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1.

 

 It is known that the orientation mechanism of
dielectric polarization (which is referred to as relax-
ation) is decisive for many materials, including liquid
crystals. The frequency dependence (dispersion) of the
permittivity 

 

ε

 

(

 

ω

 

), as a rule, is described by the Debye
equation in which the relaxation time 

 

τ

 

 is a characteris-
tic accounting for the dynamics of molecular motion in
a particular compound. The relaxation time 

 

τ

 

 can be
easily determined in the experiment from the position
of a maximum in the frequency dependence of the
imaginary component of the permittivity 

 

ε

 

''(

 

ω

 

).

For a material with two or several relaxing sub-
systems, the dispersion of the permittivity 

 

ε

 

(

 

ω

 

) is ade-
quately described by the sum of the Debye equations
with different relaxation times and the contribution of
each subsystem is taken into account through the rele-
vant weighting factor [1]. In the case when the number
of subsystems is relatively large, the Debye dispersion
relation should include a continuous distribution func-
tion of relaxation times [2]. It is of considerable interest
to determine the continuous distribution function of
relaxation times directly from the experimental dielec-
tric spectra. With knowledge of the true distribution
functions of relaxation times, it is possible to gain a
deeper insight into the nature of the specific features
observed in the polarization of materials, in particular,
due to intramolecular motions. As a rule, the above
problems have been solved using numerical methods.

It is important to note that the reconstruction of the
distribution functions of relaxation times from experi-
mental data involves severe problems associated not

only with the choice of an adequate model and its math-
ematical description for a particular material but also
with the choice of a numerical method ensuring a stable
solution. In some cases, the distribution function of
relaxation times can be analytically specified on the
basis of simplified model concepts regarding the struc-
ture and molecular motion of matter. However, this
approach has often led to an unacceptable disagreement
between theory and experiment. In this respect, the
search for methods providing for precise reconstruction
of the distribution functions of relaxation times directly
from the experimentally measured spectra 

 

ε

 

(

 

ω

 

) is of the
utmost importance.

In our previous works [3, 4], the dispersion of the
permittivity of liquid crystals belonging to cyano deriv-
ative compounds was studied by approximating the
dielectric spectra 

 

ε

 

(

 

ω

 

) with the use of trial analytical
distribution functions of relaxation times. In these stud-
ies, the continuous spectra of relaxation times were
described by symmetric or asymmetric functions with
one maximum and a monotonic behavior to its right and
left. A broad spectrum of relaxation times is a charac-
teristic property of liquid crystals, which is most likely
associated with the specific features observed in the
molecular and intramolecular motions due to the exci-
tation of collective vibrations of the rigid core and
atomic groups of the flexible alkyl chain. It is obvious
that the relaxation times of molecular rotations and
intramolecular motions should differ significantly from
each other and that the function describing a continuous
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distribution of these times can have fairly complex
behavior.

In this paper, we report on a relatively simple tech-
nique for reconstructing the distribution function of
relaxation times from the experimentally measured
spectra of the real component of the permittivity. This
technique was developed with the use of the widely
accepted mathematical program package Mathcad. As
is known, the accuracy in the measurement of the real
component of the permittivity by resonance methods is
considerably higher than that of the imaginary compo-
nent. The proposed technique was tested using two liq-
uid crystals, namely, 7CB and 7OCB. The structural
formulas of these liquid crystals are presented in Fig. 1.
The measurements were performed both in the nematic
liquid-crystal phase for parallel and perpendicular ori-
entations of the molecular director with respect to the
polarization of the microwave electric field and in the
isotropic phase.

 

2.

 

 The real and imaginary components of the disper-
sion of the permittivity 

 

ε

 

(

 

ω

 

) for media with a continu-
ous distribution of relaxation times 

 

g

 

(

 

τ

 

) can be repre-
sented in the form [2]

 (1)

 (2)

Here, 

 

ε

 

0

 

 is the static permittivity and 

 

ε

 

∞ 

 

is the high-fre-
quency permittivity. In this case, the normalization con-
ditions for the distribution function of relaxation times
are given by

 (3)

In the proposed technique for reconstructing the dis-
tribution function of relaxation times from the experi-
mental data on the real component of the permittivity

ε' ω( ) ε∞ ε0 ε∞–( ) g τln( )
1 ω2τ2

+
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∞
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ε

 

'(

 

ω

 

), it is necessary to change over from integral equa-
tions (1) and (2) to a discrete system of nonlinear equa-
tions under the assumption that 

 

g

 

(

 

τ

 

) = 0 at frequencies
outside the measured interval. For this purpose, the
experimental dielectric spectrum constructed on a com-
mon logarithmic scale in the range 

 

ω

 

min

 

–

 

ω

 

max

 

 should be
represented in the form of a histogram by dividing the
entire range into a specified number 

 

N

 

 of intervals with
a width given by the formula

 (4)

For each rectangle in the histograms, there is a par-
ticular relaxation frequency 

 

ω

 

i

 

 with the corresponding
relaxation time 

 

τ

 

i

 

 = 1/

 

ω

 

i

 

.

Then, the dispersion relation for the 

 

i

 

th component
of the permittivity can be written as

 (5)

Here, (

 

ω

 

i

 

) is the calculated permittivity; 

 

g

 

(log

 

τ

 

m

 

)
is the weighting factor, which is equivalent to the dis-
crete distribution function of relaxation times; and 

 

k

 

 =
1/log

 

e

 

.
It should be noted that a similar discrete form of the

dispersion, but for the imaginary component of the per-
mittivity, was used to develop the numerical algorithm
for reconstructing the distribution function of relax-
ation times from the experimental frequency depen-
dence of the imaginary component of the permittivity

 

ε

 

''(

 

ω

 

) for a 5CB liquid crystal in our recent work [5].
This numerical algorithm is based on the histogram
method described in [6], which, however, is not appli-
cable to calculations with the use of the real component
of the permittivity because of the instability of the
obtained solutions.

In expression (5), the weighting factors 

 

g

 

(log

 

τ

 

m

 

) can
be calculated by a conventional least-squares proce-
dure, according to which the difference between the

experimental permittivity (

 

ω

 

i

 

) and the calculated

permittivity 

 

∆

 

(

 

ω

 

i

 

) is minimized for each fre-
quency 

 

ω

 

i

 

. In essence, this difference is an objective
function of the problem to be solved. However, in the
framework of this approach, the problem of determina-
tion of the distribution function of relaxation times is
practically unsolvable because of the poor stability of
the derived solutions, which is determined by the

experimental errors 

 

∆

 

(

 

ω

 

). In order to eliminate this
difficulty, the original mathematical and methodical
techniques for obtaining regularized solutions with the
use of a nonlinear regression method and special algo-
rithms were proposed by a number of authors (see, for
example, [7–10]). In our study, the objective function

∆S
ωmax/ωmin( )log
N 1–

------------------------------------.=

εcalcd' ωi( ) ε∞ k∆S ε0 ε∞–( )
g τmlog( )

1 ωi
2τm

2
+

----------------------.
m 1=

N
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Fig. 1. Structural formulas of the liquid-crystal compounds
under investigation and temperatures Tc of the transition
from the nematic phase to the isotropic liquid phase.
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(the mean square error) was minimized by the nonlin-
ear least-squares procedure with the Minerror function
involved in the Mathcad program package. Despite its
main disadvantage of low speed, the Mathcad program
offers considerable advantages owing to the natural
form of the mathematical expressions, the convenience
of programming, and the presence of a large number of
built-in subroutines, which make it possible to effi-
ciently solve a great number of problems, including
those with systems of linear and nonlinear equations.

Within the proposed approach to the reconstruction
of the distribution function of relaxation times, the sta-
bility of the solutions is provided by the following con-
ditions. First, the measured dielectric spectrum should
be smoothed using an approximation method. Second,
the experimental error ∆ε' in the measurements should
be limited artificially. This is physically justified in the
case of a large number of experimental points. Third,
the seed form of the function g(logτm) should be speci-
fied. Fourth, the optimum number N of divisions of the
frequency range should be chosen for constructing the
histogram. For these purposes, initially, all the experi-
mental data on the permittivity ε'(ω) were carefully
approximated and smoothed in accordance with the
Havriliak–Negami equation

 (6)

Here, α and γ are adjustable parameters. In this case,
the real components ε'(ω) and the imaginary compo-
nents ε''(ω) of the permittivity were calculated using
equations taken from [5, 9]. Then, the measurement
error was simulated by generating random numbers,
which were added to the smoothed spectrum (ω).
Arbitrary positive or negative numbers were generated
with the function runif(N, –σ, σ), which is character-
ized by a uniform distribution of random numbers in
the interval ±σ ≈ 0.05–0.15. Therefore, the absolute
error (∆ε' ≡ σ) of the smoothed spectrum (ω) ± ∆ε'
could be varied in specified limits.

The initial (seed) components g(logτm) of the distri-
bution function were specified by a formula that is
asymptotically exact for slowly varying dielectric loss
functions [11]:

 (7)

Here, zm = log(τm) and η is a factor that, at each fixed
frequency, was determined from the best fit of the
results of the calculations from formula (5) with the use
of expression (7) and the approximated dependence

(ω) (6). The values of g(zm) are represented in the
form of a matrix containing one column formed by N
components.
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When solving a nonlinear iterative problem using
the Minerror function, in principle, it is possible to use
three special algorithms and specific settings of the pro-
gram for accelerating the minimization of the objective
function χ(g):

 (8)

However, the preliminary tests showed that the
default settings of the Mathcad program can be used in
calculations. As a rule, the conjugate-gradient method
with multiple calculations of the derivatives can be
applied in this case.

As was already noted, the choice of the interval ±σ
specifying the measurement error ∆ε' and the choice of
the threshold χmin at which (χ ≤ χmin) the iterative proce-
dure is terminated are important conditions for obtaining
a stable solution. In particular, at χ � σ, the distribution
function of relaxation times is usually monotonic, well
smoothed, and resembles the Havriliak–Negami or
Cole–Cole analytical model distribution functions. At
χ  σ, the distribution function of relaxation times can
exhibit singularities and even clearly defined maxima.
Finally, at χ � σ, the obtained solutions can contain pro-
hibitive negative values of g(τ).

On this basis, we can choose the values of σ and χmin
that will be optimum in order of magnitude. As a rule,
this can be achieved by several program runs. Then, it
is desirable to accumulate numerical values of g(τ)
through a series of program runs and to average the
results. The distribution function of relaxation times
thus obtained can be considered a desired function,
because it appears to be stable and reproducible with
respect to the different program settings.

3. The proposed technique for determining the dis-
tribution function of relaxation times was tested with
the experimentally measured frequency dependences of
the permittivity over a wide range of frequencies from
1 to 104 MHz for the 7CB and 7OCB liquid crystals. In
the frequency range 1–30 MHz, the permittivity was
measured on a Tesla BM-560 standard Q-meter with
the use of a conventional measuring cell in the form of
a parallel-plate capacitor. In the meter and decimeter
wavelength ranges, the dielectric measurements were
performed with highly sensitive frequency-tuned reso-
nance microstrip sensors [3, 4]. In the centimeter range,
the measurements were carried out using special
microstrip [12] and coaxial multifrequency resonators.
The amplitude–frequency characteristics of the sensors
were recorded on automated digital meters intended for
measurements of complex transmission gain factors in
the corresponding ranges.

The dielectric spectra of the liquid crystals were mea-
sured in the nematic phase at a temperature T = Tc – 5°C
and in the isotropic phase at a temperature T = Tc + 5°C,
where Tc is the temperature of the transition from the
nematic phase to the isotropic liquid phase (Fig. 1).

χ g( ) εHN' ωi( ) ∆ε' ωi( )±[ ] εcalcd' ωi( )–{ }2
.

i 1=

N
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Figure 2 shows the dielectric spectra of the 7CB and
7OCB liquid crystals both in the nematic phase with
parallel and perpendicular orientations of the director
and in the isotropic phase. The lines in this figure indi-
cate the approximation of the experimental data by the
Havriliak–Negami equation (6), in which the high-fre-
quency permittivities ( , , ) were determined
from the measured dispersion at a maximum frequency
f ≈ 104 MHz. It is worth noting that, in the experimental
dielectric spectra, insignificant resonance features
clearly manifest themselves in the high-frequency
range [13, 14]. These features were ignored in the
present work when approximating the experimental
results. It can be seen from the insets to the figures that
the parallel component of the permittivity at high fre-
quencies is nearly constant for both of the liquid crys-
tals and that the high-frequency real components of the
permittivity are as follows:  = 3.05 for 7CB and

 = 3.25 for 7OCB. For these permittivities, we
obtained the following adjustable parameters of the
approximation with the Havriliak–Negami equation:
α = 1 and γ ≈ 0.83–0.85 for both liquid crystals. These
adjustable parameters correspond to the dielectric spec-

ε||∞' ε⊥∞' εis ∞'

ε||∞'

ε||∞'

trum described by the conventional Debye equation
with one or two relaxation times.

The reconstructed distribution functions of relax-
ation times g||(τ) for both liquid crystals are depicted in
Figs. 3a. These distribution functions have the form of
a Lorentzian line with a somewhat extended wing in the
range of short relaxation times. The maxima in these
lines correspond to the relaxation times τ||1 ≈ 25 ns for
7CB and ≈10 ns for 7OCB, which are close in magni-
tude to those obtained earlier in [3, 15]. These relax-
ation times characterize the low-frequency orientation
range of the dispersion in terms of the Debye equation
with one relaxation time. However, as was shown in [3,
15], the dispersion measured over a wide range of fre-
quencies should be described by an equation with two
relaxation times. The second relaxation times τ||2 ≈ 3.2 ns
for 7CB and ≈6.3 ns for 7OCB, which were obtained in
the present work, correspond to approximately the mid-
point of the high-frequency wing g||(τ) and are also in
reasonable agreement with the results reported in [3,
15]. Therefore, the derived distribution function of
relaxation times for the parallel component of the per-
mittivity reflects the processes of molecular polariza-
tion with two relaxation times and the corresponding
weighting factors. However, in our previous paper [4],
we demonstrated that the dielectric characteristics mea-
sured with high accuracy, in particular, the temperature
dependence of the permittivity ε'(ω) for the 5CB liquid
crystal, can be correctly approximated only with allow-
ance made for a continuous distribution of relaxation
times in the high-frequency range.

The dispersion of the perpendicular component of
the permittivity (ω) (Fig. 2, curves 2) in the centime-
ter wavelength range is well pronounced and, most
likely, can be observed up to optical frequencies. In this
case, the perpendicular component of the permittivity

 is often taken as the square of the ordinary refrac-

tive index  (for example, no = 1.52 for 7CB). How-

ever, the approximation of the dispersion (ω) by the
Havriliak–Negami equation with this constant leads to
unsatisfactory results. This is associated with the fact
that the expressions describing the dispersion in the
submillimeter and optical wavelength ranges (unlike
the ultrahigh-frequency range) can differ significantly
from the Debye equation due to the presence of
intramolecular resonances. In this respect, the disper-
sion (ω) in the ultrahigh-frequency and optical
ranges should be approximated by different dispersion
relations, which are given, for example, in [16]. In the
present work, in order to approximate more accurately
the dispersion (ω) and to reconstruct the distribution
functions of relaxation times g⊥(τ), the permittivities
experimentally determined at a maximum frequency f ≈
104 MHz (  ≈ 2.8 for 7CB and ≈3.2 for 7OCB) were
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Fig. 2. Dispersion of the real component of the permittivity
for the 7CB and 7OCB liquid crystals in the nematic phase
for (1) parallel and (2) perpendicular orientations of the
director with respect to the microwave electric field and for
(3) the isotropic state. Points are the experimental data, and
the lines correspond to approximations by the Havriliak–
Negami equation.
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used as the constants . In this case, the distribution
function of relaxation times is determined only at relax-
ation times τ ≥ 0.03 ns. For these constants, the adjust-
able parameters in the Havriliak–Negami equation are
as follows: α = 0.91 and γ = 0.68 for 7CB and α = 0.63
and γ = 0.8 for 7OCB. The values obtained for the
adjustable parameters α and γ, as a rule, correspond to
broad asymmetric analytical distribution functions of
relaxation times.

Figure 3b shows the reconstructed distribution func-
tions of relaxation times g⊥(τ) for the perpendicular
component of the permittivity of the 7CB and 7OCB
liquid crystals. As can be seen from Fig. 3b, the distri-
bution functions are actually asymmetric and some-

ε⊥∞' what differ for the liquid crystals under investigation.
The distribution function for the 7CB liquid crystal are
characterized by a maximum at τ⊥1 ≈ 3.6 ns and a
clearly defined second relaxation range with a relax-
ation time τ⊥2 ≈ 4 ns. The first relaxation time agrees
well with the results obtained in [3, 15] and, apparently,
can be associated with the rotation of molecules around
the long axis. It seems likely that the second relaxation
time can be attributed to the collective motions of the
terminal alkyl group. As was noted above, the relax-
ation spectrum g⊥(τ) in the short-time interval is incom-
plete. This spectrum does not involve the contribution
from the high-frequency intramolecular motions,
including intramolecular resonances. The relaxation
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Fig. 3. Distribution functions of relaxation times for the liquid crystals in the nematic phase for (a) parallel and (b) perpendicular
orientations of the director with respect to the microwave electric field and for (c) the isotropic state.
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time τ⊥2 is an averaged effective quantity, which allows
us to approximate rather accurately the dielectric spec-
trum (ω) over a wide range of frequencies, including
ultrahigh frequencies.

For the 7OCB liquid crystal (Fig. 3b), the distribu-
tion function g⊥(τ) is characterized by four well-
resolved maxima at relaxation times τ⊥1 ≈ 18 ns, τ⊥2 ≈
2.5 ns, τ⊥3 ≈ 0.63 ns, and τ⊥4 ≈ 0.035 ns. The relaxation
time τ⊥2 for the 7OCB compound is close in order of
magnitude to the relaxation time τ⊥1 for the 7CB com-
pound. Consequently, the relaxation time τ⊥2 can be
attributed to the rotation of the rigid molecular core
around the long axis. The relaxation times τ⊥3 and τ⊥4
should most likely be associated with the motions of
alkyl chains, and their large weighting contribution to
the relaxation process can be caused by the high
intramolecular mobility due to the presence of the oxy-
gen atom located between the core and the alkyl group
(Fig. 1).

The distribution function of relaxation times for the
isotropic state (Figs. 3c) is slightly asymmetric in
shape. This is apparently determined by a set of orien-
tation rotations of the molecules around the short and
long axes, as well as by insignificant contributions from
the intramolecular motions. It can be seen that the dis-
tribution function g⊥(τ) for the 7CB liquid crystal
exhibits three pronounced maxima at relaxation times
τ⊥1 ≈ 2.5 ns, τ⊥2 ≈ 0.39 ns, and τ⊥3 ≈ 0.05 ns. The distri-
bution function g⊥(τ) for the 7OCB liquid crystal is
characterized by four maxima at relaxation times τ⊥1 ≈
18 ns, τ⊥2 ≈ 2.8 ns, τ⊥3 ≈ 0.79 ns, and τ⊥4 ≈ 0.1 ns.

4. Thus, we proposed a technique for reconstructing
the distribution function of relaxation times directly
from the experimental spectrum of the real component
of the permittivity. The methodology was demonstrated
as applied to the 7CB and 7OCB liquid crystals with the
use of the convenient mathematical program package
Mathcad. The preparation procedures necessary for
minimizing the objective function, which is the sum of
the squares of the differences between the calculated
and measured permittivities, were described. The
developed program was tested for the 7CB and 7OCB
liquid crystals in the nematic phase with parallel and
perpendicular orientations of the director with respect
to the polarization of a microwave electric field. The
distribution functions and characteristic relaxation
times obtained in this study are in good agreement with
the analytical functions and relaxation times deter-
mined in other works by approximating the dielectric
dispersion with the use of the Debye and Havriliak–
Negami equations. The results of the above investiga-
tion made a significant contribution to the understand-
ing of the mechanism of relaxation in liquid crystals.
The developed technique for reconstructing the distri-
bution function of relaxation times can be easily modi-

fied and used in different experiments not only with liq-
uid crystals but also with other materials.
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