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REALIZATIONS OF STANDARD QUANTUM COMPUTATIONAL

CIRCUITS BY ADIABATIC EVOLUTION

V. E. Zobov∗ and A. S. Ermilov∗

We study the adiabatic equivalent of the standard quantum circuit of elementary logic operators. We

propose a scheme for constructing time variations of the Hamiltonian. This scheme can be implemented

sufficiently simply, for example, on nuclear spins controlled by radio-frequency pulses. As an illustration,

we numerically simulate an adiabatic quantum algorithm for finding the permutation order for a system

of five spins (qubits).
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1. Introduction

In standard quantum computation, the algorithms are implemented as sequences of discrete unitary
transformations (elementary quantum logical operators or gates that form a circuit) [1], [2]. This rep-
resentation is convenient for comparing the work of quantum computers with that of classical computers.
Quantum computation can also be performed differently, for example, using adiabatic evolution [3]. An adi-
abatic algorithm is implemented by a time-dependent Hamiltonian. This Hamiltonian varies continuously
from the initial Hamiltonian H(0), whose ground state |0〉 is easy to construct, to the final Hamiltonian
H(1), whose ground state |Ψ〉 encodes the solution of the problem under study. If the Hamiltonian varies
sufficiently slowly, then the quantum adiabatic theorem guarantees that the quantum computer is in the
ground state with a high probability. The noise tolerance of the ground state gives reason to hope [4] that
the probability of errors in adiabatic quantum computation decreases.

It was recently proved [5], [6] that not only the search algorithm [3] but any standard quantum circuit
can be realized using adiabatic evolution. In [5], the Hamiltonian varies with time according to a linear law.
In [6], a more complicated unitary transformation of the Hamiltonian was proposed that guarantees that
a given value of the gap between the ground and the nearest excited energy level remains the same during
the evolution process. This parameter plays an important role because its value determines the admissible
rate of variation of the Hamiltonian, i.e., the accuracy and the running time of the experiment.

In this paper, we study the version of the adiabatic algorithm proposed in [6] from the standpoint of
its realization on nuclear spins controlled by radio-frequency (RF) pulses. This type of quantum system
is chosen because simulation of many standard quantum algorithms, including the adiabatic algorithm
for seeking the maximal cut [7] as the Hamiltonian varies linearly with time, have now been simulated
by nuclear magnetic resonance (NMR) methods. The obtained results can be easily generalized to other
quantum systems used in quantum computation [2]. We show how the version proposed in [6] should be
modified to simplify the experiment. As an example, we consider an algorithm for finding the permutation
order; the quantum circuit for this algorithm in standard form was realized on five spins (qubits) in [8].
We simulate an adiabatic algorithm for this circuit for different versions of the Hamiltonian variation with
time on a computer and study how the result depends on the parameters.
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2. Quantum computational circuit for finding the permutation
order

The standard circuit for a quantum algorithm can be implemented by a sequence of some n unitary
operators (one- or two-qubit gates)

|ψ〉 = U |0〉 = UnUn−1 · · ·U1|0〉. (1)

As an example, we consider the quantum algorithm for finding the permutation order r [8]. We present
sequence (1) for this algorithm omitting the details, which can be found in [8]. For the permutation order
r = 4, we have

U = H3B23

(
π

2

)
B13

(
π

4

)
H2B12

(
π

2

)
H1CNOT24CNOT35H3H2H1. (2)

For the permutation order r = 2, the product does not contain CNOT24. Formula (2) contains the following
operators:

the Hadamard operator Hi acting on spin (qubit) i,

the operator Bij(θ) of controlled phase shift by the angle θ = π/2i−j, and

the “not” operator CNOTij acting on the spin j and controlled by the spin i, which can be expressed
in terms of Bij according to the formula [9] CNOTij = HjBij(π)Hj , i, j = 1, . . . , 5.

These operators can be represented by matrices in the standard computational basis of eigenvalues of the
projection operator of each spin on the direction of the constant magnetic field:

H =
1√
2

(
1 1

1 −1

)
, Bij(θ) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθ


 . (3)

The matrices of the operators in (2) are 32×32 matrices and can be obtained from matrices (3) by straight-
forward (tensor) multiplication by the unit 2×2 matrices E for the qubits that do not belong to this gate.
For example, H3 = E ⊗ E ⊗ H ⊗ E ⊗ E.

We briefly explain the purpose of the operators in (2). First, the Hadamard operators use the ground
state to prepare a superposition state for the first three spins. Then the operators CNOT expose them
to transformations corresponding to a permutation chosen by the oracle. Finally, the quantum Fourier
transformation over the spins 1, 2, and 3 permits finding the period of the obtained state, which coincides
with the desired permutation order.

The experiment described in [10] was performed on five-spin molecules with the Hamiltonian

H = −
∑

i

ωiI
z
i +

∑
i<j

2πJijI
z
i Iz

j , (4)

where ωi is the frequency of the Larmor precession in a constant magnetic field B0 with the chemical shift
taken into account, the second term describes the indirect spin–spin interaction, and Iz

i is the z component
of the vector operator of spin i, i = 1, . . . , 5. Hereafter, the energy is measured in frequency units. The
gates are realized by a sequence of RF-field pulses applied to the system [2], [8]–[10]

Hrf = −2
∑

i

ω1i(t)Ix
i cos(ωrfit + ϕi(t)), (5)
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where ωrfi is the frequency of the RF field. The amplitude ω1i(t) and the phase ϕi(t) vary with time
according to (2), i.e., the RF field with such characteristics is switched on at the instants when it is
required to ensure the result of work of the corresponding gate. In the rotating (with the frequency ωrfi)
coordinate system (RCS) [11], the coefficient ωi in the first term in Hamiltonian (4) is replaced with ωi−ωrfi

and becomes zero at resonance.
The Hadamard gate Hi is realized by successive rotations using the RF field first through the angle π/2

about the y axis and then through the angle π about the x axis of the RCS. For the first rotation, the RF
field with the phase ϕi = π/2 is switched on for the time interval τi satisfying the condition τiω1i = π/2.
For the second rotation, the RF field with the phase ϕi = 0 is switched on for the time interval τiω1i = π.
According to [9], [10], the operator Bij(θ) can be obtained if we maintain (set) the time interval τi between
the pulses such that the condition πτiJij = θ/2 is satisfied and then additionally shift the phase by applying
the operator exp(−iθ(Iz

i + Iz
j )/2).

On the free evolution interval, the system evolves under the action of the evolution operator exp(itH)
with Hamiltonian (4). To ensure the required sign of the phase, we add one operator of the RF pulse, which
rotates the spin i about the x axis through the angle π both before and after the free evolution operator.

The product of the corresponding matrices




eiπτJij/2 0 0 0

0 e−iπτJij/2 0 0

0 0 e−iπτJij/2 0

0 0 0 eiπτJij/2







e−iθ/2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθ/2


 = e−iθ/4Bij(θ)

gives the desired operator Bij(θ). An additional phase shift can be obtained, for example, by shifting the
phases of the preceding pulses or by using three RF pulses. On the free evolution interval, the interactions
of the other spins that are not required in this gate are eliminated by RF pulses rotating these spins through
the angle π [2], [8]–[10].

The authors of [8] used the RF field to control the dynamics of the system of five spins and thus realized
the standard circuit of the quantum algorithm for finding the permutation order. We note that under the
conditions of the NMR experiment, the operator U acts on the system density matrix determining the state
of the system at high temperatures [2], [9].

3. Adiabatic quantum algorithm

We now consider the adiabatic equivalent of standard quantum circuit (1) consisting of elementary
logic operators. Following [6], we introduce the operators

K = −i logU, U(s) = eisK , (6)

where s = t/T is the dimensionless time, T is the evolution time, U(0) = 1, and U(1) = U . Then the
adiabatic realization of quantum algorithm (1)

∣∣Ψ(T )
〉

= UT |0〉 (7)

is determined by the evolution operator

UT = P̂ exp
(
−iT

∫ 1

0

H(s) ds

)
, (8)
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where P̂ is the time-ordering operator [12] and

H(s) = U(s)H(0)U †(s). (9)

We perform the identity transformations described in the appendix to rewrite Eq. (8) as

UT = U exp
{
−iT

(
H(0) +

K

T

)}
. (10)

The condition that this equation is adiabatic means that the difference between the energy levels of H(0)
must be larger than the corresponding elements of the matrix K/T :

1
T

∣∣〈m|K|n〉
∣∣ � |En − Em|. (11)

We note that there is an analogy with the transition to an RCS [11] used to solve the problem of spin
motion in a slowly rotating strong magnetic field. The strong field holds the magnetic moment rotating
together with the field in this case. The action of adiabatic RF pulses used in the NMR experiments is based
on this property (see, e.g., the theoretical results and references in [13]). An effective field perpendicular
to the plane of rotation of the real field arises in this case in the Hamiltonian in (10). In the same way,
an effective Hamiltonian other than the Hamiltonians controlling the variations in the system under the
action of each of the elementary unitary operators in (1) arises if the circuit of gates UnUn−1 · · ·U1 in (1)
is represented in form (10).

The operator K in general form relates all the qubits acting in the problem. It is difficult to find this
operator and more difficult to implement it experimentally. Another method for modifying the Hamiltonian
with time was therefore proposed in [6]:

H(s1, s2, . . . , sn) = Un(sn) · · ·U2(s2)U1(s1)H(0)U †
1 (s1)U

†
2 (s2) · · ·U †

n(sn), (12)

where each operator Uj in (1) satisfies formulas (6) for its own parameter sj (j = 1, . . . , n) varying from 0
to 1. In expression (12), all the parameters sj can be set equal to each other (sj = s) and can be increased
synchronously as time increases in formula (8), where H(s) is replaced with H(s, s, . . . , s). Along with this
case, a stepwise successive variation of Hamiltonian (12) by the operators Uj(sj), j = 1, 2, . . . , n, i.e., first
under the action of U1(s1), then under the action of U2(s2), and so on up to Un(sn), was also studied in [6]:

H(t) =




U1(t/T1)H(0)U †
1 (t/T1) for 0 < t < T1,

U2(t/T2 − T1/T2)U1(1)H(0) ×

×U †
1 (1)U †

2 (t/T2 − T1/T2) for T1 < t < T1 + T2,

...

Un(t/Tn −
∑n−1

i=1 Ti/Tn) ×

×Un−1(1) · · ·U1(1)H(0)U †
1 (1) · · ·U †

n−1(1)×

×U †
n

(
t/Tn −

∑n−1
i=1 Ti/Tn

)
, for

∑n−1
i=1 Ti < t < T,

where Tj is the length of the time interval on which the operator Uj acts and T =
∑n

j=1 Tj . In this case, (8)
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becomes

UT = P̂ exp
(
−iTn

∫ 1

0

H(1, . . . , 1, sn) dsn

)
× · · ·×

× P̂ exp
(
−iTj

∫ 1

0

H(1, . . . , 1, sj, 0, . . . , 0) ds1

)
× · · · ×

× P̂ exp
(
−iT1

∫ 1

0

H(s1, 0, . . . , 0) ds1

)
. (13)

The variation of the Hamiltonian in expression (13) is simpler and more understandable than that in
general case (8), but the methods for implementing this variation in experiments remain unclear. The point
is that this time dependence is inverse to the time dependence following from the Heisenberg representation
or from the interaction representation (see, e.g., the appendix). Indeed, we assume that we have the initial
Hamiltonian H(0). Then we want it to be time dependent. For this, we can add a controlling Hamiltonian,
for example, a Hamiltonian describing the interaction with strong RF pulses, and obtain H(0)+V (t). After
passing to the interaction representation in V (t) (see the appendix), we obtain

H(t) = U−1
V (t)H(0)UV (t)

(the correspondence between the operators can be easily established by comparing with formula (9)). For
t + ∆t, we obtain

H(t + ∆t) = U−1
V (t)U−1

V (∆t)H(0)UV (∆t)UV (t),

i.e., the increasing part of the evolution operators, which form the operators enclosing the time-dependent
operator, is still inside. Then, conversely, just as in the case of (13), the increasing part of the evolution
operators in the dependence of Hamiltonian (12) on time turns out to be outside. Because the method
proposed in [6] is thus unnatural, all the results become more complicated.

We show that the method can be simplified significantly if Hamiltonian (12) is modified stepwise with
the operators Uj(sj) applied starting from the last, which is more natural, i.e., the operator Un(sn) acts
first, and the operator U1(s1) acts at the end:

H(t) =




Un(t/Tn)H(0)U †
n(t/Tn) for 0 < t < Tn,

Un(1)Un−1(t/Tn−1 − Tn/Tn−1)H(0) ×

×U †
n−1(t/Tn−1 − Tn/Tn−1)U †

n(1) for Tn < t < Tn−1 + Tn,

...

Un(1) · · ·U2(1)U1

(
t/T1 −

∑n
i=2 Ti/T1

)
H(0) ×

×U †
1

(
t/T1 −

∑n
i=2 Ti/T1

)
U †

2 (1) · · ·U †
n(1) for

∑n
i=2 Ti < t < T.

In this case, instead of (8), we obtain

UT = P̂ exp
(
−iT1

∫ 1

0

H(s1, 1, . . . , 1) ds1

)
× · · · ×

× P̂ exp
(
−iTj

∫ 1

0

H(0, . . . , 0, sj, 1, . . . , 1) dsj

)
× · · · ×

× P̂ exp
(
−iTn

∫ 1

0

H(0, . . . , 0, sn) dsn

)
. (14)
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Because the increasing part of the evolution operators, which form the operators enclosing the time-
dependent operator in (12), turns out to be inside in the method proposed here, we can perform the further
transformations

P̂ exp
(
−iTj

∫ 1

0

H(0, . . . , 0, sj , 1, . . . , 1) dsj

)
= Un(sn) × · · · × Uj+1(sj+1) ×

× P̂ exp
(
−iTj

∫ 1

0

H(0, . . . , 0, sj, 0, . . . , 0) dsj

)
×

× U †
j+1(sj+1) . . . U †

n(sn),

UT = UU †
1 P̂ exp

(
−iT1

∫ 1

0

H(s1, 0, . . . , 0) ds1

)
× · · · ×

× U †
j P̂ exp

(
−iTj

∫ 1

0

H(0, . . . , 0, sj, 0, . . . , 0) dsj

)
× · · · ×

× U †
nP̂ exp

(
−iTn

∫ 1

0

H(0, . . . , 0, sn) dsn

)
.

After the exponentials are transformed (see the appendix), we hence obtain the simple expression

UT = U exp
{
−iT1

(
H(0) +

K1

T1

)}
×

× exp
{
−iT2

(
H(0) +

K2

T2

)}
· · · exp

{
−iTn

(
H(0) +

Kn

Tn

)}
. (15)

Condition (11) that Eq. (10) is adiabatic must be satisfied on each interval. We do not restrict our discussion
to the case Tj = T/n, because for a fixed T , we can increase the accuracy by choosing a larger Tj for a
larger Kj (for example, choosing a larger Tj for a larger angle in the case of the phase shift gates given
by (18), which we consider later).

If condition (11) is satisfied, then according to (10) or (15), the state |0〉 is preserved up to a phase
factor at the first stage of evolution (7) and is transformed into the state |Ψ(T )〉 by the operator U at the
second stage. In the adiabatic limit as T → ∞, we must obtain exact result (1) independently of the method
of applying the operators. For a finite T , we inevitably obtain an error, whose value may depend on the
method of applying the operators. In the next section, we analyze this problem by investigating a specific
example. The importance of this analysis is that it is simpler to realize expression (15) than expression (10)
because the effective Hamiltonian K must contain interactions of many spins [6], while the Hamiltonians
Kj in (15) corresponding to the one- and two-qubit gates must contain only one- and two-spin interactions.

Nevertheless, the problem remains because it is necessary to modify the effective Hamiltonian of the
system with time in the sequence obtained in formula (15). A method for this variation was proposed in [7]
and is based on the Trotter formula for two noncommuting operators

exp
{
−iTj

(
H(0) +

Kj

Tj

)}
= lim

Nj→∞

{
exp

(
−i∆tjH(0)

)
exp

(
− i∆tjKj

Tj

)}Nj

=

= lim
Nj→∞

{
exp

(
−i∆tjH(0)

)
Uj

†
(

1
Nj

)}Nj

, (16)
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where ∆tj = Tj/Nj . Under the conditions of a real experiment, the value of ∆tj is bounded by the device
potentialities. As a result, for some finite ∆tj = ∆t = T/N (where N =

∑n
j=1 Nj) with (16) taken into

account, we obtain the approximate expression for operator (15)

UT,∆t = U

{
exp

(
−i∆tH(0)

)
U1

†
(

1
N1

)}N1

×

×
{

exp
(
−i∆tH(0)

)
U2

†
(

1
N2

)}N2

× · · · ×
{

exp
(
−i∆tH(0)

)
Un

†
(

1
Nn

)}Nn

, (17)

which can already be realized experimentally.

4. Numerical simulation of the NMR realization of an adiabatic
quantum algorithm

In the preceding section, we studied general formulas and did not specify the form of the quantum
system and the quantum algorithm. Here, we use the specific example considered in Sec. (2) to study the
accuracy of formula (17).

To implement quantum algorithm (2) for finding the permutation order using adiabatic evolution, we
vary the Hamiltonian in accordance with formula (12) applying the operators

∏
j

Uj(sj) = H3B23

(
π

s5

2

)
H3H3B13

(
π

s4

4

)
H3H2B12

(
π

s3

2

)
H2 ×

× H2H4B24(πs2)H4H2H3H5B35(πs1)H5H3. (18)

We do not introduce the parameters s for the Hadamard operators, because the condition Uj(0) = 1 is
satisfied according to the properties HjHj = 1 and Bij(0) = 1. By the method described in Sec. 2, we
can further elaborate by assigning each gate of the controlled phase shift in (18) the required sequence of
RF pulses and the free evolution intervals. Because our goal is to investigate the error arising because ∆t

is finite for different methods for modifying Hamiltonian (12) with time by the operators Uj(sj), we use
expressions (3), already obtained for these operators, in (18) in our computation.

We choose the ground state in which all five spins are directed along the z axis as the initial state.
This state is assigned the Hamiltonian

H(0) = −ω

5∑
i=1

Iz
i . (19)

The exponential in (17) containing ∆tH(0) is a rotation about the z axis or a phase shift. We already
discussed the methods for realizing this transformation.

The results of adiabatic quantum computation (7) by three methods for increasing the parameters sj

in (18) were obtained using the formula

UT,∆t =
N∏

m=1

exp
(
−i∆tH

(
m

N

))
=

N∏
m=1

U

(
m

N

)
exp

(
−i∆tH(0)

)
U †

(
m

N

)
, (20)

which follows from general formula (8) if we divide the time interval T into N intervals ∆t = T/N and
neglect the variations of Hamiltonian (12) inside these small intervals. When the sj increase synchronously,
this implies that the unit range of each parameter sj = s is divided into N parts. When the sj increase
successively, formula (8) transforms into formulas (13)–(15). Based on the ratio of the angles θj in the
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operators Bij = Bij(θj) in (18), we set N1 = N2 = 4N4 and N3 = N5 = 2N4 to ensure equal increments
of the angles, ∆sjθj = 13π/(4N), where ∆sj = 1/Nj = ∆t/Tj. We note that if we apply the sequence of
operators starting from the last, then formula (20) transforms into formula (17).

The computer calculations were performed using MATLAB for different values of the parameters ω∆t and
N = T/∆t (we set ∆t = const guided by the experimental conditions [7]). The degree of agreement between
the computed and exact theoretical vectors of state |ψ〉 given by (1) was estimated using the formula given
in [9] as

∣∣〈Ψ(T )|ψ〉
∣∣. The obtained error is shown in Fig. 1. The parameter ω∆t determines the value of

the gap. Therefore, as this parameter decreases, the accuracy also decreases because condition (11) that
Eq. (10) is adiabatic is violated. On the other hand, as ω∆t approaches π, the error due to replacing the
continuous variation with a discrete variation increases. The dependence of the error on N calculated for the
optimal value ω∆t = 1.6 shows that the accuracy of the inverse method proposed here, with the operators
applied successively, is not less than the accuracy of the method proposed in [6]. Applying the operators
simultaneously (when the sj increase synchronously) gives a smaller error because the angle increment
then decreases: ∆sjθj ≤ π/N . An additional contribution to the error in the case where the operators
are applied successively occurs because the Hamiltonian in evolution operator (15) varies discretely. The
value of the steps can be decreased by dividing the intervals of the operator action into several parts. For
example, all the sj can be successively increased to 0.5 in the first stage and from 0.5 to 1 in the second
stage.

5. Conclusion

The performed computation confirms the admissibility of the algorithm in which we apply operator
sequence (12) starting from the last and thus obtain formula (17). Following this formula, we can construct
the required sequence of RF pulses. The exponential containing ∆tH(0) in (17) is rotation about the z

axis. According to (18), the operators Uj(1/Nj) are products of the Hadamard operators and the operators
of the controlled phase shift by a small angle. The NMR methods for implementing these operators for spin
systems were described in Sec. 2. Here, we note that T is the formal time, while the actual running time of
the experiment is determined by the time required to realize the operators of the controlled phase shift, i.e.,
eventually, by the time required to rotate spins by a required angle as a result of the spin–spin interaction.
The times of one-qubit operators that rotate spins using the RF-field pulses are usually significantly shorter.
It follows from (17) that the time required to simulate adiabatic computation is twice as large as the running
time of standard quantum computation (1).

The above transformation of the evolution operator thus permits avoiding difficulties due to construct-
ing a nonlocal multiparticle Hamiltonian H(s) given by (9), which implements adiabatic algorithm (7).
The effective Hamiltonian of the required form is now formed automatically as a result of the action on
the spin–spin interaction Hamiltonian of RF-pulse sequence (17) chosen according to the algorithm. This
transformation, which is identical under the ideal conditions, unfortunately ceases to be identical because
of environmental excitations. The point is that the operators enclosing H(s) in formula (12) are reproduced
in (17) using the spin–spin interaction taken at different (other) instants of real time. Whether the proposed
scheme tolerates noises of different types is left for further investigation.

Appendix

Based on the well-known properties of exponential operators (see, e.g., Sec. 15 in [12]), we derive several
formulas used in the text. The equation of motion for the evolution operator of a quantum system whose
Hamiltonian consists of two parts, time-dependent and time-independent, has the form

d

dt
U(t) = −i{H0 + V (t)}U(t). (A.1)
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Fig. 1. Errors in the results of quantum adiabatic computation presented (a) as functions of the

evolution time N = T/∆t for ω∆t = 1.6 in the three methods for applying the sequence of operators

in (12) (the solid line corresponds to applying them simultaneously, the triangles correspond to ap-

plying them successively from the beginning to the end of the sequence, and the dots correspond to

applying them successively from the end to the beginning of the sequence) and (b) as functions of the

value of the locking field ω∆t/π for different values of N .

If we explicitly distinguish the operator of evolution under the action of the time-dependent part in this
operator,

UV (t) = P̂ exp
(
−i

∫ t

0

V (t1) dt1

)
,
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then

U(t) = P̂ exp
(
−i

∫ t

0

(H0 + V (t1)) dt1

)
= UV (t)UH(t). (A.2)

For the operator UH in the last formula, Eq. (A.1) implies the equation

d

dt
UH(t) = −i{U−1

V (t)H0UV (t)}UH(t),

whose solution is given by

UH(t) = P̂ exp
(
−i

∫ t

0

H0(t1) dt1

)
, (A.3)

where
H0(t) = U−1

V (t)H0UV (t). (A.4)

On the other hand, it follows from (A.2) that

UH(t) = U−1
V (t)U(t) = U−1

V (t)P̂ exp
(
−i

∫ t

0

(H0 + V (t1)) dt1

)
. (A.5)

Formulas (A.3)–(A.5) coincide with (8)–(10) if

H0 = H(0), V (t) =
K

T
, U−1

V (t) = U

are chosen as the parts of the Hamiltonian.
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