results of recent investi-
gations into the properties of manganites, since other-
wise any theoretical analysis can be unsound. From this
standpoint, the construction of an adequate computa-
tional scheme for LaMnO3 manganites requires the fol-
lowing:

(i) Making allowance for the orbital ordering (the
cooperative Jahn–Teller effect) [12];

(ii) Constructing a configuration space of the elec-
tron subsystem on a basis of high-spin states;
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(iii) Taking into account the Mn3d–O2p hybridiza-
tion for a correct description of the splitting of Mn3d
states in the field of ligands [13];

(iv) Selecting a particular scheme for the calculation
of effects due to strong electron correlations in the
spectrum of quasiparticles [14–16].

In most investigations devoted to the correlation
effects in the electron structure of manganites [17–21],
the role of O2p orbitals consists in the introduction of
an effective matrix element teff of hopping between the
states of manganese. Estimates show that the splitting
of eg and t2g levels caused by the crystal field in
LaMnO3 does not exceed 0.1 eV [13], Therefore, a nec-
essary information concerning the role of the Mn3d–
O2p hybridization in the Jahn–Teller splitting of eg lev-
els can be obtained only by directly involving O2p
orbitals in the calculation scheme. Figure 1 illustrates
the choice of a minimum basis set of Mn3d and O2p
orbitals, which is necessary for calculation of the spec-
trum of low-lying excitations. In manganites, the Jahn–
Teller effect leads to local distortions of the MnO6 octa-
hedron, which becomes elongated in the xy plane and
contracted in the z direction. The symmetry of the
Jahn–Teller distortions is such that they remove the
degeneracy of eg orbitals and favor the filling of one of
these orbitals (  or ). In LaMnO3, the coop-

erative Jahn–Teller effect leads to occupation of the lin-
ear combinations of these local orbitals and stabiliza-
tion of the alternating  and  orbitals as the

ground ones. As a result, a  ×  superlattice is
formed in the xy plane (Fig. 1). This phenomenon is
known as the antiferroorbital ordering [12]. Thus, with
a view to calculate the spectrum of quasiparticle excita-

d
3z

2
r

2–
d

x
2

y
2–

d
3x

2
r

2–
d

3y
2

r
2–

2 2

tions, we select the set of eg states in LnMnO3 in the fol-
lowing form:

where

Since the |d3y〉 and |d3x〉 states in the neighboring sites
differ by the angle ∆θ = 2π/3, this configuration repre-
sents the so-called slanted AFM state. The |dx〉 and |dy〉
states are included into the basis set as the first excited
states in sublattices A and B, respectively. In order to

describe the presence of a  ×  superstructure in
the xy plane, we subdivide O2p orbitals (forming the
σ bonds) between sublattices so that two px orbitals (p1x

and p2x) and one pz belong to sublattice A, and two py

orbitals (p1y and p2y) and one pz belong to sublattice B.
Of course, the Jahn–Teller distortions split not only eg ,
but t2g states as well. However, in contrast to eg , the t2g

states exhibit much weaker hybridization with the O2p
states. Indeed, the ratio of the integral of hopping via
the dpσ and dpπ bonds is tσ/tπ ~ 2. As a result of this
splitting, the low-energy physics of manganites pre-
dominantly involves the eg states. For this reason, the t2g

states will be implicitly taken into account in construct-
ing the many-electron terms (see formulas (8), (9), and
(11) below. The splitting of t2g states is probably impor-
tant for the direct calculation of their spectral intensity.
However, from the standpoint of the quasiparticle spec-
trum in LaMnO3, this splitting changes the energy by at
least 1–2 eV in the depth of the valence band due to the
difference in pd(eg)σ and pd(t2g)π bonds.

Before proceeding (according to the second initial
condition) to the construction of high-spin 3d multip-
lets, let us write the Hamiltonian on the selected basis
set of atomic orbitals and perform diagonalization of
the intracell part. The Hamiltonian of the pd electron
subsystem can be written as follows:

θ| 〉 θ
2
---⎝ ⎠

⎛ ⎞ d
3z

2
r

2–
| 〉cos

θ
2
---⎝ ⎠

⎛ ⎞ d
x

2
y

2–
| 〉,sin+=

(1)   θ π
 

3
---   = 3 y 

2 z 
2 – ( ) d y | 〉 , ≡ =

(2)   θ 2 π
 

3
------   = 3 y 

2 r 
2 – ( ) d 3 y | 〉 , ≡ =

(3)   θ 4 π
 

3
------    = 3 x 

2
 r 

2
 – ( ) d 3 x | 〉 , ≡ =

(4)   θ 5 π
 

3
------   = 3 x 

2
 z 

2
 – ( ) d x | 〉 . ≡ =

2 2

Ĥ Ĥd Ĥ p Ĥ pp Ĥ pd,+ + +=

Ĥd ελ µ–( )d̂λrσ
+

d̂λrσ
1
2
---Uλn̂λr

σ n̂λr
σ– ∫+

rλσ
∑=

 

A A

A

B

B B

 

x

y

y

x

 

z

 

B A
d

 

3

 

y

 

2

 

 – 

 

r

 

2

 

d

 

3x2 – r2

dy2 – z2 dx2 – z2

Fig. 1. Subdivision of the spatial structure of LnMnO3 into
sublattices A and B according to [12], eg states of manga-
nese |θ〉 in these sublattices, and p states of oxygen involved
in dpσ bonds. The inset shows a structural motif of the
cooperative effect, which corresponds to antiferroorbital
ordering. The structure is repeated with translation along
the z axis.
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(1)

where  =  and  = ; indices r and

i(j) run through the positions dx , d3y , , , pz in sub-

lattice A and dy , d3x , , , pz in sublattice B of local-

ized atomic orbitals; by the same token, ελ =  (λ =
dx, d3x, dy, d3y) and εα = εp (α = px,  py, pz) are the ener-
gies of the corresponding Mn3d and O2p atomic orbit-
als; the hopping matrix elements are tpd for the orbitals

λ = dx, dy; α = px, py, pz and 2tpd/  for the orbitals λ =
d3x, d3y; α = px, py;

are the intraatomic Coulomb interactions; and Vαλ = Vpd

are the energies of Coulomb repulsion between manga-
nese and oxygen. For simplicity, we assume in what
follows that all matrix elements of the Coulomb and
exchange interactions are independent of the form of d
and p orbitals, that is, Ud = Vdd and Up = Vpp . In order to
transform the above Hamiltonian to the basis in a cell
centered on the manganese ion, we use a Fourier trans-
form procedure defined as

(2)

+ Jdd̂λrσ
+

d̂λrσ 'd̂λ 'rσ '
+

d̂λ 'rσ– Vλλ 'n̂λr
σ n̂λ 'r

σ '+( )
λ 'σ '

∑ ,

Ĥ p εα µ–( ) p̂αiσ
+ p̂αiσ

1
2
---Uαn̂αi

σ n̂αi
σ– ∫+

ασ
∑=

+ Vαα 'n̂αi
σ n̂α 'i

σ '

α 'σ '

∑ ,

Ĥ pd tλα p̂αiσ
+ d̂λrσ H.c. Vαλn̂αi

σ n̂λr
σ '+ +( ),

αλσσ '

∑
ir〈 〉
∑=

Ĥ pp tDβ p̂αiσ
+ p̂βjσ H.c.+( ),

αβσ
∑

i j,〈 〉
∑=

n̂λr
σ d̂λrσ

+
d̂λrσ n̂αi

σ p̂αiσ
+ p̂αiσ

p1x p2x

p1y p2y

εdx

3

Uλ

Ud, λ λ ',=

Vdd, λ λ ',≠⎩
⎨
⎧

λ dx dy d3x d3y, , ,=( ),=

Uα

U p, α α ',=

V pp, α α '≠⎩
⎨
⎧

α px py pz, ,=( )=

d̂λkσ
1

N
-------- d̂λfσe ik– f⋅ ,

f

∑=

p̂αkσ
1

N
-------- p̂αmσe ik– m⋅

m

∑=

and pass to a symmetric basis set of oxygen orbitals by
constructing the new Wannier type functions using a
linear transform of px, py, pz atomic orbitals:

(3)

Here, , , and  are the normalization coefficients

determined from the condition  = δk · pδcc' , where

 = , , . This yields

(4)

where

In order to simplify writing, we use the following nota-
tion: cz = cos(kz/2), c± = cos(k±/4), and s± = sin(k±/2).

Formula (3) determines the oxygen states in sublat-
tice A. In order to perform an analogous procedure for
sublattice B, it is necessary to substitute x  y in the
notation of initial atomic orbitals and substitute k+ 

k– in the transformation matrix . We use the coordi-
nate system k = kx + ky + kz , where kx = (  + )/2,

ky = (  – )/2, k =  (prime refers to the initial coor-
dinate system of the undistorted cubic structure). The

b̂k

âk

p̂k⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

Â

p̂x1k

p̂x2k

p̂zk⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

=  

eik
+

/µk
b e ik

+– /µk
b 2cz/µk

b

2cz/µk
a 2cz/µk

a 2 k+( )/µk
acos–

k+( )θx1ksgn

µk
p

----------------------------
k+( )θx2ksgn

µk
p

----------------------------–
k+( )4iczsk

+sgn

µk
a

2

µk
p

-----------------------------------–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

×
p̂x1k

p̂x2k

p̂zk⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

.

µk
a µk

b µk
p

ĉk
+ ĉp'〈 | 〉

ĉk b̂k âk p̂k

µk
a 2cz

2 c+
2+ , µk

b 1
2
--- cz

2+ ,= =

µk
p 1

µk
a

2
------- 2 θk

2 cz
2s+

2+ ,=

θx1k
1

µk
a

2
------- cz

2 c+
2+( ) ik+

4
-------⎝ ⎠

⎛ ⎞exp⎝
⎛=

+ cz
2( ) ik+

4
-------–⎝ ⎠

⎛ ⎞
⎠
⎞ ,exp

θx2k θx1k* , k± kx ky.±= =

     
     

Â

kx' ky'

kx' ky' kz'
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distance between nearest neighbor manganese ions is
assumed to be the same in three directions: ax = ay =
az = 1.

As will be seen below, the new oxygen b(a) orbitals
mix well in a separate cell with dx (d3y) states. For this
reason, we employ the notation usually introduced for
the irreducible representations in which the dx (d3y)
orbitals are transformed. Writing the Hamiltonian in
the new representation and separating the intracell and
intercell interactions in the respective terms, we obtain:

where

(5)

Here, εb =  – 2tpp , εa =  + 2tpp , and εp =

 – 2tpp ; for brevity, the site index f is omitted.

Taking into account the relation |  = 0.983| > |ξ000 =
–0.0713|, which corresponds to a weak ab hybridiza-

Ĥ Ĥ0 Ĥcc,+=

Ĥ0 ĥG
a( )

ĥG
b( )

ĥG
ab( )

+ +( ),
fσ
∑

G A B,=

∑=

ĥA
b( ) εbn̂b

σ σpn̂p
σ εdx

n̂dx

σ+ +( ) 1
2
---Udn̂dx

σ n̂dx

σ–+=

+
1
2
---U p n̂α

σn̂α
σ–

α b p,=

∑

+ V pd n̂dx

σ n̂α
σ '

σ '

∑
α b p,=

∑ 2t pdµ000
b d̂xσ

+
b̂σ H.c.+( )+

2t ppγ 000
bp b̂σ

+
p̂σ H.c.+( ),–

ĥA
a( ) εan̂a

σ εd3y
n̂d3y

σ+( )=

+
1
2
---Udn̂d3y

σ n̂d3y

σ– 1
2
---Uan̂a

σn̂a
σ–+

+ V pdn̂d3y

σ n̂a
σ '

σ '

∑ 2t pdλ000

3
------------------- d̂3yσ

+
aσ H.c.+( ),–

ĥA
ab( )

Ud n̂dx

σ n̂d3y

σ '

σ '

∑ Uabn̂a
σn̂b

σ ' V pdn̂dx

σ n̂a
σ '+ +=

+ V pdn̂b
σn̂d3y

σ ' 2t pdξ000

3
------------------- d̂3yσ

+
bσ H.c.+( )+

–  
2
 
t

 
pd 

β
 

000 
3

------------------- d ˆ 3 y σ 
+

 p σ H.c.+ ( ) .

εp
0 γ 000

bb εp
0 γ 000

aa

εp
0 γ 000

pp

µ000
b

 

tion in each cell, we can subdivide intercell terms in the
same manner as

(6)

for the hops within one sublattice, and

for the intersublattice hopping. The coefficients 

 

µ

 

b

 

, 

 

λ

 

, 

 

ξ

 

,
and 

 

β

 

 for intrasublattice

 

 pd

 

 interactions; 

 

α

 

a

 

(

 

G

 

)

 

, 

 

α

 

b

 

(

 

G

 

)

 

,
and 

 

α

 

p

 

(

 

G

 

)

 

 for the intersublattice

 

 pd

 

 interactions; and 

 

γ

 

aa

 

,

 

γ

 

bb

 

, 

 

γ

 

pp

 

, 

 

γ

 

ab

 

, 

 

γ

 

bp

 

, and 

 

γ

 

ap

 

 for the intrasublattice 

 

pp

 

 inter-
actions as functions of the distance between cells are
presented in the table, where [

 

m

 

, 

 

n

 

, 

 

l

 

] denotes the coor-
dinates of the 

 

j

 

th cells relative to the 

 

i

 

th cell. For exam-
ple, 1 = [1/2, 1/2, 0] denotes a cell occurring in the first
coordination sphere of the

 

 i

 

th cell, but belonging to
another sublattice; 2 = [1, 0, 0] denotes a cell occurring
in the second coordination sphere of the 

 

i

 

th cell and
belonging to the same sublattice.

In the Hamiltonian written as above, the term 
contains all 

 

pd

 

 and 

 

pp

 

 hybridization (hopping), Cou-
lomb interactions, and exchange interactions inside the
cell. As can be seen from the table, the coefficients rap-
idly decay with the distance. For this reason, we leave

only the 

 

pd

 

 and 

 

pp

 

 hybridization interactions in 
and omit the Coulomb and exchange interactions
between cells. The omitted terms are small as compared
to the intracell interactions [16]; they renormalize these
interactions and lead to more complicated hops involv-
ing three and four cells [11].

3. CONSTRUCTING A CONFIGURATION SPACE 
OF THE ELECTRON SUBSYSTEM

ON THE BASIS OF HIGH-SPIN STATES
(

 

S

 

 = 5/2, 2, 3/2)

Hamiltonian  can be diagonalized in the space of
many-particle functions corresponding to all possible

Ĥcc ĥGP
a

ĥGP
b

ĥGP
ab

+ +( )δGP[
ij〈 〉 σ
∑

GP

∑=

+  h ̂ GP 1 δ GP – ( ) ] ,

ĥAA
b( )

2t pdµij
b d̂xiσ

+
b̂ jσ H.c.+( ) 2t ppγ ij

bbb̂iσ
+

b̂ jσ–=

+ 2t ppγ ij
pp p̂iσ

+ p̂ jσ 2t ppγ ij
bp b̂iσ

+
p̂ jσ H.c.+( ),–

ĥAA
a( )

2
t pdλij

3
------------ d̂3yiσ

+
â jσ H.c.+( ) 2t ppγ ij

aaâiσ
+ â jσ,+=

ĥAA
ab( )

2
t pdξij

3
------------ d̂3yiσ

+
b̂ jσ H.c.+( )=

+ 2
t pdβij

3
------------ d̂3yiσ

+
b̂ jσ H.c.+( ) 2t ppγ ij

ab âiσ
+ b̂ jσ H.c.+( )–

hGP 2
t pd

3
-------⎝ ⎠

⎛ ⎞ d̂3yiσ
+ G( ) αij

c P( )ĉ jω
P( ) H.c.+( )

c a b p, ,=

∑–=

Ĥ0

Ĥcc

Ĥ0
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distributions of electrons over one-particle states. The
operators of d electron production can be written in
terms of Hubbard operators in the space of many-parti-

cle d states , , , 
(see Eqs. (8), (9), and (11):

(7)

where

(the upper and lower lines refer to the states with spin

eg
2 M5/2,| 〉 hdx

M2,| 〉 hd3y
M2,| 〉 t2g

3 M3/2,| 〉

d̂fχσ
+ u1 M( )

v 1 M( )⎝ ⎠
⎜ ⎟
⎛ ⎞

X̂f
hd χ M,–,| 〉 t2g

3
M σ–,〈 |

M 2–=

2

∑=

+ χ u2 M( )
v 2 M( )⎝ ⎠

⎜ ⎟
⎛ ⎞

X̂f
eg

2
M,| 〉 hd χ, M σ–,〈 |

,
M 5/2–=

5/2

∑

χ
+1, λ x y,,=

1, λ– 3x 3y,=⎩
⎨
⎧

=

σ = ↑ and σ = ↓, respectively), and

These operators act only on electrons occurring in the
eg shell, but it does not act on t2g electrons. As a result,
the Hamiltonian of the whole system corresponds to the
transfer of spin density from the eg shell to ligands,
while S = 3/2 on the t2g shell. The resultant spin is con-
structed in accordance with the Hund rule. Using the
above operators, it is possible to construct many-parti-
cle functions corresponding to the following parts of
the configuration space:

(i) a high-spin sector d5p6 (S = 5/2) with a half-filled

 Mn3d shell (quasi-particle “vacuum” sector);

(ii) an one-hole sector, where the ground state is
formed by split states of the 5eg spin multiplet repre-

u1
2 M( ) 2 M+

4
--------------, v 1

2 M( ) 2 M–
4

--------------,= =

u2
2 M( ) 5/2 M+

5
-------------------, v 2

2 M( ) 5/2 M–
5

------------------.= =

t2g
3 eg

2

Coefficients of inter- and intrasublattice interactions

0 = [0, 0, 0] 2 = [1, 0, 0] 1 = [1/2, 1/2, 0] 1 = [1/2, –1/2, 0] 1 = [0, 0, 1]

For pd interactions in sublattices A and B

µmnl 0.9833 0.0466 0.1282

λmnl 0.7482 0.0704 0.1641

ξmnl –0.0713 0.0034 –0.2708

βmnl 0.0000 0.0000 0.0000

For pp interactions in sublattices A and B

0.4226 0.0200 0.1547

0.3287 0.0398 0.1125

0.0235 –0.0049 0.0106

0.0907 0.0096 0.1157

0.3037 0.0251 –0.1502

0.0000 0.0000 0.0000

For pd interactions between sublattices A and B

–0.1426, G = A
0, G = B

–0.1426, G = B
0, G = A

0.0286, G = A
0, G = B

0.0286, G = B
0, G = A

0.0325, G = A
0, G = B

0.0325, G = B
0, G = A

γ mnl
bb

γ mnl
aa

γ mnl
pp

γ mnl
ab

γ mnl
ap

γ mnl
ap

αmnl
b G( )

αmnl
a G( )

αmnl
p G( )
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senting a combination of d4p6 and d5p5 (S = 2) configu-
rations;

(iii) a two-hole sector, where the ground state is a
linear combination of the d3p6, d4p5, and d5p4 (S = 3/2)
configurations.

In the one-hole sector, we deal with two spin multip-
lets, 5a and 5b, possessing different orbital symmetry
and a small mutual hybridization because a and b states

can mix in the presence of a  ×  superlattice. The
hole can occur on any of the Mn3d or O2p orbitals.
Introducing a notation for the half-filled d shell as

and |dχ, MS = 2〉 (see (8)) for the state with a hole in one
of the eg states, and applying operator (7) with an addi-
tional normalization condition, it is possible to com-
plete the set of many-particle functions as

(8)

for a single hole in the initial block b, and as

(9)

2 2

eg
2 MS 5/2=,| 〉

=  u2 M5/2( ) u1 M5/2
1
2
---–⎝ ⎠

⎛ ⎞ dx↑
+ d3y↑

+ t2g
3 M5/2, 1–| 〉

+ v 1 M5/2
1
2
---–⎝ ⎠

⎛ ⎞ dx↓
+ d3y↑

+ t2g
3 M5/2,| 〉

+ v 2 M5/2( ) u1 M5/2
1
2
---+⎝ ⎠

⎛ ⎞ dx↑
+ d3y↓

+ t2g
3 M5/2,| 〉

+ v 1 M5/2
1
2
---+⎝ ⎠

⎛ ⎞ dx↓
+ d3y↓

+ t2g
3 M5/2, 1+| 〉

hb M2,| 〉

=  α5/2 u2 M2 1/2+( ) eg
2 M2 1/2+,| 〉 a2 p2 b↓, ,| 〉[

– v 2 M2 1/2–( ) eg
2 M2 1/2–,| 〉 a2 p2 b↑, ,| 〉 ],

hdx
M2,| 〉 u1 M2( )d3y↑

+ t2g
3 M2 1/2–,| 〉{=

+ v 1 M2( )d3y↓
+ t2g

3 M2 1/2+,| 〉 } p6| 〉,

hp M2,| 〉

=  α5/2 u2 M2 1/2+( ) eg
2 M2 1/2+,| 〉 a2 p↓ b2, ,| 〉[

– v 2 M2 1/2–( ) eg
2 M2 1/2–,| 〉 a2 p↑ b2, ,| 〉 ]

ha M2,| 〉

=  α5/2 u2 M2 1/2+( ) eg
2 M2 1/2+,| 〉 a↓ p2 b2, ,| 〉[

– v 2 M2 1/2–( ) eg
2 M2 1/2–,| 〉 a↑ p2 b2, ,| 〉 ],

hd3Y
M2,| 〉 u1 M2( )dx↑

+ t2g
3 M2 1/2–,| 〉{=

+ v 2 M2( )dx↓
+ t2g

3 M2 1/2+,| 〉 } p6| 〉,

for a hole in the initial block a. In these expressions,

is the normalization of the wave functions in the cell
with a hole on oxygen orbitals; ui(M2) and vi(M2) are
the vector slip coefficients, which appear upon expan-
sion of the wave function in the one-hole sector in terms
of the wave functions of the configuration with S = 3/2
and the function of an additional oxygen with σ = 1/2
in one of the possible states.

Thus, in the one-hole sector with the basis |ha, M2〉,
|d3y, M2〉, and | , M2〉, |hb, M2〉, |hp, M2〉, we deter-

mined the eigenstates  = |hc, M2〉 (c =

a, d3x, b, p, dx) with the energies  (i = 1, …, 5) by
means of the exact diagonalization of the matrix

(10)

where

In accordance with five possible spin projections
(M2 = –2, …, +2), each position splits into five possible
variants.

α5/2
2S5/2

2S5/2 1+
--------------------=

hdx

1hiM2
| 〉 βi c( )

c∑
εiM2

Edx
α5/2τb 0 0 0

α5/2τb Eb α5/2τdb τab τbp

0 α5/2τdb Ed3x
α5/2τa 0

0 τab α5/2τa Ea 0

0 τbp 0 0 Ep⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

σM2 M2', ,

τb 2t pdµ00, τa
2

3
-------t pdλ000, τab– 2t ppγ 000

bp ,–= = =

τbp 2t ppγ 000
bp , τap– 2t ppγ 000

ap– 0,≈= =

τdp
2

3
-------t pdβ000 0, τdp≈ 2

3
-------t pdξ000,–= =

Edx
εd3x

2 εa εp εb+ +( ) 3U p 6V pd 12V pp,+ + + +=

Eb εdz
εdx

2 εa εp+( ) εb+ + +=

+ Ud JH– 2U p 10V pd 8V pp,+ + +

Ep εdz
εdx

2 εa εb+( ) εp+ + +=

+ Ud JH– 2U p 10V pd 8V pp,+ + +

Ed3y
εdz

2 εa εp εb+ +( ) 3U p 6V pd 12V pp,+ + + +=

Ea εdz
εdx

2 εp εb+( ) εa+ + +=

+ Ud JH– 2U p 10V pd 8V pp.+ + +
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The initial basis for the two-hole sector (S = 3/2) is
as follows:

(11)

where

,

and the left-hand part also makes use of the “hole” nota-
tions. In this sector, the eigenstates can be found in the
following form:  = |hC, HC ', M3/2〉,
where the energies  and the corresponding coeffi-
cients Biq (q = 1, …, 6) are determined by diagonaliza-
tion of the matrix

(12)

with a total dimension of 40 × 40 for the direct matrix
product. Using the results of exact diagonalization, the
configuration space of the system is reduced to that

depicted in Fig. 2 with two orbitally nondegenerate (a
and b) terms in the one-hole sector. The other terms
possess much higher energies and are insignificant

hdx
ha M3/2, ,| 〉 α2 u1 M3/2 1/2+( ){=

× d3y M3/2 1/2+,| 〉 a↓ p2b2| 〉

+ v 1 M3/2 1/2–( ) d3y M3/2 1/2–,| 〉 a↑ p2b2| 〉 },

hdx
hp M3/2, ,| 〉 α2 u1 M3/2 1/2+( ){=

× d3y M3/2 1/2+,| 〉 a2 p↓b2| 〉

+ v 1 M3/2 1/2–( ) d3y M3/2 1/2–,| 〉 a2 p↑b2| 〉 },

h3y hb M3/2, ,| 〉 α2 u1 M3/2 1/2+( ){=

× dx M3/2 1/2+,| 〉 a2 p2b↓| 〉

+ v 1 M3/2 1/2–( ) dx M3/2 1/2–,| 〉 a2 p2b↑| 〉 },

hdx
hd3y M3/2,,| 〉 t2g

3 M3/2,| 〉 p6| 〉,=

ha hb M3/2, ,| 〉

=  α2α5/2 u1 M3/2 1+( )u1 M3/2 1/2+( ){

× eg
2 M3/2 1+,| 〉 a↓ p2 b↓, ,| 〉

– u2 M3/2( )v 1 M3/2 1/2–( ) eg
2 M3/2,| 〉 a↓ p2 b↑, ,| 〉

– v 2 M3/2( )u1 M3/2 1/2+( ) eg
2 M3/2,| 〉 a↑ p2 b↓, ,| 〉

+ v 2 M3/2 1–( )v 1 M3/2 1/2–( ) eg
2 M3/2, 1–| 〉

× a↑ p2 b↓, ,| 〉 },

hp hb M3/2, ,| 〉

=  α2α5/2 u2 M3/2 1+( )u1 M3/2 1/2+( ){

× eg
2 M3/2 1+,| 〉 a2 p↓ b↓, ,| 〉

– u2 M3/2( )v 1 M3/2 1/2–( ) eg
2 M3/2,| 〉 a2 p↓ b↑, ,| 〉

– v 2 M3/2( )u1 M3/2 1/2+( ) eg
2 M3/2,| 〉 a2 p↑ b↓, ,| 〉

+ v 2 M3/2 1–( )v 1 M3/2 1/2–( ) eg
2 M3/2, 1–| 〉

× a2 p↑ b↑, ,| 〉 },

α2
2S2

2S2 1+
-----------------=

2hiM3/2
| 〉 Bi c c ',( )

cc '∑
εiM3/2

Eadx
α5/2τb– α2τa 0 0 0 0 0 0 τab

α5/2τb– Eab 0 α5/2τa 0 0 α5/2τbd– τbp 0 0

α2τa 0 Edd α2τb– 0 0 0 0 0 α2τbd

0 α5/2τa α2τb– Ebd3x
0 0 τab 0 τbp 0

0 0 0 0 Epdx
α5/2τb– 0 0 0 τbp

0 0 0 0 α5/2τb– Epb 0 τab– α5/2τbd– 0

0 α5/2τbd– 0 τab 0 0 Ead3x
0 0 0

0 τbp 0 0 0 τab– 0 Eap α5/2τa 0

0 0 0 τbp 0 α5/2τbd– 0 α5/2τa Epd3x
0

τab 0 α2τbd 0 τbp 0 0 0 0 Rbdx
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

× δM3/2M3/2'
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from the standpoint of low-energy excitations. Depend-
ing on the parameters of Hamiltonian H, the splitting of
weakly mixing orbital 5a and 5b singlets is on the order
of ∆ε ≈ 0.2–0.5 eV. The existence of two states, 

and , with close energies implies the need for

their simultaneous inclusion into the basis set for our
calculation. Therefore, the Hamiltonian cannot be fur-
ther reduced to an affective one-band model. In contrast
to the case of cuprates [11], the presence of a large spin
S = 3/2 on the t2g shell in the two-hole sector corre-
sponds to a situation with a single high-spin term sepa-
rated from the excited terms by a energy interval of
~1 eV. This state is analogous to the Zhang–Rice state
in cuprates. Thus, we obtained a new reduced basis set
of high-spin functions in the cell, which determines the
low-energy excitations of the electron system in
LaMnO3.

4. DERIVING DISPERSION RELATIONS

The hopping part  of the total Hamiltonian is
conveniently treated using a representation of Hubbard
operators analogous to (7), which is determined in the
space of many-electron functions (8), (9), and (11). Any

1h1M2
| 〉

1h2M2
| 〉

Ĥcc

one-electron operator can be written using Hubbard

operators  = |p〉〈q | as

where

and m is the number index of the root vector am(pq).
The work with Hubbard operators is simplified using
Zaitsev notation [22], whereby each pair of the initial
and final states, |q〉  |p〉, corresponds to a root vector
am(pq) such that

where superscripts p and q enumerate the states in (8),
(9), and (11). Then, the matrix elements of the hopping
amplitude γλσ(m) = 〈p| |q〉 (m = 1, 2, …, 400 in an
orbitally ordered AFM phase) corresponding to these
root vectors are directly calculated using the coeffi-
cients Bi(c, c') and βi (c) and represent the partial ampli-
tudes of transitions between individual many-electron
states. In contrast to Hubbard operators, the operators
of production (annihilation) act on the states in all sec-
tors of the configuration space of the system.

Spin multiplets comprising the set of many-electron
states (8), (9), and (11) can belong to various orbital and
magnetic sublattices and, in agreement with the exist-
ence of two orbital sublattices A and B, we introduce
vectors R1 for the intrasublattice neighbors and R2 for
the intersublattice ones. In the AFM phase, each of the
two orbital sublattices consists of two magnetic sub-
lattices alternating along the z axis. The magnetic sub-
lattice features FM ordering in the xy plane, which cor-
responds to the A-type AFM ordering observed in
LaMnO3. Since the introduction of various sublattices
presents only technical problems, we will restrict the
consideration to deriving the dispersion equation for an
orbitally ordered homogeneous magnetic state, that is,
for a system with PM and FM phases. In this case, the
Hamiltonian of intercell hopping can be written as

X̂ f
pq

ĉλfσ γ λσ m( ) X̂f
m

,
m

∑=

ĉλfσ d̂xfσ d̂zfσ âfσ b̂fσ p̂zfσ, , , ,=

X̂f
pq

X̂f
am pq( )

X̂f
m

,

ĉλfσ

Ĥcc Ĥcc
GP

G P,
∑=

=  Tλλ '
G R1( ) ĉfλσ

+ G( )ĉf R1λ 'σ+
G( ) H.c.+( )

G

∑
R1

∑
⎩
⎨
⎧

λλ 'σ
∑

f

∑

n = 0

n = 2n = 1σ

–σ
σ

–σ

–σ

σ

x

|2h1M3/2
〉

6a

1 – x

∆ε

|h2M2
〉 : (5a)

|h1M2
〉 : (5b)

La1 – xSrxMnO3

Fig. 2. Schematic diagram of the configuration space of
charge carriers in La1 – xSrxMnO3, showing transitions cor-
responding to the valence band (solid curve) and the bands
of in-gap states (dashed curves) and indicating the spins of
quasiparticles involved in these transitions; n = 0, 1, and 2
correspond to the vacuum and the one- and two-particle sec-
tors;  and  are the mixing 5b and 5a states;

 is the ground state in the two-hole sector. See the

text for the notation of states.

h1M2
| 〉 h2M2

| 〉

2h1M3/2
| 〉
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(13)

where

(because (k) and (k) determine the dispersion

in different k directions, see table);  and  are the
Fourier images of Hubbard operators for the orbital
sublattices A and B, respectively. Within one sublattice,
the hopping matrix on the basis dx (dy), d3y (d3x) of a, p,

b orbitals with (R1) elements is

. (14)

Accordingly, the matrix of intersublattice transitions with (R2) elements is

. (15)

The equations of motion for operators  and  can
be written as

(16)

where  = ΩG(am) =  – . The corresponding
commutator can be calculated in Hubbard 1 approxi-
mation as

(17)

where Ff(m) = Ff(am) =  +  is the filing
factor. Taking into account the presence of two sublat-
tices, we obtain the following system of equations:

(18)

+ Tλλ '
GP R2( ) ĉfλσ

+ G( )ĉf R2λ 'σ+
P( ) H.c.+( )

G P≠
∑

R2

∑
⎭
⎬
⎫

=  γ λσ * m ( )γ λ ' σ n ( ) T λλ ' 
AA k ( ) X ˆ k 

+
 

m
 X ˆ k 

n [{  

kmn

 ∑  

λλ

 

'

 

σ

 ∑

+ Tλλ '
BB k( )Ŷk

+m
Ŷk

n
Tλλ '

AB k( ) X̂k
+m

Ŷk
n

+

+ Tλλ '
BA k( )Ŷk

+m
X̂k

n ] H.c.+ },

Tλλ '
GG k( ) 2

N
---- Tλλ '

GG R1( )e
ik R1⋅

,
R1

∑=

 T λλ ' 
GP
 k ( ) 

2
 N ---- T λλ ' 

GP
 R 2 ( ) e 

i

 

k R

 

2

 
⋅

 

R

 

2

 ∑ T λλ ' 
PG

 k ( )≠ =

Tλλ '
AB Tλλ '

BA

X̂k
m

Ŷk
n

Tλλ '
G

Tλλ '
G R1( )

0 0 2t pdµ 0 0

0 0 2t pdξ/ 3– 2t pdλ/ 3– 2t pdβ/ 3

2t pdµ 2t pdξ/ 3– 2t ppγ bb– 2t ppγ ab– 2t ppγ bp–

0 2t pdλ 3 2t ppγ ab– 2t ppv 2t ppγ ap–

0 2t pdβ/ 3 2t ppγ bp– 2t ppγ ap– 2t ppγ pp–⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

Tλλ '
PG

Tλλ '
GP R2( )

0 0 0 0 0

0 0 2t pdαb G( )/ 3– 2t pdαa G( )/ 3– 2t pdαp G( )/ 3–

0 2t pdαb G( )/ 3– 0 0 0

0 2t pdαa G( )/ 3– 0 0 0

0 2t pdαp G( )/ 3– 0 0 0⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

X f
m Yg

n

i X̂
˙

f

m

X̂f
m

Ĥ,[ ] ΩmX̂f
m

X̂f
m

Ĥcc,[ ],+= =

Ωm
G εq

G εp
G

X̂f
m

Ĥcc,[ ] Tλλ ' R( )
iR

∑
nl

∑
λλ 'σ '

∑=

× γ λσ '* n( )γ λ 'σ ' l( ) X̂f
m

X̂ i
+n

X̂ i R+
l,[ ]{

+ γ λ 'σ '* l( )γ λσ ' n( ) X̂f
m

X̂ i R+
+l

X̂ i
n,[ ] }

≈ γ λσ* m( )γ λ 'σ n( )Ff m( )
λλ 'n

∑

× Tλλ ' R( ) X̂f R+
n

X̂f R–
n

+( ),
R

∑

X̂f
pp〈 〉 X̂f

qq〈 〉

i X̂
˙

f

m

Ωm
A X̂f

m γ λσ* m( )γ λ 'σ n( )FA m( )
λλ 'n

∑+=

× Ŷ f R2+
n

Tλλ̇
AB Tλλ̇

BA+[ ]
R2

∑ 2 X̂f R1+
n

Tλλ '
AA

R1

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

,

iŶ
˙

g

m

Ωm
B Ŷg

m γ λσ* m( )γ λ 'σ n( )FB m( )
λλ 'n

∑+=

× Ŷg R2+
n

Tλλ̇
AB Tλλ̇

BA+[ ]
R2

∑ 2 Ŷg R1+
n

Tλλ '
BB

R1

∑+
⎝ ⎠
⎜ ⎟
⎛ ⎞

.
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This approximation is valid only provided that

(m) (k)γλ'σ(n) � . In addition to the
relation η000 > ηmnl (where η = µ, λ, ξ, β, and γ, see
table), this condition introduces another small parame-
ters of the obtained solution. Introducing a new nota-
tion for the effective interaction as

we can use a more convenient matrix form of the equa-
tions of motion for the Green function

where

Indeed, consider the system of equations

(19)

where

is the Green function in the zero-order approximation.
Applying the Flourier transform

,

γ λσ*
λλ '∑ Tλλ '

PG Ωm
G
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and using the above notation for (

 

k

 

, 

 

σ

 

), Eqs. (19)
can be rewritten as

(20)

Another couple of equations is obtained upon substitu-
tion 

 

A

 

  

 

B

 

. In the matrix form, system (20) is written

simply as  = (

 

k

 

) , where

(21)

Thus, the dispersion relations for quasiparticles are
determined by the equation for poles of the matrix

Green function :

(22)

Special features of this equation are determined by the

hopping matrix (

 

k

 

, 

 

σ

 

) and by the set of root vec-
tors 

 

a

 

m

 

. The local quasiparticle excitations are charac-

terized by the energies  and the spectral weights

 

F

 

G

 

(

 

m

 

) calculated as a result of the exact diagonalization
of the intracell part of the Hamiltonian with allowance
for strong electron correlations. In the (

 

A

 

-type) AFM
phase, which exhibits FM ordering in the 

 

xy

 

 planes and
AFM ordering between these planes along the 

 

z

 

 axis
(Fig. 1), each orbitally ordered sublattice consists of
two magnetic sublattices. This situation corresponds to
four types of operators (rather than two) in Eqs. (13),
implies the use of another pair of indices 

 

G

 

' and 

 

P

 

' in
Eqs. (19), and leads to doubling of the dimension of
matrix (22).

5. RESULTS OF NUMERICAL SOLUTION
OF THE DISPERSION EQUATION

Figure 3a shows the results of numerical solution of
dispersion equation (22) for the AFM phase. In order to
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simplify drawing, we omitted the empty states occur-
ring in the conduction band above the gap (Eg ≥ 2 eV),
which is formed predominantly due to the excitations
with charge transfer. A numerical solution was obtained
for the following parameters:

(23)

In selecting the  and  values, we proceeded from
the fact that the presence of a crystal field does not lead
to significant splitting of the eg states [13]. In the series
of electronegativity of elements, manganese (1.6) occu-
pies a position on the left from copper (1.75). For this
reason, the energy εp of oxygen orbitals is taken lower
than that in cuprates (εp ~ –1.4…–1.6 eV [11]). Since
the effective radius of the Mn3+ ion is smaller than that
of Cu3+ and the Mn–O bond length (1.91–2.18 Å) is
greater than Cu–O (~1.89 Å), the tpd and tpp values in
this calculation were also taken lower than in [11]. The
Coulomb interaction parameters were selected so as to
correspond to the calculated value (~2 eV) of the insu-
lating gap and the experimental values reported for
LaMnO3.

It should be noted that the orbital ordering plays an
important role in the formation of an insulating ground
state in LaMnO3. For comparison, we also calculated
the energy band structure of cubic LaMnO3 and
obtained the metal ground state. Thus, at least one of
the reasons for LaMnO3 being an insulator is the pres-
ence of Jahn–Teller distortions and orbital ordering in
the spatial structure of this manganite crystal.

Another noteworthy result is the existence of two
different subbands separated by an energy interval of

εdx
εd3y

0, εp 2 eV, t pd– 0.7 eV,= = = =

t pp 0.3 eV, Ud 5 eV, U p 2 eV,= = =

Jd 2 eV, V pd 1 eV.= =

εdx
εd3y

0.2–0.5 eV on top of the valence band. The first sub-
band in fact falls within the insulating gap and has non-
zero dispersion at a zero spectral weight in the undoped
material. At first glance, it might appear that this sub-
band is related (by analogy with cuprates [11]) to the
AFM ordering. However, the results obtained for the
PM phase (Fig. 3b) do not confirm this assumption,
since the band of in-gap states is retained. The origin of
these states is different from that in cuprates, being
related to the proximity of two orbital singlets (5a and
5b) in a one-hole sector of the configuration space of the
system (i.e., with the distorted three-dimensional cubic
structure in LaMnO3). This mechanism of the forma-
tion of in-gap states was originally proposed in [23].
Emphasizing a difference in the nature of these states,
we suggest calling them polaron in-gap states, since
their appearance is related to the Jahn–Teller splitting
of the initial orbital doublet, whereas in cuprates such
states are related to the spin–polaron effect (spin-
polaron in-gap states) [24].

The second subband has a nonzero dispersion and
spectral density and is completely filled in the undoped
manganite, thus representing a valence band. This
band, in turn, consists of two close-lying bands belong-
ing to different orbital sublattices. The bandwidth
depends on the type of magnetic phase in which the
given sublattice occurs (Fig. 3b). As the temperature
grows above critical (TN), the dispersion in the xy plane
decreases while that in the z direction increases (which
is consistent with the A-type AFM ordering). As
expected, the spectra of quasiparticles are symmetric
for both spin projections in the AFM and PM phases.

Figure 4 shows the results for an FM phase, which
is realized in doped La1 – xSrxMnO3 manganites. In this
case, a partial filling (~x) of the two-hole term 
takes place, and the quasiparticles corresponding to the
polaron in-gap states (indicated by dashed lines in
Fig. 2) exhibit dispersion and acquire a nonzero spec-

2h1M3/2
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Fig. 3. Dispersion of quasiparticle states in an orbitally ordered undoped LaMnO3 (a) in the state of AFM ordering and (b) in the
PM phase. In order to simplify drawing, the empty states occurring in the conduction band above the gap (Eg ≥ 2 eV) are omitted.
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tral weight ~x. The FM ordering removes the degener-
acy with respect to spin, and an increase in x leads to the
formation of a state with an insulating gap for one spin
subband and with a metallic character for the other sub-
band. Such states are referred to as half-metallic (see,
e.g., review [25]). Above the Curie point, the bands in
the PM phase exhibit narrowing and a gap opens in the
quasiparticle spectrum of the half-metallic phase.
Detailed consideration of the mechanism of colossal
magnetoresistance goes beyond the scope of this paper
and will be presented in a separate publication.

6. CONCLUSIONS

The generalized tight binding method was devel-
oped for calculations of the electron band structure in
Mott–Hubbard insulators, that is, in the regime of
strong electron correlations, where the traditional one-
electron schemes such as LDA are inapplicable. The
first class of strongly correlated systems for which cal-
culations within the framework of the generalized tight
binding method were performed were cuprates [11]. It
was established that the band structure of quasiparticles
strongly depend on the doping level, the temperature,
and other external factors. In particular, in-gap states
can appear with small a spectral weight proportional to
the dopant concentration.

The results obtained in this study showed that the
generalized tight binding method is also applicable to
systems with high-spin many-electron terms. The most
important specific property of manganites is the orbital
ordering that removes degeneracy of the 5eg doublet.
Without this removal of degeneracy, the band structure
of LaMnO3 would be metallic despite strong electron
correlations and AFM ordering. The physics of this
conclusion is quite simple: a degenerate 5eg doublet
corresponds to a two-band Hubbard model with 1/4 fill-
ing of each band and, hence, splitting of the one-elec-

tron band into two Hubbard bands retains the metallic
state.
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