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1. INTRODUCTION 

Theoretical studies of an increase in the number of
particles involved in a correlated motion in the course
of time evolution started in the statistical physics of
nonequilibrium processes many decades ago in the
works on studying the dynamics of correlations by the
I. Prigogin’s Brussels school [1]. The recent develop-
ment of experimental methods has opened up the pos-
sibility of experimentally studying the time evolution
of multispin correlations by means of the observation
of multiple-quantum coherences using multiple-quan-
tum nuclear magnetic resonance (NMR) spectroscopy
(see, for example, [2–10]). Unfortunately, these meth-
ods have been so far of main practical use only in study-
ing clusters and local structures, when the multiple-
quantum spectrum is rather simply understood. At the
same time, the main computational algorithms are now
implemented for small systems, in which control of
multiple-quantum coherences is investigated with the
aim to use the latter in quantum computing [11, 12].
Theoretical results can be obtained for small systems
by means of numerical calculations. Radically different
theoretical approaches are required for studying large

systems (experimental results have been published for
systems containing up to 650 correlated spins [9]),
which are of interest (as distinct from small model
ones) to statistical physics and quantum computing. At
last, the absence of a correct theory to interpret the
results constrains the application of these methods to
studying common solids.

It is known that the whole diversity of particular
methods of multiple-quantum Fourier spectroscopy
[2–9] is reduced to the following scheme. By means of
irradiating the spin system with a sequence of radio-fre-
quency pulses, the Hamiltonian of its spin–spin interac-
tions is transformed to a nonsecular (with respect to
equilibrium magnetization) Hamiltonian, under the
action of which the initial magnetization is transferred
to various correlation functions of products of various
numbers (

 

K

 

) of spin operators (multispin correlations).
In other words, an equilibrium density matrix 

 

ρ

 

eq

 

 in a
strong magnetic field is transformed into a nonequilib-
rium density matrix, which is conveniently presented as
a sum of off-diagonal elements 

 

ρ

 

n

 

 with a certain differ-
ence 

 

n

 

 of magnetic quantum numbers that have been
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 of the intensity distribution of
coherences of different orders in the multiple-quantum spectrum can be calculated using the theory proposed
in this work. An approach to the calculation of the four-spin time correlation function through which this
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 is additionally calculated using an expansion in terms of
orthogonal operators for three model examples corresponding to different limiting realizations of spin systems.
It is shown that the results of the microscopic theory at least qualitatively agree with both the results obtained
for model examples and experimental results obtained recently for adamantane.
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called multiple-quantum coherences (

 

n

 

 is the coherence
order)

Here, 

 

|

 

Knp

 

〉

 

 is a basis operator, in which 

 

K

 

 single-spin
operators form a product coupling Zeeman states that
differ by 

 

n

 

 units; index 

 

p

 

 numbers different basis states
with the same values of 

 

K

 

 and 

 

n

 

; and

 

 N

 

 is the total num-
ber of spins in the system. The occurring coherences
are marked with the phase shift 

 

ϕ

 

 proportional to time.
The arising phase shift is proportional to 

 

n

 

ϕ

 

, where

 

 n

 

 is
an integer number. Thus,

 

 K

 

-spin coherences, depending
on 

 

n

 

, are also distinguished by the number of quanta
(

 

n

 

 

 

≤

 

 

 

K

 

) [2–4]. Then, a new pulse sequence changing the
sign of the above nonsecular Hamiltonian is applied to
the system and, thus, “time reversal” is performed [2,
13, 14], because of which the system evolves back. The
one-dimensional or two-dimensional Fourier spectrum
can be constructed from the observed time dependence
of the evolution and phase 

 

ϕ

 

.
In conventional multiple-quantum experiments,

 

K

 

-spin correlations are marked with a phase shift about
the 

 

z

 

 axis, that is, are classified by the number of quanta
in the basis in which the 

 

z 

 

components of spin operators
are diagonal (from here on, the 

 

z

 

 basis). However, as
was shown in [8], these correlations can also be marked
with a phase shift arising upon a rotation about another
axes, for example, 

 

x

 

. Such experiments allowed addi-
tional information to be obtained already in the case of
the nonsecular effective Hamiltonian. It is especially
important that spin dynamics under the action of a
Hamiltonian conserving

 

 z

 

 projections can be studied
using measurements of coherences in a basis differing
from the conventional

 

 z

 

 basis. In this way, multispin
dynamics due to the secular part of the dipole–dipole
interaction was observed in the 

 

x

 

 basis in [10] in the
process of solid-state NMR free induction decay (FID).
In all bases, a qualitatively similar pattern of the time
evolution of multispin correlations was observed. This
is not surprising, because this evolution is governed by
the general laws of nonequilibrium statistical physics.

The time dependences of multiple-quantum-coher-
ence amplitudes are the most important characteristics
of multiple-quantum NMR spectroscopy, which are
necessary both for applied (for example, structural)
studies and for an understanding of the physics of irre-
versible processes. In their turn, these dependences
determine the intensity distributions for coherences of
different orders in the multiple-quantum spectrum.
Based on the simplest statistical model [2, 3], a Gauss-
ian shape is assumed in the experiment for the distribu-

ρ t( ) iHt( )ρeq iHt–( )expexp ρn t( ),
n

∑= =

ρn t( ) gKnp t( ) Knp| 〉.
p

∑
K n=

K N=

∑=

 

tion of coherences of different orders in the multiple-
quantum spectrum

(1)

The variance of the distribution in this model (

 

N

 

(

 

τ

 

)/2)
is determined by the number of spins 

 

N

 

(

 

τ

 

) among
which dynamical correlation due to the dipole–dipole
interaction is settled during the preparation time 

 

τ

 

. This
number, called the number of correlated spins or the
effective cluster size, grows as the preparation time 

 

τ

 

increases. In the statistical model [2, 3], it is assumed in
particular that all coherences have equal amplitudes at
infinitely long 

 

τ

 

. At the same time, the dependences
observed experimentally are as a rule not described by
relationship (1) (see, for example, [6]). In this connec-
tion, the necessity arises of at least replacing 

 

N

 

(

 

τ

 

) with
a quantity similar in its sense but resulting from first
principles and independent of the model.

The second moment 

 

〈

 

n

 

2

 

(

 

τ

 

)

 

〉

 

 of the intensity distribu-
tion for coherences of different orders in the multiple-
quantum spectrum can serve as such a quantity [15]. In
the case of a Gaussian distribution, this moment coin-
cides with the variance (

 

N

 

(

 

τ

 

)/2) in (1). For the distribu-
tion of a different shape, it will also serve as a charac-
teristic of the number of correlated spins (the effective
cluster size). Although the equation relating the above
moment with the correlation function of the product of
four spin operators taken at different instants of time
was derived by Khitrin as long ago as 1997 [15], such
correlation functions have not been calculated so far.

In this paper, a theory is developed for the direct cal-
culation of the second moment 

 

〈

 

n

 

2

 

(

 

τ

 

)

 

〉

 

 of the intensity
distribution for coherences of different orders in a mul-
tiple-quantum NMR spectrum. To calculate consider-
ably more complicated four-spin correlation functions,
we will elaborate methods and approaches developed in
our previous work and successfully applied to the cal-
culation of two-spin time correlation functions (TCFs),
which determine the shape of an ordinary single-quan-
tum NMR absorption spectrum. Spin systems
described by the Hamiltonian of the secular part of the
dipole–dipole interaction and by the nonsecular effec-
tive Hamiltonian used in multiple-quantum NMR spec-
troscopy will be considered. Both sorts of systems are
studied experimentally and are important for practice.

The paper is organized as follows. In Section 2, gen-
eral equations for the second moment are considered.
In Section 3, time-dependent spin-projection operators
in the four-spin correlation function for 

 

〈

 

n

 

2

 

(

 

τ

 

)

 

〉

 

 are pre-
sented as expansions in terms of the complete system of
orthonormal operators and calculations are performed
for three model examples corresponding to different
limiting implementations of spin systems. In Section 4,
the main sequences of contributions (diagrams) in the
expansion of the four-spin correlation function in terms
of powers of time are selected and summed. In the last

gn τ( ) Tr ρn τ( )ρ n– τ( ){ } n2

N τ( )
------------–⎝ ⎠

⎛ ⎞ .exp∝ ∝
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sections, the results obtained by the two methods are
compared to each other and to experimental results.

2. SECOND MOMENT 
OF THE INTENSITY DISTRIBUTION

FOR COHERENCES OF DIFFERENT ORDERS
IN A MULTIPLE-QUANTUM SPECTRUM 

It is known [16] that the secular part of the internu-
clear dipole–dipole interaction is the main reason for
the broadening of an NMR absorption spectrum in non-
metallic diamagnetic solids and, thus, completely
determines the dynamics of the nuclear spin system

(2)

where

rij is the vector connecting spins i and j, θij is the angle
formed by vector rij and the external constant magnetic
field, and Sαi is the α component (α = x, y, z) of the vec-
tor spin operator at site i. From here on, the energy is
expressed in frequency units.

The Hamiltonian (2) is the basic one for “spin
alchemy” and is transformed under the action of radio-
frequency pulses into other Hamiltonians being of
interest to a researcher [17]. For example, the effective
Hamiltonian

(3)

is prepared in conventional NMR spectroscopy [2–4].
Here, as distinct from the original works, the designa-
tion cij = bij/2 is introduced and a cyclic permutation of
spin projections is performed for the convenience of
further studying. The intensities of coherences of dif-
ferent orders in a multiple-quantum spectrum have
recently been measured in [10] as functions of time for
a system with the conventional secular dipole–dipole
Hamiltonian (2). It has been shown that the behavior of
systems described by the Hamiltonians (2) and (3)

Hd bijSziSzj

i j≠
∑ aijS+iS j–

i j≠
∑+ Hzz H ff+= =

=  bijSziSzj

i j≠
∑ aij SxiSxj SyiSyj+( )

i j≠
∑+

=  Hdij
zz Hdij

xx Hdij
yy+ +( ),

i j≠
∑

bij

γ 2
� 1 3 θijcos

2
–( )
2rij

3
------------------------------------------, aij

bij

2
-----,–= =

Heff cij SziSzj SyiSyj–( )
i j≠
∑=

=  Hdij
zz /2 Hdij

yy+( )
i j≠
∑

qualitatively coincides. The cyclic permutation in
Eq. (3) makes the theoretical description of both cases
as close as possible.

The intensity of multiple-quantum coherences
observed experimentally is determined by the TCF

(4)

Here, U(t) is the evolution operator with the internal
interaction Hamiltonian Hd from Eq. (2) (or this inter-
action transformed by radiofrequency pulses into a cer-
tain new nonsecular effective Hamiltonian Heff (3)),
Uϕ = exp(iϕSx) is the rotation operator by an angle ϕ
about the x axis, and Sx =  is the x component of
the total spin of the nuclear system. For the use in the
microscopic theory considered in Section 4, we intro-
duced the designation τ for the evolution with “time
reversal.” Experimental conditions t = τ will be fulfilled
in the final equations.

The intensity of the nth-order coherence is obtained
from Eq. (4) after the Fourier transformation (integra-
tion over the variable nϕ). However, as shown in [15],
in order to find the second moment of the intensity dis-
tribution for coherences of different orders in a multi-
ple-quantum spectrum, this transformation can be
avoided and the following equation can be used instead:

(5)

This equation can easily be generalized to the case of
t ≠ τ

(6)

(7)

At t = τ, we obtain

At t ≠ τ, the quantity 〈n2(t, τ)〉 contains an imaginary
part vanishing in Eq. (6) after symmetrization.

Γϕ t τ,( )

=  
1

TrSx
2

-----------Tr U+ τ( )UϕU t( )SxU
+ t( )Uϕ

+U τ( )Sx{ }.

Sxii∑

n2 t( )〈 〉 d2Γϕ t t,( )
dϕ2

-----------------------
ϕ 0=

–
Tr Sx Sx t( ),[ ]2{ }

Tr Sx
2{ }

---------------------------------------,–= =

Sx t( ) U t( )SxU
+ t( ).=

n2 t τ,( )〈 〉〈 〉 n2 t τ,( )〈 〉
2

-----------------------
n2 τ t,( )〈 〉

2
-----------------------,+=

n2 t τ,( )〈 〉 2
Tr SxiSxf Sxj t( )Sxq τ( ){ }

Tr Sx
2{ }

-------------------------------------------------------
i j f q, , ,
∑=

–
Tr SxjSxi t( )Sxf Sxq τ( ){ }

Tr Sx
2{ }

------------------------------------------------------- .

n2 t t,( )〈 〉〈 〉 n2 t t,( )〈 〉 n2 t( )〈 〉 .= =
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The second term in the right-hand part of Eq. (7) can
be rewritten as

because 4SxfSxf = 1. The Pauli matrices σxf correspond
to the rotation operator of the spin with the number f

about the x axis by 180°. The symbol  means
that spin f is flipped in the time evolution operator in the
Hamiltonian; that is, the Hamiltonian σxfHσxf , in which

 and  are replaced by –  and – , respec-
tively, stays now in the brackets. Thus, from Eq. (7), we
obtain

(8)

3. GROWTH OF THE SECOND MOMENT 
OF A MULTIPLE-QUANTUM SPECTRUM 

AND AMPLITUDES
OF ORTHOGONAL OPERATORS

The direct calculation of the four-spin TCFs in
Eq. (5) or (8) is a very complicated task, to which we
will return in Section 4. The dependence of 〈n2(t)〉 on
the properties of the expansion amplitudes Sx(t) in
terms of the complete system of orthonormal operators
[18–23]

(9)

is studied in this section below.
Many works are devoted to studying such expan-

sions in nonequilibrium statistical mechanics (see, for
example, [18–23]).

The expansion in terms of orthogonal operators
given in the Introduction has already been used previ-
ously in the calculations of the amplitudes of multiple-
quantum coherences [2–9]. However, different bases
are taken in the equation in the Introduction and in
Eq. (9). In the Introduction, the universal basis is
formed by all possible products of different spin-pro-

Tr Sxj 4Sxf Sxf( )Sxi t( )Sxf Sxq τ( ){ }
Tr Sx

2{ }
------------------------------------------------------------------------------

=  
Tr SxjSxf σxf Sxi t( )σxf Sxq τ( ){ }

Tr Sx
2{ }

-----------------------------------------------------------------------

=  
Tr SxjSxf Sxi t( ) f( )

Sxq τ( ){ }
Tr Sx

2{ }
------------------------------------------------------------,

Sxj t( ) f( )

Hdfj
zz Hdfj

yy Hdfj
zz Hdfj

yy

n2 t τ,( )〈 〉 2
1

Tr Sx
2{ }

-----------------
i j f q, , ,
∑=

× Sp SxjSxf Sxi t( ) Sxi t( ) f( )
–( )Sxq τ( ){ }.

Sx t( ) A j t( ) j| 〉
j 0=

∞

∑=

jection operators of the system. This is convenient for
calculations of small clusters. As the number K of sin-
gle-spin operators increases, the number of basis oper-
ators increases by an exponential law. To overcome
mathematical difficulties, authors have to introduce
uncontrolled approximations, for example, by replac-
ing the exact equations of motion with the random-
walk equations in the Liouville space. At the same time,
a basis constructed for a particular Hamiltonian and the
initial operator |0〉 = Sx rather than the universal basis is
used in Eq. (9). Each subsequent operator of the basis
is obtained from the preceding one after the calculation
of the commutator with the Hamiltonian according to
the recurrence equation

Note that, along with products of spin-projection
operators, products of spin–spin coupling constants
also enter into the definition of the orthogonal operators
|j〉. This fact also essentially distinguishes the intro-
duced basis from the universal basis |Knp〉 given in the
Introduction.

The rejection of basis universality allowed the
authors of [18–23] to advance in studying the dynamics
of many-body systems, at least, for some model Hamil-
tonians or in calculations of simpler TCFs as compared
to those considered in this work.

For definiteness, consider a spin system with the
Hamiltonian (2). In this case, the amplitudes Aj(t) are
multispin single-quantum TCFs, in which the maxi-
mum possible number of summations over lattice indi-
ces (the number of different spins) grows with increasing
number j and equals j + 1. For Aj(t), the following system
of differential equations has been obtained [18–23]:

(10)

To avoid confusion, a certain difference in the defini-
tion of amplitudes Aj(t) in [18] and [19–22] should be
noticed. The difference is in the factor ij. We selected
the version from [19–22], in which Aj(t) contain no
imaginary part, because the factor ij is included into the
definition of operators |j〉. The parameters νk , whose
values determine the solution of the system (10), are

1| 〉 i H 0| 〉,[ ],=

k 1+| 〉 i H k| 〉,[ ]  + ν k 1–
2 k 1– | 〉 , k 1, ≥ =  

ν

 

k

 

2

 

Tr

 

k

 

1+

 

k

 

1+

 
〈 | 〉{ }

 

Tr

 

k k

 

〈 | 〉{ }

 

-----------------------------------------.=

Ȧ0 t( ) ν0
2A1 t( ),=

Ȧk t( ) Ak 1– t( ) νk
2Ak 1+ t( ), k– 1.≥=
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expressed unambiguously through moments of the
NMR absorption line [18]. In particular,

(11)

where 

 

M

 

2

 

,

 

 M

 

4 , and M6 are the second, the fourth, and
the sixth moments of the NMR absorption line.

Substituting Eq. (9) into Eq. (5) yields

(12)

For crystals with a large number of nearest neighbors Z,
it is possible to retain only terms with j = j ' in Eq. (12)
when the main contribution containing the maximum
possible number of summations over different lattice
indices is considered. In fact, when going from operator
|j〉 to operator |j + 1〉, the maximum possible number of
spin operators with different lattice indices entering
into an orthogonal operator increases by unity. A two-
fold commutation with Sx does not change the number
of operators but changes only their projections. For
example, Syi  Szi  Syi . Therefore, operators |j〉
and |j '〉 must contain the same number of spin operators
for their scalar product to give a result different from
zero. Note that the contribution containing terms with
j = j ' in Eq. (12) is the only one differing from zero when
only the Hzz part of the Hamiltonian (2) is used [24].

At the same time, contributions with a smaller num-
ber of lattice indices can also remain in the orthogonal
operator for the total Hamiltonian (2) at large numbers
|j〉, because, according to [18], in the process of con-
structing operator |j〉, operators |j '〉 with j ' < j are sub-
tracted (added) with well-defined coefficients. How-
ever, these corrections are of order (1/Z)p, where p > 0,
and are small at a large number Z of neighbors [25].

Assume further that

(13)

Here, F(j) is a certain function of j, and Eq. (13) is actu-
ally its definition. According to [18],

ν0
2 M2

9
4
--- bij

2 ,
j

∑= =

ν1
2 M4 M2

2–
M2

--------------------, ν2
2 M2M6 M4

2–

M4 M2
2–( )M2

---------------------------------,= =

n2 t( )〈 〉

=  A j ' t( )A j t( )
Tr j '〈 | Sx Sx j| 〉,[ ],[ ]{ }

Tr Sx
2{ }

---------------------------------------------------.
j 1=

∞

∑
j ' 1=

∞

∑

Tr j〈 | Sx Sx j| 〉,[ ],[ ]{ }
Tr Sx

2{ }
-------------------------------------------------

F j( )Tr j j〈 | 〉{ }
Tr Sx

2{ }
----------------------------------.=

Tr j j〈 | 〉{ }
Tr Sx

2{ }
---------------------- νk

2.
k 0=

j 1–

∏=

Thus, finally, we obtain that

(14)

From the stated above and Eq. (14), it is seen that the
calculation of the second moment of a multiple-quan-
tum spectrum is a very complicated many-body prob-
lem that requires a deep insight with the attraction of all
the available results, including phenomenological data.

It is known that (see, for example, [21, 22]) the

dependence of  on the number k determines the time
dependences of TCFs Aj(t). In this connection, further
in this section, the asymptotic (at large values of time t)
behavior of 〈n2(t)〉 from Eq. (14) will be studied for sev-

eral models depending on the behavior of functions .
This study, in its turn, will allow us to select a micro-
scopic model that can adequately describe experimen-
tal results.

To approximate functions of an integer argument
F(j), we will use a sum of a first-order polynomial and
an oscillating function

(15)

Equation (15) is of a rather general character, and coef-
ficients a, b, and c in Eq. (15) can be found if operators
|j〉 for the selected model are known.

Three models with the dependences  ≈ const,

 ≈ k, and  ≈ k2, respectively, are considered below.

The case when  ≈ const starting with a certain num-
ber k will be called the “freezing” of parameters. This
situation was considered in particular in the works [20,
23], in which amplitudes Aj(t) were expressed through
various Bessel functions. Because the time asymptotic
behavior of Bessel functions of one type is virtually
similar, for the above purposes, we can use significantly
simpler results obtained in [20]. Consequences follow-
ing from the results of [23] will be considered addi-
tionally.

The scheme of parameter freezing proposed in [20]
was based on the suggestion according to which

Then,

n2 t( )〈 〉 A j
2 t( )F j( ) νk

2.
k 0=

j 1–

∏
j 1=

∞

∑=

νk
2

νk
2

F j( ) aj c 1–( ) j bj c–( ).+ +=

νk
2

νk
2 νk

2

νk
2

ν0
2 1

2
---µ2, ν j

2 1
4
---µ2, j 1, µ≥ 2M2( )1/2.= = =

A j t( ) 2 jµ j– J j µt( )=



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 103      No. 6      2006

SECOND MOMENT OF MULTIPLE-QUANTUM NMR 909

and 〈n2(t)〉 is expressed as follows:

(16)

After the summation of the series [26], we obtain

(17)

At µt � 1, the substitution of asymptotic expressions
for the Bessel functions in Eq. (17) gives

(18)

It is interesting to note that the linear growth of 〈n2(t)〉
over time following from (18) was observed experi-
mentally [7] in quasi-one-dimensional crystals of fluor-
apatite.

The case with a Gaussian shape of the TCF A0(t)
(and, hence, with a Gaussian shape of the NMR absorp-
tion spectrum) provides an example of a linear depen-
dence of parameters νk on the number

(19)

In this case,

(20)

The NMR absorption spectrum of a Gaussian shape
arises in modeling the internuclear dipole–dipole inter-
action using an interaction with an infinite radius (the
van der Waals model). Explicit expressions for opera-
tors |j〉 and functions Aj(t) in this model were found
in [24]

(21)

Functions (21) were previously obtained in [19] with a
different definition of the model. Substituting the
required values of F(j) in the general form (15) into
Eq. (14) and carrying out the summation, we obtain

(22)

n2 t( )〈 〉 2 J j
2 µt( )F j( ).

j 1=

∞

∑=

n2 t( )〈 〉 c a µt( )2 J0
2 µt( ) J1

2 µt( )+[ ]+=

– a b+( )µtJ0 µt( )J1 µt( ) cJ0 2µt( ).–

n2 t( )〈 〉 c
2aµt

π
------------

a b+
π

------------ 2µt( )cos+ +≈

–
c

πµt
------------- 2µt π/4–( ).cos

A0 t( ) M2t2/2–( ).exp=

νk
2 k 1+( )M2.=

A j t( ) t j

j!
----

M2t2

2
-----------–⎝ ⎠

⎛ ⎞ .exp=

n2 t( )〈 〉  = c aM2t2 –c M2t2b–( ) 2M2t2–( ).exp+ +

A comparison with the exact solution obtained in [24]
yields a = 2, c = 1/2, and b = –1. Thus, for this model,
in which

(23)

we obtain a quadratic time dependence of the growth of
the second moment of the multiple-quantum spectrum.
It should be noted that a linear dependence of parame-
ters νk on the number can be obtained for real lattices
when only the zz-interaction is retained in the dipole–
dipole interaction (2) [27].

The dependence of parameters  on the number k
is quadratic

(24)

when the TCF A0(t) is chosen in the form

(25)

The time in Eq. (25) is dimensionless t  t(M2/2)1/2.
In this case, according to [22],

(26)

Choosing F(j) in the form (15) and carrying out the
summation after substituting it into Eq. (14), we will
find

(27)

Equation (27) demonstrates that the growth of the sec-
ond moment of a multiple-quantum spectrum over time
is exponential. It was observed experimentally that the
time dependence enhances with an increase in the space
dimension [5, 7]. A power law was proposed for its
description. Further, we will show that the experimental
results reported in the recent work [9] are described
well by an exponential dependence and that this shape
follows from the microscopic theory. Finally, calcula-
tions using exact equations for eight moments of spec-
tra of correlation functions [27, 28] lead to a quadratic

dependence of parameters  on the number k in three-
dimensional lattices.

TCFs in the form (25) were applied to the descrip-
tion of general properties of some dynamical systems
in [22]. As far as we know, a function of this form was
first used to describe TCFs of paramagnetic spin sys-

n2 t( )〈 〉 1
2
--- 2M2t2+=

+ M2t2 1
2
---–⎝ ⎠

⎛ ⎞ 2M2t2–( ),exp

νk
2

νk
2 k 1+( ) k 2+( )ν0

2,=

A0 t( ) 1/ t.cosh
2

=

A j t( ) 1

tcosh
2

--------------- t jtanh
j!

--------------.=

n2 t( )〈 〉 c 2a tsinh
2

c 2t( )cosh( ) 2––+=

– 2b t 2t( )cosh( ) 3– .sinh
2

νk
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tems in the Blume and Hubbard’s work [29]. It was
obtained by solving an approximate equation derived
by these authors for the autocorrelation function of the

type Tr{SxiSxi(t)}/Tr{ } in an isotropic Heisenberg
paramagnet. For nuclear spin systems coupled by the
secular dipole–dipole interaction, a similar function
(1/sinht) was proposed in [30] as a trial function for the
description of the nonoscillating component of NMR
FID A0(t). This FID component is determined by the con-
tribution of spins of the “long-range environment” [31].

Thus, it is evident from the above analysis that mul-
tispin processes similar to those occurring among a
great number of spins of “long-range environment” and
forming wings of the NMR spectrum must primarily be
taken into account in order to construct a correct micro-
scopic description [32–34]. According to [28], the
exponential shape of the wing found in these works cor-

responds to the dependence  ∝ k2.

4. MICROSCOPIC CALCULATION 
OF THE SECOND MOMENT 

OF A MULTIPLE-QUANTUM SPECTRUM 
We will start the investigation with a consideration

of systems described by the Hamiltonian (2). It was
shown previously [32, 35] that the best approximation
in the calculations of spin dynamics and specifically
FID is obtained when the longitudinal zz-interaction is
primarily taken into account while the transversal (flip–
flop) interaction is taken into account to a minimum
extent. Approximations of this kind are based on the
axial symmetry of the Hamiltonian. This is why we
may also hope for a success in the application to a more
complicated four-spin TCF (8). When only the zz-con-
tribution is retained in the Hamiltonian (2) (that is, at
aij = 0), the quantity of our interest can readily be cal-
culated exactly

(28)

where

(29)

Sxi
2

νk
2

n2 t τ,( )〈 〉〈 〉 zz bif t( ) bif τ( )sinsin
f

∑=

× bip t τ–( )( )cos
p f≠
∏ 0.5 b fp t τ–( )( )cos

p

∏+

– 0.5 b fp t τ+( )( )cos
p

∏

+ bif t( ) bif τ( ) P+ t τ,( ) P– t τ,( )+( ),sinsin
f

∑

P± t τ,( ) ( b fpt( ) bipτ( )coscos
p f≠
∏=

± b fpt( ) bipτ( )sinsin ).

Let us analyze the main properties of Eq. (28). The
strong growth of the second moment in the case of time
reversal (t = τ) when the number of neighbors is great
is provided by the first term of the autocorrelation con-
tribution (28), which corresponds to the choice j = f and
i = q in Eq. (8). In this case (large Z), the growth is

described by the expression B2t2, where B2 = .

This estimate is true up to the times t2 < (π/2)2Z/B2. At
long times, the quadratic time dependence changes to a
different one in accordance with the functional form of
the dependence on the distance sufficient for the inter-
action between particles. Thus, for the dipole–dipole

interaction of our interest (bij ~ 1/ ), the quadratic
dependence will change to a linear one (see, for exam-
ple, [36]). However, this is insignificant for the theory
presented below, because, if the transversal interaction
is taken into account at B2t2 > 6 (this condition corre-
sponds to the time interval of the experiment [9]), the
first term of the series (28) in terms of flip–flop pairs
considered here will be exceeded by the second term if
the condition (π/2)2Z > 6 is fulfilled. This condition is
fulfilled already at Z > 3, whereas Z = 192 for the ada-
mantane crystal with which the experiment [9] was per-
formed.

The last term in the right-hand part of Eq. (28)
describes the cross contribution to the second moment.
In this term, the direct and reverse (time) evolutions
occur at different crystal lattice sites (29), which gives
rise to a lattice loop preventing the complete compen-
sation for misphasing, which, in its turn, results in the
conservation of decay. Note that the time dependence
of the multiple-quantum coherence amplitudes was cal-
culated in [37] after retaining only the term with one
projection in the Hamiltonian (3). The cross contribu-
tion was not taken into account.

The contribution main for the process (first) in
Eq. (28) has the structure of a star formed by bonds of
the central spin i with neighbors. One of the neighbors
(spin f) turns at a certain instant of time t through 180°;
therefore, its contribution to the phase continues to
grow upon time reversal (changing the sign of the
Hamiltonian), while the contributions of all the other
neighbors decrease, being completely compensated at
t = τ.

As the transversal term, which describes flip–flop
processes in the Hamiltonian (2), is switched on, other
spins f connected with the central (fixed) spin i through
a chain of flip–flop processes (pairs) will also make a
contribution similar to the considered one [34]. It is
convenient to represent these processes with the use of
diagrams. An example of two flip–flop pairs is shown in
Fig. 1. The line drawn vertically designates the bound-
ary between the direct and reverse time evolution in
Eqs. (4) and (8). The vertices correspond to the dipole–
dipole interaction between spins at the indicated
instants of time: tm on the left-hand side from the sepa-
rating line and τm on the right-hand side. The integra-

bij
2

j∑

rij
3
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tion is performed over each variable tm (τm) within the
limits from 0 to tm – 1 (τm – 1). Lines in the diagram cor-
respond to the Sxp , Syp , or Szp spin components at the
indicated sites i, j, f, p, etc. (spin x components are des-
ignated by solid lines; y components, by dashed lines;
and z components, by dotted lines). Multiplying the
dipole–dipole coupling constants corresponding to dia-
gram vertices (Fig. 1a) together, we obtain

(30)

With the same scheme of bonds in the diagram (and
with the same product of dipole–dipole coupling con-
stants), the separating line can be located between any
neighboring vertices (see Figs. 1b, 1c), which means a
selection of vertices from different evolution operators
in Eq. (8). The time coefficient and the sign before it
depend on the location of vertices.

Consider first a situation without the turn of the fth
spin (the first term Sxi(t) in Eq. (8)) using a certain dia-
gram with 2n vertices. If the two vertices at the ends of
the arc of a certain spin are located on the same side
from the vertical line, it is necessary to put a sign “–”;
if these vertices are located on the different sides, it is
necessary to put a sign “+.” Let all the vertices are
located on the one side from the boundary (that is, are
taken from the same evolution operator). Then, these
contributions have the form

If one vertex crosses the boundary (see, for example,

bij
2 a jk

2 bkp
2 apq

2 bqf
2 .

1–( )n t2n

2n( )!
------------- or 1–( )n τ2n

2n( )!
-------------.

Fig. 1c), the sign will change

Continuing to move vertices, we will obtain the alter-
nating series

(31)

Let us pass on to the second term  in Eq. (8).
Now, as distinct from the other vertices, the vertex cor-
responding to the appearance of spin f does not change
its sign (more precisely, change it twice). All the differ-
ence with respect to the case considered above arises
from the contribution in the situation shown in the dia-
gram in Fig. 1a when half of vertices are located on the
one side of the boundary and half, on the other side.
Thus, instead of Eq. (31), we obtain

(32)

Only the second term in (32) taken with the sign “+”
remains after subtracting (32) from (31).

According to Eq. (8), diagram contributions must be
summed over the lattice sites. After that, in the limit
Z  ∞, we obtain the product B6A4 of the correspond-
ing lattice sums rather than the product of constants (30)

(33)

1–( )n τt2n 1–

2n 1–( )!
---------------------- or 1–( )n tτ2n 1–

2n 1–( )!
----------------------.––

1–( )n 1–( )mt2n m– τm

m! 2n m–( )!
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m 1=

2n

∑ 1–( )n t τ–( )2n

2n( )!
-------------------.=

Sxi t( ) f( )

1–( )n t τ–( )2n

2n( )!
------------------- 2tnτn

n!( )2
------------.–

B2 bij
2 , A2

j

∑ aij
2 .

j

∑= =

Fig. 1. Examples of diagrams for chains of two flip–flop pairs with the turned z-component of spin f entering into a longitudinal field.
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Let us return to the diagrams under consideration.
As an example, the yy-interaction is used in Fig. 1a for
pairs participating in flip–flop processes. In a different
example presented in Fig. 1d, the xx-interaction is used
in the second pair. To obtain the final answer taking into
account all the possible realizations of flip–flop pro-
cesses, these diagrams should be summed, which evi-
dently results in a factor of 2 for each flip–flop pair.
Eventually, in each flip–flop pair, we can couple the
subsequent chain to the first rather than second spin, as
it is shown in Fig. 1e (with the example of the first flip–
flop pair). The enumeration of possible variants leads to
another factor of 2 for each flip–flop pair.

Summing all these chains containing different num-
bers of flip–flop pairs leads to the following result for
the contribution with the topology indicated in dia-
grams in Fig. 1:

(34)

where I0(y) and J0(y) are Bessel functions, and y2 =
8ABt2.

n2 t( )〈 〉 zd
0( )

=  B2 4B2A2( )m 1–
t4m 2– / 2m 1–( )!( )2

m 1=

∞

∑

=  
B

4A
------- I0 y( ) J0 y( )–[ ],

In the lowest approximation with respect to flip–flop
processes, in addition to diagrams shown in Fig. 1 and
corresponding to the occurrence of the chosen spin f as
the z-projection of the field, the similar contribution
will be made by diagrams with the similar topology of
the chain corresponding to the occurrence of the y-com-
ponent of the chosen spin f in the last flip–flop pair of
the chain. Examples of such diagrams with two flip–
flop pairs are shown in Fig. 2. Such diagrams with the
y-component of the chosen spin f in the last flip–flop
pair can also be formed when this pair is connected by
the xx-bond to the z-component of spin f at the end of
the chain. This will lead to the doubling of the ampli-
tude before contributions in Eq. (34). (Such a contribu-
tion was not taken into account in diagrams with a finite
z-field of spin f, because field fluctuations were not
taken into account there). Repeating the same consider-
ations as in the previous case (34), we will write

(35)

The value of y was determined above.

The complete expression for the required function is
obtained by summing expressions (34) and (35).
Because the Bessel functions I0(y) exhibit an exponen-
tial asymptotic behavior at large values of their argu-
ment y, an exponential growth over time is obtained

The above consideration demonstrates that sum-
ming the indicated 0–f chains provides a fast growth of
〈n2(t)〉. The interaction of chain spins with the environ-
ment will retard this growth. To estimate this effect, we
will use a simple but effective approximation [32, 35]
and will dress lines corresponding in the considered
diagrams to the transversal spin projections with the
longitudinal zz-interaction. Now, as well as in Eq. (28),
each line will correspond to a product of cosines
replaced by a Gaussian function at large Z

(36)

At complete symmetry of the arguments t2k = τ2k , the
decay disappears. However, integration breaks the sym-
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0.5
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Fig. 2. Examples of diagrams for chains of two flip–flop
pairs with the turned y-component of spin f entering into the
second flip–flop pair.
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metry, and the decay decreases the value of the integral

(37)

as compared to its value

from (34). Here, the specificity of “dressing” the trans-
versal lines with the zz-interaction was taken into
account. The result of dressing does not depend on the
positions of vertices with odd numbers (see Fig. 1) also
corresponding to the zz-interaction. Therefore, integra-
tion over variables t2k + 1 and τ2k + 1 was performed
in (37).

To estimate the possible value of the decrease in the
integral, we replace g2(t2k – τ2k) with a δ-function

Here, T = π1/2/B is the integral of the Gaussian function.
After this replacement, the integration over variables τ2,
…, τ2m is excluded. Performing integration over vari-
ables t2, …, t2m , we find that

(38)

where

Similarly, after taking into account the decay in the
case of (35), we obtain

(39)

t2 t4… t2m τ2d

0

τ

∫d

0

t2m 2–

∫d

0

t2

∫d

0

t

∫

× τ4… τ2m t t2–( )… t2m 2– t2m–( )d

0

τ2m 2–

∫d

0

τ2

∫
× t2m τ τ2–( )… τ2m 2– τ2m–( )τ2m

× g2 t2 τ2–( )…g2 t2m τ2m–( )g t τ–( )

t2m 1+ τ2m 1+ / 2m 1+( )!( )2

g2 t2k τ2k–( ) δ t2k τ2k–( )T .=

n2 t( )〈 〉 zd
1( ) 2m 1+ TmB2 4B2A2( )m

t3m 2+

3m 2+( )!
--------------------------------------------------------------

m 0=

∞

∑=

=  
1
6
--- B

T A2
----------⎝ ⎠

⎛ ⎞ 2/3

ex 2e x/2– 3x
2

---------- π
3
---–⎝ ⎠

⎛ ⎞cos–
⎩ ⎭
⎨ ⎬
⎧ ⎫

,

x 2t A2B2T( )1/3
2t A2B/2 π( )1/3

.= =

n2 t( )〈 〉 yd
1( )

0.5
2mTm 4B2A2( )m

t3m

3m( )!
--------------------------------------------

m 1=

∞

∑=

=  
1
6
--- ex 2e x/2– 3x

2
----------cos+⎝ ⎠

⎛ ⎞ 0.5.–

The value of x was determined above. The complete
expression for the required function 〈n2(t)〉 is obtained
by summing expressions (38) and (39).

Thus, the decay of correlations decreased the expo-
nent in the dependence 〈n2(t)〉 by a factor of y/x =
(8B/πA)1/6. For the dipole–dipole interaction (B = 2A),
this leads to retardation by a factor of 1.31. It is clear
that retardation will be enhanced if the dressing of
z-lines with transversal interactions is performed.

Let us now pass on to systems with the effective
Hamiltonian (3). In this case, the simplest chain
between the initial spin and the flipped spin f is con-
structed by alternating the zz- and yy-interactions, for
example, as in the diagrams presented in Figs. 1a–1c
and Fig. 2a. The selection of the first bond connected to
Sxi predetermines the rest. The combinatorial factor
equals 2, because there are only two possibilities: the
case of zyzyzy… diagrams considered above or the case
of yzyzyz… diagrams obtained from the preceding ones
by substituting z-lines for y-lines and vice versa. How-
ever, the chain can be constructed in a different way.
The zz- or yy-bonds in the jth link can be connected to
the operator Sxj (see Fig. 1e or Fig. 2b). Enumerating all
such possibilities, we obtained the following combina-
torial factor for a chain of m links (see Appendix):

(40)

Having performed a summation over all such chains,
we write the time series

(41)

where 

Now, we will take into account the effect of the
interaction of chain spins with the environment on the
growth of 〈n2(t)〉eff . Because the Hamiltonian (3) has no
axial symmetry, all the lines in the chain diagrams
should be dressed to the corresponding autocorrelation
functions Γx(t) or Γy(t) = Γz(t). This leads to a very com-
plicated multiple integrals over interlocked time vari-
ables. The following simplifications will be made to
estimate the effect:

(1) in chain diagrams having the ladder form, we
will dress only segments in lateral lines and will leave
steps (bridges) undressed;

Nm
2
3
--- 2m 1–( )m–( ).=

n2 t( )〈 〉 eff
0( ) Nm C2t2( )m

m!( )2
-------------------------

m 1=
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=  
2
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--- I0 z( ) J0 2Ct( )–[ ],

z2 8C2t2 and C2 cij
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j

∑= =



914

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 103      No. 6      2006

ZOBOV, LUNDIN

(2) instead of functions Γx(t) or Γy(t) = Γz(t) whose
second moments differ by a factor of 2 (2C2 and C2), we
will take one function Γ(t) in the form of a Gaussian
function with the averaged second moment M2c = 5C2/4
(the averaging is performed with regard to the alterna-
tion of projections of spin operators in the sequence of
chain links considered in the Appendix, according to
which the total second moment of the side line of a
chain of m links changes from mC2 for the simplest
chain to 3mC2/2 for a chain with the maximum number
m/2 of simplest sections);

(3) the contributions of the right-hand and left-hand
side lines corresponding to two sections of evolution
in (3) will be estimated independently; that is, we will
consider that

(42)

With regard for the above assumptions, the function
G(t) is determined by the series in terms of the number
of segments in the side line

(43)

where ωc = C  is the mean interaction per one vertex
obtained on the basis of a comparison of (42) and (41).
The series (43) is readily summed after carrying out the

n2 t τ,( )〈 〉〈 〉 eff
1( )

G t( )G τ( ).∝

G t( ) ωc
m t1 t2d

0

t1

∫d

0

t

∫
m 1=

∞

∑=

… tmΓ t t1–( )…Γ tm 1– tm–( )Γ tm( ),d

0

tm 1–

∫

2

Laplace transformation. For the Laplace transform of
the function G(t), we find that

(44)

where w(p) is the Laplace transform of the Gaussian
function, which is the probability integral with a com-
plex argument whose values are given in the book [38].
The behavior of the function G(t) at long times of our
interest is determined by the nearest root of the denom-
inator in the right-hand part of Eq. (44). Thus, we find
that

(45)

Finally, substituting the values from (45) to expres-
sion (42), we obtain the required estimate

(46)

A comparison with the exponent 2Ct  of the time
asymptotic form of Eq. (41) shows that the exponent
decreased by a factor of 1.9 after taking into account the
decay of correlations.

The above analysis explains how the rotation by an
angle ϕ about the x axis combined with the direct and
reverse evolution stages in (4) brings the expression for
〈n2(t)〉 to a series in terms of time powers with positive
coefficients rather than a conventional alternating series
for autocorrelation functions or FID. For a large num-
ber of neighbors, we managed to sum the main part of
this series—trees in the form of dressed chains—and
obtain an exponential growth of 〈n2(t)〉. Thus, we see a
full agreement with the result (27) obtained using an
expansion of correlation function (5) in terms of
orthogonal operators.

Let us make some concluding remarks concerning
the theoretical model considered here. Note that,
besides the autocorrelation contribution with j = f and
i = q in (8), a different set of indices can be selected. In
this case, only a small number of terms will change
quantitatively, which will not affect the qualitative
behavior of infinite series.

It follows from Eq. (28) that the zz-interaction for a
small number Z of neighbors gives rise to oscillations
rather than the growth of the second moment of multi-
ple-quantum NMR 〈n2(t, t)〉 ∝ B2t2, which is character-
istic of this model in the case of large Z. Similar oscil-
lations of the amplitudes of multiple-quantum coher-
ences are also observed in the one-dimensional xy-
model [39]; however, Bessel functions rather than ordi-
nary cosines arise there. The occurrence of oscillations
is a consequence of multiple acts of interaction between
the same neighbors. On the other hand, the value of 1/Z
is small at a large number of neighbors; therefore,
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Fig. 3. Dependence of the number of correlated spins on the
preparation time. Points are experimental data for adaman-
tane from [9]. The straight line corresponds to Eq. (47).
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repeated interactions can be neglected, which leads to a
monotonic growth of the second moment over time.

5. COMPARISON WITH EXPERIMENT 

The growth of the number of spins involved in a cor-
related motion over time was studied by multiple-quan-
tum NMR spectroscopy in many experimental works.
The behavior of the currently greatest number of corre-
lated spins (650) was studied in adamantane in the
recently published work [9], in which evolution with
the Hamiltonian (3) was observed. Because the distri-
bution of intensities in the multiple-quantum spectrum
was found to be close to the normal one (1), the second
moment of the distribution was determined using a
Gaussian function with a close width. To be precise, the
quantity K = N(t) = 2〈n2(t)〉, which was called the num-
ber of correlated spins, was considered. The time
dependence of this quantity is shown in Fig. 3 in semi-
logarithmic coordinates. The results are described well
by the dependence

(47)

with the parameters found by the least-squares method

(48)

To obtain the dimensionless value in (48), we used the
theoretical value of the second moment of the adaman-
tane NMR absorption spectrum (M2)1/2 = 4.19 kHz cal-
culated in [5]. The experimental value of M2 was not
reported in [9]; however, it can be judged from the
reported FID that it is close to the theoretical one.

Our estimate for the exponent in (46) exceeds the
value of ae in (48) by a factor of 1.65. Probably, this pri-
marily points to the fact that the decay of correlations
has not been taken into account to a sufficient accuracy
with the assumed approximations. However, a certain
contribution to the value of this ratio can also be made
by the deviation of the intensity distribution from the
Gaussian function.

6. DISCUSSION OF THE RESULTS 

The present study relates the time dependence of the
second moment 〈n2(t)〉, which characterizes the number
of correlated spins, to properties of the spin system. The
fastest exponential grows is exhibited by systems with
a great number of neighbors, in the description of
which the correlation of contributions of different
neighbors to the local field arising on a third spin can be
neglected. In this case, trees make the main contribu-
tion in the time series for 〈n2(t)〉 if the interaction has a
sufficiently general form. We obtained an exponential
dependence by two methods: firstly, by summing the
dressed chains in the time series for 〈n2(t)〉 and, sec-
ondly, by expanding the correlation functions (5) in
terms of orthogonal operators. The case of trees indi-

N t( ) Ae aet( )exp=

Ae 4.0, ae 0.0079 µs 1– 0.3 M2( )1/2.= = =

cated above corresponds to a quadratic growth of

parameters  as functions of number. A comparison
with the experiment clearly demonstrates that real
three-dimensional systems can be assigned to the sys-
tems of the above type.

For systems with an Ising-type Hamiltonian, that is,
for systems whose Hamiltonian contains the interaction
only between spin projections of one kind, the time
dependence 〈n2(t)〉 weakens to a power dependence:
〈n2(t)〉 ∝ t2. Star-shaped diagrams, which constitute a
small part of all trees, remain in the time series for

〈n2(t)〉 in this case. Parameters  of the expansion in
terms of orthogonal operators grow linearly as func-
tions of number.

Even a weaker dependence 〈n2(t)〉 ∝ t was obtained

for one-dimensional systems. Parameters  of the
expansion in terms of orthogonal operators become
independent of the number (become frozen), and only
simple (undressed) chains (without summing over the
lattice) remain among the diagrams.

The enhancement of the growth law for the number
of dynamically correlated spins with increasing space
dimension followed from the theory proposed previ-
ously in [5]. The main approximation used in this the-
ory is the assumption that the cluster of correlated spins
is dense and grows only at the surface. Because the
fraction of spins on the surface with respect to the total
number of spins decreases with decreasing space
dimension, the growth rate decreases.

The formation of a dense cluster means the occur-
rence of a collective, strongly correlated motion of
spins. On the contrary, the results presented above sug-
gest an increase in the number of dynamically corre-
lated spins while the interactions of a spin with each of
its neighbors remain independent. As a result, the pro-
posed theory implies a stronger (exponential rather than
power) growth of N(t) over time. Of course, interac-
tions with neighbors in three-dimensional systems must
actually be correlated to a certain extent; however, this
correlation must not be as strong as in the theory pro-
posed in [5]. For example, taking into account the cor-
relation of contributions of different neighbors to the
local field on a third spin leads to an increase in the
coordinate of the singularity of time correlation func-
tions by 10–20% [33, 34].
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APPENDIX

The simplest chain between the initial spin and the
flipped spin f for systems described by Hamiltonian (3)
is constructed by alternating the zz- and yy-interactions.

νk
2

νk
2

νk
2
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The selection of the first bond connected to Sxi predeter-
mines the rest. In the general case, the combinatorial
factor for a chain composed of q simple sections will be
equal to 2q. To find the total number Nm of different
chains of m links, 2q of similar factors should be consid-
ered and summed for all possible partitions of the num-
ber of links between q sections under the condition that

To perform this operation, we introduce generating
functions of the required numbers, the numbers of sim-
ple chains (end sections), and the numbers of inner sec-
tions, respectively,

where θ is a formal parameter. Based on the above rules
for the construction of chains, we obtain that

Hence, multiplying together two series in terms of pow-
ers of θ, we find the required Eq. (40) for the coefficient
before θm.
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