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1. INTRODUCTION

The recently discovered superconducting foams [1,
2] are superconducting materials of a new kind which
have interesting physical properties [3–5]. A foamed
superconductor is a percolation system in which there
are an infinite superconducting cluster conducting a
transport current and pores of different shape, both
closed and open. Pores also form clusters. In a certain
range of material densities, the infinite superconducting
cluster can coexist with the infinite cluster of open
pores. Such a system gives an interesting example of
polychromatic percolation [6], where the percolation of
an electric current along a superconducting cluster and
the percolation of a magnetic flux penetrating into a
pore cluster proceed concurrently. An essential prob-
lem regarding the magnetic and transport properties of
superconducting foams is how the topology of an infi-
nite cluster, which is a multiply connected supercon-
ducting region, affects the pinning and transport of vor-
tices. From the practical point of view, it is important
that superconducting foams have a high specific surface
area to provide effective heat removal by a cooling
agent (liquid nitrogen or helium), which penetrates into

open pores. This feature, as well as the still not fully
understood peculiarity of the vortex pinning and trans-
port [4, 5], allows foamed high-temperature supercon-
ductors (HTS) to have high magnetic critical currents
that make these materials promising for practical appli-
cations.

2. FRACTAL STRUCTURE 
OF SUPERCONDUCTING FOAMS

Low-density samples of Bi
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(BPSCCO) were produced through solid-phase synthe-
sis. The synthesis was about 400 h long. We used tech-
nology similar to that described in [7] but with the final
annealing conditions modified in such a way that they
favored the growth of superconductor microcrystallites
along the 

 

ab

 

 plane. As a result of random crystallite ori-
entation, such a growth process leads to material bulk-
ing. Another specific feature of the synthesis technique
used is that the calcium-deficient precursor was sup-
plied with calcium carbonate, which ultimately decom-
posed during the final annealing. The excess pressure of
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the resulting carbon dioxide also contributed to the
sample bulking.

The microphotographs of three natural cleavage sur-
faces of a foamed BPSCCO obtained using a scanning
electron microscope (SEM) are shown in Fig. 1. The
SEM images of many natural cleavages of different
samples were very similar. The density of the material
obtained was 2.26 g/cm

 

3

 

, which is about 38% of the
maximum density of monolithic BPSCCO ceramics.
The volume ratio of the superconducting phase
exceeded the percolation threshold, so the percolation
cluster was dense enough. Since BPSCCO microcrys-
tallites have a platelike shape, a bismuth-based super-

conducting foam has a specific flaky structure, which is
much more ramified than that of YBCO-based foams
(see photos in [2, 4]). The SEM images shown in Fig. 1
confirm the existence of a three-dimensional percola-
tion superconducting cluster in superconducting
BPSCCO foams. Possible percolation paths are shown
in Fig. 1b. The superconducting cluster is a conglomer-
ation of randomly oriented BPSCCO microcrystallites,
which have the shape of a plate and are 10- to 20-

 

µ

 

m
wide and 1- to 2-

 

µ

 

m thick. Pores between crystallite
clusters are also clearly seen in Fig. 1.

Since the boundary between the superconducting
and normal phases is strongly ramified (Fig. 1), it is rea-
sonable to expect that there will be fractal clusters in
superconducting foams. Indeed, an analysis of micro-
photographs reveals a fractal structure of clusters in
foamed superconductors. In order to estimate the frac-
tal dimension of the boundaries of the normal-phase
clusters, the “box-counting” method was used with
which the boundaries of the cluster cross sections seen
in the electron microphotographs were studied.

SEM images of the superconducting foam cleavages
(Fig. 1) were covered with square grids of 

 

L

 

 

 

×

 

 

 

L

 

 cells.
The size of the grid cell was small enough (the values
of 

 

L

 

 ranged from 75 to 1200 nm) for measuring all the
bends of the microcrystallite boundaries. If a fractal
curve (the part of the boundary of the cluster cross sec-
tion by the image plane) goes in a square of side 

 

L

 

max

 

,
then each of its 

 

N

 

(

 

L

 

) self-similar subsets will go in a
square of side 

 

L

 

 = 

 

L

 

max

 

/

 

r

 

, where 

 

r

 

 is the scaling factor
[8]. The minimum number of such squares of side 

 

L

 

required to cover the explored part of the boundary is
equal to

(1)

where 

 

D

 

 is the fractal dimension [8]. It follows that the
fractal dimension of the boundary between the super-
conducting and normal phases is given by

(2)

Obviously, 

 

D

 

 cannot exceed the topologic dimension of
a plane, which is equal to 2.

The ratio between the size of the measuring cell 

 

L

 

and the big square side 

 

L

 

max

 

 sets the unit of measure-
ment of length. At 

 

L

 

max

 

 = 1, Eq. (2) for the fractal
dimension becomes [9] 

 

D

 

 = –ln(

 

N

 

(

 

L

 

))/ln(

 

L

 

).
Therefore, it is possible to find the fractal dimension

of the cluster boundary by counting the number 

 

N

 

(

 

L

 

) of
nonempty cells of area 

 

L

 

2

 

 that covers a given part of the
boundary. To attain an estimate of highest precision, we
have to get a wide range of progressively smaller values
of 

 

L

 

 and to average the obtained values of 

 

D

 

 over all the
configurations. The simplest way to do that is to plot the

 

N

 

(

 

L

 

) dependence on a log–log scale: according to Eq.
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Fig. 1.

 

 SEM images of three different cleavages of a sample
of BPSCCO superconducting foam. The micrographs are
taken at a magnification of (a) 500 and (b, c) 1000. The dash
lines in panel (b) show possible current paths in an infinite
superconducting cluster.
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(1), the resulting curve has to be linear with a slope
equal to the fractal dimension of the cluster boundary.
We analyzed microphotographs of cleavage surfaces of
BPSCCO foams obtained at magnifications of 500 and
1000. The size of the measuring cell was 

 

L

 

 = 150, 300,
600, and 1200 nm for the microphotographs with a
magnification of 500 and 

 

L

 

 = 75, 150, 300, and 600 nm
for the photos with a magnification of 1000. The results
of the fractal dimension measurements are presented in
Fig. 2. Points 

 

a

 

 are obtained by scanning and digital
processing of the microscopic image shown in Fig. 1a,
and points 

 

b

 

 and 

 

c

 

 correspond to the two other micro-
scopic images shown in Figs. 1b and 1c, respectively.
The 

 

N

 

(

 

L

 

) dependences for the different cleavages pre-
sented in Fig. 2 on a log–log scale are approximated
well by straight lines (the correlation factor is 0.99),
with their slopes being equal and corresponding to a
fractal dimension 

 

D

 

 = 1.80 

 

±

 

 0.06. The found value of
the fractal dimension differs substantially from unity,
which means that the fractal properties of the cluster
boundaries are really important. The dashed lines in
Fig. 2 represent the limiting cases corresponding to the
Euclid cluster boundaries (

 

D

 

 = 1) and to fractal bound-
aries with a maximum fractal dimension (

 

D

 

 = 2).

3. SUPERCONDUCTING PROPERTIES
OF BPSCCO FOAMS

Current–voltage characteristics of the samples were
measured using the standard four-probe technique in
the dc current mode. Samples were manufactured in the
shape of a parallelepiped 10 

 

×

 

 4 

 

×

 

 4 mm in size, with
their middle portion being ground down to 1–1.5 mm in
thickness. The length of the thinned part was 6 mm. In
order to produce contacts with small ohmic resistance,
we baked an ultrafine silver powder into the region of
current contacts of the sample. The resulting contact
resistance does not exceed 10

 

–4

 

 

 

Ω

 

 cm

 

2

 

. We used pres-
sure current and potential contacts made of a nonmag-
netic gilded material. The distance between potential
contacts was 5 mm. In order to improve heat exchange,
the sample was immersed immediately into the cooling
agent (liquid nitrogen or liquid helium) during mea-
surements. The absence of self-heating is confirmed by
the coincidence of the current–voltage characteristics
recorded during direct and reverse current scanning at
various rates. Magnetic measurements were performed
using a vibrating-coil magnetometer with a supercon-
ducting solenoid [10]. Samples used for magnetic mea-
surements had the shape of cylinders 0.5 mm in diame-
ter and 4-mm long. A magnetic field was applied paral-
lel to the sample axis.

The transition into the superconducting state in
foamed BPSCCO occurs at 107 K (Fig. 3). The inset to
Fig. 3 shows the magnetization curve for a sample mea-
sured at 

 

T

 

 = 4.2 K. For comparison, the inset also pre-
sents the magnetic-field dependence of the magnetiza-
tion 

 

M

 

(

 

H

 

) for monolithic BPSCCO ceramics. The mag-
netization curves are similar in shape, but the

diamagnetic response of the foamed material
(expressed in emu/g) is 2.4 times larger than that of the
monolithic material. Without normalization per mass
(that is, for the same volume), the diamagnetic response
of the superconducting foam exceeds that for the mono-
lithic material by a factor of 1.6. The equivalent mag-
netic critical current of the foam found from the rema-
nent magnetization using the Bean model is equal to
340 kA/cm

 

2

 

 at T = 4.2 K, which is likewise 1.6 times
larger than that for monolithic BPSCCO ceramics.
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Fig. 2. Estimate of the fractal dimension of the boundaries
between the normal and superconducting phases in a
BPSCCO foam using (a) the SEM image shown in Fig. 1a
(magnification 500) and (b, c) the SEM images shown in
Figs. 1b and 1c (magnification 1000). The slopes of the
dashed lines show the possible range for the fractal dimen-
sion from D = 1 for Euclidian boundaries to D = 2 for the
maximum possible fractal dimension.

Fig. 3. Temperature dependence of the resistance of a
BPSCCO superconducting foam. The inset shows the mag-
netization curves of BPSCCO (a) foam and (b) monolithic
ceramics measured at T = 4.2 K.
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The current–voltage characteristics of foamed
BPSCCO at T = 4.2 and 77 K are shown in Fig. 4. The
nonlinearity of these characteristics is an inherent fea-
ture of polycrystalline HTS. The dependences of the
differential resistance on the transport current shown in
Fig. 5 provide additional information on the vortex
dynamics. The differential resistance is a low-signal
parameter, which is most suitable for describing the
nonlinear current–voltage characteristic of a supercon-
ductor. Study of current–voltage characteristics allows
one to get new data concerning the nature of the vortex
state in percolation materials [11, 12]. The region of the
resistive transition is of special interest, primarily the
initial part of the current–voltage characteristic, where
a nonzero voltage drop appears, indicating the onset of
dissipation. Here, vortices start to break away from pin-
ning centers, a process which finally leads to the col-
lapse of superconductivity. The motion of magnetic
flux transferred by vortices induces an electric field and
causes a dissipation of energy. In the case of HTS, the
vortex motion is especially important because of the
large thermal fluctuations and low pinning energies
[11]. Superconductors containing isolated clusters of
the normal phase provide strong pinning because the
magnetic flux is trapped inside these clusters and can-
not leave them without crossing the surrounding super-
conducting space. Such clusters consist of inclusions of
the normal phase united by a common trapped flux and
surrounded by the superconducting phase [13, 14].
When the current is increased, vortices start to break
away from the clusters whose pinning force is smaller
than the Lorentz force created by the transport current.
Such a depinning has percolation nature [12, 15, 16],
because the vortices move along random transport
channels.

Clusters of the normal phase exert a significant
effect on the dynamics of the trapped flux, especially
when the clusters have fractal boundaries [14, 17]. In
this case, the perimeter P and area A of a cluster cross
section obey the scaling relation P1/D ∝ A1/2 [8]. Fractal
clusters are characterized by a very wide range of geo-
metrical sizes of their structural features, into which the
vortex diameter falls. This causes the clusters to
strongly interact with vortices and efficiently capture
the magnetic flux. Fractal clusters of the normal phase
have been found in superconducting YBCO films [13].
The regime of fractal dissipation was observed in
BSCCO and BPSCCO composite materials containing
normal-phase inclusions of silver in bulk polycrystal-
line samples of YBCO and GdBCO [18]. The presence
of fractal clusters in superconducting BPSCCO foams
is confirmed by Fig. 2. Without an external magnetic
bias (in the self-field regime), the magnetic flux is con-
centrated along closed irregular loops, which penetrate
deeply into pores between the superconducting crystal-
lites. In the course of depinning, the vortices have to
overcome a barrier when they cross the boundary of the
cross section of the normal-phase cluster by the plane
where the current is flowing. The geometric properties
of this boundary affect the dynamics of the trapped flux
and, consequently, the current–voltage characteristic.

The influence of fractal clusters of the normal phase
on the magnetic and transport properties of percolating
superconductors was analyzed in [14, 17, 19, 20]. In
those studies, the current–voltage characteristics of
superconductors were calculated for various distribu-
tions of depinning currents and it was demonstrated
that enhancement of pinning may be expected as the
fractal dimension of normal-phase cluster boundaries
increases. For exponential hyperbolic distributions of
depinning currents, the current–voltage characteristic
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Fig. 4. Current–voltage characteristics of a BPSCCO super-
conducting foam. Points show experimental data obtained
at liquid-helium and liquid-nitrogen temperatures, and solid
lines are theoretical curves calculated for a fractal dimen-
sion of normal-phase cluster boundaries D = 1.8.

Fig. 5. Dependence of the differential resistance of a
BPSCCO superconducting foam on current. Points show
experimental data, and solid lines are theoretical curves cal-
culated for a fractal dimension of normal-phase cluster
boundaries D = 1.8.
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of a superconductor containing fractal clusters of a nor-
mal phase is given by [20]

(3)

where u is the dimensionless voltage, rf is the dimen-
sionless flux flow resistance, i = I/Ic is the dimension-
less electric current normalized to the critical current of
the transition into the resistive state Ic, and Γ(ν, z) is the
complementary incomplete gamma function. The criti-
cal current of the transition into the resistive state Ic is
determined as the point of intersection of the current
axis and the tangent line drawn through the inflection
point of the dependence of the differential resistance on
the current. The critical current defined in such a way
exceeds the critical current of the onset of dissipation,
determined according to the “voltage criterion” as the
current corresponding to a finite voltage induced by
moving vortices. The dimensionless voltage u and the
dimensionless flux flow resistance rf are related to the
corresponding dimensional values U and Rf by the rela-
tion U/Rf = Ic(u/rf).

Current–voltage characteristics found from Eq. (3)
for the samples involved are shown in Fig. 4 (solid
lines). We used the previously obtained value of the
fractal dimension of the boundaries of normal-phase
clusters. The critical current and the flux flow resistance
were fitting parameters. Good agreement with the
experimentally measured current–voltage characteris-
tics in the region of the resistive transition is achieved
with the following parameter values: D = 1.8, Jc(4.2 K) =
2.5 A/cm2, Rf(4.2 K) = 0.11 mΩ cm2, Jc(77 K) =
0.4 A/cm2, and Rf(77 K) = 0.228 mΩ cm2. The resis-
tance values used in the calculations conform to the
temperature dependence of the flux flow resistance in
the form Rf(T) = Rf0/[1 – (T/Tc)2] [21], which is an
approximation to the temperature dependence Rf(T)
obtained in [22, 23]. As is seen in Fig. 4, the theoretical
dependences are in good agreement with the experi-
mentally measured current–voltage characteristics of
foamed BPSCCO at the initial part of the resistive tran-
sition.

The dependence of the differential resistance on the
transport current is given by [24]

(4)

Figure 5 presents theoretical curves calculated from Eq.
(4) for the same parameter values as above. The resis-
tance is proportional to the free vortex density n: Rd =
Rf(Φ0/B)n, where Φ0 ≡ hc/2e is the magnetic flux quan-
tum, B is the magnetic field, h is Planck’s constant, c is
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the speed of light, and e is the electron charge. A com-
parison of this expression and Eq. (4) shows that the
free vortex density depends on the fractal dimension of
the normal-phase clusters. The resistance of the super-
conductor is determined by the number of vortices bro-
ken away from pinning centers, since these vortices
transfer the magnetic flux that induces the electric field.
The more vortices are free to move, the stronger the
induced electric field and, therefore, the higher the volt-
age across the sample at the same transport current.

The theoretical model of a superconductor contain-
ing fractal clusters of a normal phase adequately
describes the experimental current–voltage characteris-
tics in the region of the resistive transition. There is a
deviation of the experimental curves from the calcu-
lated dependences for larger values of transport current.
The reason for this discrepancy may be the change in
the fractal dimension of cluster boundaries under the
action of a large current, as well as the development of
thermomagnetic instability.

4. CONCLUSIONS

Though different models, such as those developed in
[21, 25, 26], can be used to describe the experimental
current–voltage characteristics of polycrystalline HTS,
the model of a superconductor with fractal clusters of a
normal phase is best suited to superconducting foams,
since this model reflects the actual structure of these
materials and takes into account the influence of the
structure parameters on the depinning critical current
and current–voltage characteristics.
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