NMR-Study of the Crystalline and Amorphous CuB₂O₄

L. V. Udod,¹ K. A. Sablina,¹ and Yu. N. Ivanov¹

Published online: 2 September 2006

¹¹B nuclear magnetic resonance (NMR) spectroscopy was applied to study the crystalline, amorphous and crystallizing from an amorphous states of copper metaborate. The occurrence of trigonal BO₃ units at the expense of converting tetragonal BO₄ units was observed in amorphous CuB₂O₄. This fact explains the essential change of CuB₂O₄ magnetic properties under amorphization.

1. INTRODUCTION

Copper oxides have attracted growing attention from many researchers in recent years due to a wide variety of their low-temperature magnetic properties. The copper metaborate CuB₂O₄ crystallizes in the tetragonal system, space group $I\bar{4}2d$ [1], with twelve formula units in a cell. There are two nonequivalent positions of copper ions: four Cu²⁺ ions in square planar coordination and eight Cu²⁺ ions in a very distorted octahedron from oxygen ions (Fig. 1). The Cu^{2+} ions form two magnetic subsystems with distinct magnetic dimension and order. The magnetic state of CuB_2O_4 is determined by the interaction between two subsystems of Cu²⁺ ions. It was found that in temperature range from 10K to the Neel temperature $T_{\rm N} = 20 \,\rm K$ this compound is a weak ferromagnetic, in which the magnetic moments of sublattices and the spontaneous magnetic moment lie in the tetragonal crystal plane [1].

The congruent character of a melting of CuB_2O_4 and presence in chemical composition classical glassformer B_2O_3 afford a unique possibility to transfer this compound in an amorphous state and to study influence of amorphization on magnetic properties of CuB_2O_4 by comparison of properties of substance in an amorphous state and its crystalline analog. The magnetic and resonance properties of crystalline and amorphous CuB_2O_4 was reported in paper [2]. The magnetic properties of copper metaborate were changed significantly under amorphization. The amplification of antiferromagnetic interaction, deviation from the Curie–Weiss law lower 40 K and occurrence of anormal in behaviors of a magnetization and resonance properties at temperature $T \sim 8$ K were observed.

The exchange interactions between ions Cu^{2+} ($S = \frac{1}{2}$) in crystalline CuB_2O_4 are carried out through the Cu-O-B-O-Cu chains [2]. There are two types of the tetrahedral coordinated boron atoms with different distances B-O in CuB_2O_4 (Fig. 1). These BO_4 -groups are linked by common oxygen atoms to a three-dimensional network of ring type $(B_3O_6)^{3-}$ units [3]. All boron and oxygen atoms take part in numerous indirect interactions with the numerous neighbors. Thus, boron-oxygen skeleton participates in an exchange interaction in CuB_2O_4 .

The transformation of boron–oxygen groups under amorphization of CuB_2O_4 leads to the transformation of the exchange bridges, and, therefore, the pattern of the exchange interactions. In order to receive the immediate information about a structure of boron anions, coordination of boron and their change under amorphization, we carried out ¹¹B NMR experiment.

The ¹¹B NMR experiment was performed in the powder samples of crystalline and amorphous CuB_2O_4 at room temperature. It is well known, the

¹L. V. Kirensky Institute of Physics SB RAS, Akademgorodok, 660036, Krasnoyarsk, Russia.

Fig. 1. Crystal structure of CuB₂O₄.

quadrupolar perturbed ¹¹B NMR experiments is a very appropriate method to investigate small structure distortions of solids. In this paper we report the results of our NMR investigation.

2. EXPERIMENT

A growing procedure of copper metaborate single crystals was described in [4]. The amorphous CuB_2O_4 was prepared by the rapidly pouring of the melt on a metal substratum. The X-ray diffraction pattern of powdered as-quenched samples showed the wide amorphous halos. The amorphous state of CuB_2O_4 was supported by differential thermal analysis (DTA) also [2]. The X-ray analysis of a powder, which was exposed heat treatment at 950 K, revealed all most typical lines of crystalline CuB_2O_4 .

The NMR solid echo spectra of ¹¹B were measured at room temperature with operating frequency 96.3 MHz using a BRUKER AVANCE 300 NMR spectrometer. An excitation of the complete spectra was achieved with pulse durations of $3 \mu s$. To avoid the influence of the dead time a quadrupole spin echo sequence with a pulse distance of $\tau = 20 \mu s$ was used.

In this work, the microscopic characteristics of copper metaborate are determined from the ¹¹B NMR spectra. ¹¹B nuclei possess a quadrupole moment. Nuclear magnetic resonance at quadrupole nuclei provides valuable information on the magnitude and symmetry of crystal-electric-field gradients at the

studied nucleus. For a strong external magnetic field \mathbf{B}_0 , when the Zeeman interaction energy substantially exceeds the energy of interaction between the nuclear quadrupole moment and the crystal field, the crystal field brings about a perturbation of equidistant Zeeman levels and a splitting of the NMR line into 2I components (I is the nuclear spin), which are symmetrically located with respect to the Larmor precession frequency v_0 in the magnetic field \mathbf{B}_0 . Consequently, the NMR spectrum of boron (I = $\frac{3}{2}$) consists of triplets (with relation of intensities $\overline{2}$:3:2 [5]) whose number for a single-crystal sample in the general case is equal to the number of magnetically non-equivalent boron nuclei. The position of the central NMR line (transition $\frac{1}{2} \leftrightarrow -\frac{1}{2}$) coincides with Larmor precession frequency v_0 , whereas quadrupole splitting between side band NMR lines (transitions $\pm \frac{1}{2} \leftrightarrow \pm \frac{3}{2}$ respectively) $\nu_2 - \nu_1$ is given by [5]

$$\nu_2 - \nu_1 = 6eQV_{zz}/2h \tag{1}$$

where Q is the quadrupole moment of nucleus, e is the electron charge, h is Planck's constant, and V_{zz} , is the z component of the electric field gradient (EFG) tensor at the nuclear site (field \mathbf{B}_0 is directed along the z axis). The intensities of sideband component of powder NMR spectrum decrease sharply with increasing, quadrupole interaction due to the orientation dependences of quadrupole splittings (1). Only the central NMR line can be observed in powder samples very often. In these cases the shape of NMR spectra are described by the secondorder quadrupole effects that take into account the dipole-dipole interactions between the magnetic nuclei.

The ¹¹B NMR spectrum for crystalline CuB₂O₄ is displayed in Fig. 2(a). The Fig. 2a shows that there are two components in spectrum. A narrow symmetric line can be assigned to the symmetric BO₄ groups. A wide asymmetric component is characteristic of the axial-symmetric electric field gradient (EFG) tensor and this line can be assigned to the distorted BO₄ groups. It can be seen from relative intensity of components that boron nucleus in one structurally nonequivalent position are twice as little than in another. This result corresponds to CuB₂O₄ structural data [3,6].

The NMR spectrum for amorphous CuB_2O_4 is shown in Fig. 2(c). A NMR central peak of amorphous sample arises from a highly symmetric electronic environment of boron atoms in BO₄ tetrahedra, while BO₃ triangles yield a wide peak

Fig. 2. 11 B NMR spectra of CuB₂O₄: (a) crystalline sample; (b) crystallized from amorphous sample; (c) amorphous sample.

due to large interaction between the ¹¹B nuclear quadrupole moment and EFG present at the boron site of amorphous CuB_2O_4 . The calculation by area method proves that one-third of tetragonal BO₄ units are conversed in triangular BO₃ units with formation of non-bridging oxygen under amorphization. Thus, our data provide evidence of the essential changes of boron-oxygen network in the amorphous CuB_2O_4 .

The NMR spectrum ¹¹B of the crystallized from amorphous CuB_2O_4 sample is shown in Fig. 2(b). This spectrum coincides with a crystalline sample spectrum (Fig. 2(a)) practically completely. The light differences are caused by presence of a small amorphous CuB_2O_4 impurity in the sample.

3. DISCUSSION

The paramagnetic Curie temperature increasing ($\theta_{\perp} = -23 \text{ K}$, $\theta_{\parallel} = -17 \text{ K}$ for crystalline and $\theta = -56 \text{ K}$ for amorphous CuB₂O₄) and occurrence of anomalies in temperature dependence of susceptibility and of the resonance parameters [2] are the main effects of CuB₂O₄ amorphization.

In letter [2] it was assumed that change of exchange chain Cu-O-B-O-Cu under amorphization CuB_2O_4 takes place. In the present work we have shown by NMR method, that above-mentioned change takes place in actuality.

Figure 2 shows the ¹¹B NMR spectra of crystalline CuB_2O_4 (a) and amorphous (c), respectively. An NMR spectrum of crystalline CuB₂O₄ and an NMR central peak of amorphous sample can be assigned to boron atoms of tetrahedral BO₄ groups. From the comparison of line shape of these NMR spectra it follows that there are no marked distortions of the part of BO4 groups under amorphization. This fact also justifies the maintenance of structure of metaborate ring-type groups in the amorphous CuB₂O₄. The wide component of NMR spectrum (Fig. 2(c)) is characteristic of the trigonal BO₃ units [7,8]. The integral intensity of a wide component is twice as little than central component. Hence, only bond of ring-type $(B_3O_6)^{3-}$ units is broken with formation of one nonbridging oxygen atom and only BO₄ tetrahedron of those units is conversed to a trigonal BO3 unit.

Also, IR spectra show, that the parts of BO_4 units are conversed in trigonal BO_3 units at amorphization of CuB_2O_4 [9] The IR absorption spectra of powders crystalline and amorphous CuB_2O_4 have been measured. The absorption in 800–1200 cm⁻¹ range is assigned to B—O asymmetric stretching vibration of tetragonal BO₄ units, and 600–800 cm⁻¹ range to the vibrations of the ring-type metaborate groups. New broad region of absorption in 1200– 1600 cm⁻¹ range is appears in amorphous CuB₂O₄. It is proves about appearance of trigonal BO₃ units in boron-oxygen network.

From structural analysis of CuB_2O_4 it follows that the longest B–O bond (1.48 Å) belongs to one of three tetrahedrons of metaborate ring type group and this bond is broken under amorphization more probably. As mentioned above, the exchange interactions between ions Cu^{2+} ($S = \frac{1}{2}$) in crystalline CuB_2O_4 are carried out through the Cu-O-B-O-Cu chains. The distortions of ring type $(B_3O_6)^{3-}$ units change the strength of exchange interaction in amorphous CuB_2O_4 . Furthermore, the appearance of the non-bridging oxygen atoms makes possible formation of more short exchange chains Cu-O-Cu in which case the effective strength of exchange interaction is increased under amorphization of CuB_2O_4 .

REFERENCES

 G. Petrakovskii, D. Velikanov, A. Vorotinov, A. Balaev, K. Sablina, A. Amoto, B. Roessli, J. Schefer, and U. Staub, *JMMM* 205, 105 (1999).

- 2. L. V. Udod, K. A. Sablina, A. I. Pankrats, A. M. Vorotinov, D. A. Velikanov, G. A. Petrakovskii, and A. F. Bovina, Inorg. Mat. 39, 1356 (2003).
- 3. M. Martinez-Ripoll, S. Martinez-Carrera, and S. Garsia-Blanco, Acta Cryst. B 27, 677 (1971).
- 4. G. A. Petrakovskii, K. A. Sablina, and D. A. Velikanov, Kristallografiya 45, 926 (2000).
- 5. R. V. Pound, Phys. Rev. 79, 685 (1950)

- 6. G. K. Abdullaev, P. F. Rza-zade, and Kh. S. Mamedov, Zh. Neorg. Khim. 27, 1837 (1982). 7. G. E. Jellison and P. J. Bray, J. Non-Cryst. Solids 29, 187 (1978).
- 8. P. J. Bray, J. Non-Cryst. Solids 75, 29 (1985).
- 9. L. V. Udod, K. A. Sablina, A. Ya. Koretz, A. I. Pankrats, A. M. Vorotinov, D. A. Velikanov, and A. F. Bovina, in Proceedings of FTT-2003, N. M. Alehnovich, eds. (Izd. Centr BGU, Minsk, 2003), p. 27.