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Based on the ab initio band structure for NaxCoO2, we derive the single-electron energies and the effective
tight-binding description for the t2g bands using projection procedure. Due to the presence of the next-nearest-
neighbor hoppings, a local minimum in the electronic dispersion close to the � point of the first Brillouin zone
forms. Correspondingly, in addition to a large Fermi surface, an electron pocket close to the � point emerges
at high doping concentrations. The latter yields a scattering channel, resulting in a peak structure of the
itinerant magnetic susceptibility at small momenta. This indicates dominant itinerant in-plane ferromagnetic
fluctuations above a certain critical concentration xm, in agreement with neutron scattering data. Below xm, the
magnetic susceptibility shows a tendency toward the antiferromagnetic fluctuations. We further analyze the
many-body effects on the electronic and magnetic excitations using various approximations applicable for
different U / t ratios.
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I. INTRODUCTION

The recent discovery of the superconductivity in hydrated
lamellar cobaltate NaxCoO2·yH2O �Ref. 1� has raised tre-
mendous interest in the nature and symmetry of the super-
conductive pairing in these materials. The phase diagram of
this compound, with varying electron doping concentration x
and water intercalation y, is rich and complicated; in addition
to superconductivity, it exhibits magnetic and charge orders,
and some other structural transitions.2–5 The parent com-
pound, NaxCoO2, is a quasi-two-dimensional system with Co
in CoO2 layers forming a triangular lattice where the Co-Co
in-plane distance is two times smaller than the interplane
one. Na ions reside between the CoO2 layers and donate
additional x electrons to the layer, lowering the Co valence
from Co4+ �3d5 configuration� to Co3+ �3d6 configuration�
upon changing x from 0 �CoO2� to 1 �NaCoO2�. The hole in
the d orbital occupies one of the t2g levels, which are lower
than eg levels by about 2 eV.6 The degeneracy of the t2g
levels is partially lifted by the trigonal crystal-field distor-
tion, which splits the former into the higher-lying a1g singlet
and the lower two eg� states.

First-principles local-density approximation �LDA� and
local density approximation+Hubbard U �LDA+U� band
structure calculations predict NaxCoO2 to have a large Fermi
surface �FS� centered around the �= �0,0 ,0� point with
mainly a1g character and six hole pockets near the K
= �0,4� /3 ,0� points of the hexagonal Brillouin zone of
mostly eg� character for a wide range of x.6,7 At the same
time, recent surface-sensitive angle-resolved photoemission
spectroscopy �ARPES� experiments8–11 reveal a doping-
dependent evolution of the Fermi surface, which shows no
sign of hole pockets for a wide range of Na concentrations,
i.e., �0.3�x�0.8�. Instead, the Fermi surface is observed to
be centered around the � point and to have mostly a1g char-
acter. Furthermore, a dispersion of the valence band is mea-
sured which is only half of that calculated within the LDA.

This indicates the importance of the electronic correlations in
NaxCoO2.

Shubnikov–de Haas effect measurements revealed two
well-defined frequencies in Na0.3CoO2, suggesting either the
existence of Na superstructures or the presence of the eg�
pockets.12 The latter possibility was found to be incompatible
with existing specific heat data. Also, within the LDA
scheme, the Na disorder was shown to destroy the small eg�
pockets in Na2/3CoO2 because of their tendency toward
localization.13

The hole pockets are absent in the local spin density ap-
proximation+U �LSDA+U� calculations.14 However, in this
approach, the insulating gap is formed by a splitting of the
local single-electron states due to spin-polarization, resulting
in a spin polarized Fermi surface with an area twice as large
as that observed through ARPES.

The dynamical character of the strong electron correla-
tions has been taken into account within dynamical mean-
field theory �DMFT� calculations15 and, surprisingly, has led
to an enhancement of the area of the small Fermi surface
pockets, in contrast to the experimental observations. At the
same time, the use of the strong-coupling Gutzwiller ap-
proximation within the multiorbital Hubbard model with fit-
ting parameters16 yields an absence of the hole pockets at the
Fermi surface. According to these findings, the bands cross-
ing the Fermi surface have a1g character.

Concerning the magnetic properties, LSDA predicts
NaxCoO2 to have a weak intraplane itinerant ferromagnetic
�FM� state for nearly all Na concentrations, 0.3�x�0.7.17

On the contrary, neutron scattering finds on A-type antiferro-
magnetic order at Tm�22 K with an inter�intra�plane ex-
change constant Jc�ab�=12�−6� meV and with ferromagnetic
ordering within Co layer only for 0.75�x�0.9.18–20

In this paper, we derive an effective low-energy model
describing the bands crossing the Fermi level on the basis of
the LDA band-structure calculations. Due to the FS topology
inferred from LDA band structure, the magnetic susceptibil-
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ity �0�q ,�=0� reveals two different regimes. For x�0.56,
the susceptibility shows pronounced peaks at the
antiferromagnetic �AFM� wave vector QAFM
= ��2� /3 ,2� /�3� , �4� /3 ,0��, resulting in a tendency toward
in-plane 120° AFM order. For x�0.56, the susceptibility is
peaked at small momenta near QFM= �0,0�. This clearly
demonstrates the tendency of the system toward an itinerant
in-plane FM state. We find that the formation of the electron
pocket around the � point is crucial to the in-plane FM or-
dering at high doping concentrations. We further analyze the
role of the many-body effects calculated within the
fluctuation-exchange �FLEX�, Gutzwiller, and Hubbard-I ap-
proximations.

The paper is organized as follows. In Sec. II, the LDA
band-structure and tight-binding model parameters deriva-
tion are described. The doping-dependent evolution of the
magnetic susceptibility within the tight-binding model is pre-
sented in Sec. III. The role of strong electron correlations is
analyzed in Sec. IV. The last section summarizes our study.

II. TIGHT-BINDING MODEL

The band structure of Na0.61CoO2 was obtained within the
LDA �Ref. 21� in the framework of the tight-binding ap-
proach to the linear muffin-tin-orbitals using atomic sphere
approximation �TB-LMTO-ASA�22 computation scheme.
This compound crystallizes at 12 K in the hexagonal struc-
ture �P63/mmc symmetry group� with a=2.831 76 Å and c
=10.843 12 Å.23 A displacement of Na atoms from their
ideal sites 2d �1/3 ,2 /3 ,3 /4� on about 0.2 Å is observed in
defected cobaltates for both room and low temperatures. This
is probably due to the repulsion of the randomly distributed
Na atoms, locally violating hexagonal symmetry.23 In this
study, Na atoms were shifted back to the high-symmetry 2d
sites. Oxygen was situated in the high-symmetry 4f position
�1/3 ,2 /3 ,0.09057�7��. The obtained Co-O distance is
1.9066 Å, which agrees well with the experimentally ob-
served distance, 1.9072�4� Å.23 This unit cell was used for
all doping concentrations. The effect of the doping was taken
into account within the virtual crystal approximation where
each Co site has six nearest-neighbor virtual atoms with a
fractional number of valence electrons x and a core charge
10+x instead of randomly located Na. Note that all core
states of the virtual atom are left unchanged and correspond
to Na ones. We have chosen 4s, 4p, and 3d states of Co, 2s,
2p, and 3d states of O, and 3s, 3p, and 3d states of Na as the
valence states for the TB-LMTO-ASA computation scheme.
The radii of atomic spheres are 1.99 a.u. for Co, 1.61 a.u. for
O, and 2.68 a.u. for Na. Two classes of empty spheres
�pseudoatoms without core states� were added in order to fill
the unit cell volume.

In order to find an appropriate basis, the occupation ma-
trix was diagonalized and its eigenfunctions were used as the
new local orbitals. This procedure takes into account the real
distortion of the crystal structure. The new orbitals are not
pure trigonal a1g and eg� orbitals but we still use the former
notations for the sake of simplicity. 288 k points in the whole
Brillouin zone were used for the band-structure calculations
�12	12	2 mesh for kx, ky, and kz, respectively�.

The bands crossing the Fermi level are shown in Fig. 1.
One sees that they have mostly a1g character, consistent with
previous LDA findings.6 Note that the small FS pockets near
the K point with eg� symmetry present at x=0.33 �see Fig.
2�b�� disappear at higher doping concentrations because the
corresponding bands sink below the Fermi level. The differ-
ence in the dispersion along the K-M and L-H directions is
due to a non-negligible interaction between CoO2 planes. A
small gap between Co 3d and O 2p states at about −1.25 eV
present for x=0.61 disappears for x=0.33 due to the shift of
the d band to lower energy upon decreasing the number of
electrons.

In the following, we restrict ourselves to the model with
the in-plane hoppings inside the CoO2 layer to describe the
doping dependence of the itinerant in-plane magnetic order.
Hence, we neglect the bonding-antibonding �bilayer� split-
ting present in the LDA bands. This assumption seems to be
justified since the largest interlayer hopping matrix element
is an order of magnitude smaller than the intraplane one
�0.012 vs 0.12 eV�.

To construct the effective Hamiltonian and to derive the
effective Co-Co hopping integrals tfg


� for the t2g manifold,
we apply the projection procedure.24,25 Here, 
� denotes a

FIG. 1. �Color online� Calculated near-Fermi-level LDA band
structure and partial density of states �PDOS� for Na0.33CoO2. The
contribution of Co-a1g states is denoted by the vertical broadening
�in red� of the bands with thickness proportional to the weight of the
contribution. The crosses indicate the dispersion of the bands ob-
tained by projection on the t2g orbitals. The horizontal line at zero
energy denotes the Fermi level.

FIG. 2. �Color online� �a� Schematic crystal structure of the Co
layer in NaxCoO2 with hopping notations within the first three co-
ordination spheres �CS�. �b� LDA-calculated Fermi surface with
cylindrical part �violet� having mostly a1g character and six hole
pockets �red� having mostly eg� character. kx and ky coordinates of
the symmetry points are given in units of 2� /a with a being the
in-plane lattice constant.
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pair of orbitals, a1g, eg1� , or eg2� . The indices f and g corre-
spond to the Co sites on the triangular lattice. The obtained
hoppings and the single-electron energies are given in Table
I for three different doping concentrations. A comparison be-
tween the bands obtained using the projection procedure and
those obtained through the LDA bands is shown in Fig. 1,
confirming the Co-t2g nature of the near-Fermi level
bands.6,26 For simplicity, we have enumerated site pairs with
n=0,1 ,2 , . . ., tfg


�→ tn

� �see Fig. 2�a� and the correspondence

between in-plane vectors and index n in Table I�. Due to the
C3 symmetry of the lattice, the following equalities apply:
	t3


�	= 	t1

�	, 	t5


�	= 	t4

�	, and 	t9


�	= 	t7

�	. In addition, t1


�= t2

�

for a1g→a1g hoppings, which, however, does not hold for
eg1,2� orbitals. Since the hybridization between the a1g and the
eg� bands is not small, a simplified description of the bands
crossing the Fermi level in terms of the a1g band only �ne-
glecting the eg� band and the corresponding hybridizations
�see, for example, Ref. 27�� may lead to an incorrect result
due to a higher symmetry of the a1g band.

In summary, the free-electron Hamiltonian for the CoO2
plane in a hole representation is given by

H0 = − 

k,
,�

�
 − ��nk
� − 

k,�




,�

tk

�dk
�

† dk��, �1�

where dk
� �dk
�
† � is the annihilation �creation� operator for

the hole with momentum k, spin �, and orbital index 
,
nk
�=dk
�

† dk
�, and tk

� is the Fourier transform of the hop-

ping matrix element, 
 is the single-electron energies, and �
is the chemical potential. Upon introducing matrix notations
�t̂k�
�= tk


� and �t̂n�
�= tn

�, the hopping matrix elements in

the momentum representation are given by

t̂k = 2t̂1 cos k2 + 2t̂2 cos k3 + 2t̂3 cos k1 + 2t̂4 cos�k1 + k3�

+ 2t̂5 cos�k2 + k1� + 2t̂6 cos�k1 − k2� + 2t̂7 cos 2k2

+ 2t̂8 cos 2k3 + 2t̂9 cos 2k1, �2�

where k1= ��3/2�kx− 1
2ky, k2=ky, and k3= ��3/2�kx+ 1

2ky.
Note that the parameters do not change significantly upon

changing the doping concentration. In Fig. 3, we show two
results of the rigid-band approximation with the Hamiltonian
�Eq. �1�� and the hopping values obtained through LDA cal-
culation for two different doping concentrations, x=0.33 and

TABLE I. Single-electron energies 
 �relative to a1g� and in-plane hopping integrals tn

� for NaxCoO2, where x=0.33, 0.61, and 0.7 �all

values are in eV�.

In-plane vector �0, 1� �
�3

2
, 1

2 � �
�3

2
, − 1

2 � ��3, 0� �
�3

2
, 3

2 � �
�3

2
, − 3

2 � �0, 2� ��3, 1� ��3, −1�


 �
 
→� t1

� t2


� t3

� t4


� t5

� t6


� t7

� t8


� t9

�

x=0.33

a1g 0.000 a1g→a1g 0.123 0.123 0.123 −0.022 −0.022 −0.021 −0.025 −0.025 −0.025

a1g→eg1� −0.044 0.089 −0.044 0.010 0.010 −0.021 −0.021 0.042 −0.021

eg1� −0.053 a1g→eg2� −0.077 0.000 0.077 0.018 −0.018 0.000 −0.036 0.000 0.036

eg1� →eg1� −0.069 −0.005 −0.069 0.018 0.018 −0.026 −0.017 −0.085 −0.017

eg2� −0.053 eg1� →eg2� 0.037 0.000 −0.037 −0.026 0.026 0.000 −0.039 0.000 0.039

eg2� →eg2� −0.026 −0.090 −0.027 −0.011 −0.011 0.033 −0.062 0.006 −0.062

x=0.61

a1g 0.000 a1g→a1g 0.110 0.110 0.110 −0.019 −0.019 −0.019 −0.023 −0.023 −0.023

a1g→eg1� −0.050 0.100 −0.050 0.008 0.008 −0.016 −0.017 0.035 −0.017

eg1� −0.028 a1g→eg2� 0.087 0.000 −0.087 −0.014 0.014 0.000 0.030 −0.000 −0.030

eg1� →eg1� −0.069 −0.031 −0.069 0.015 0.015 −0.022 −0.016 −0.076 −0.016

eg2� −0.028 eg1� →eg2� −0.022 0.000 0.022 0.021 −0.021 0.000 0.035 0.000 −0.035

eg2� →eg2� −0.044 −0.081 −0.044 −0.009 −0.009 0.027 −0.056 0.005 −0.056

x=0.7

a1g 0.000 a1g→a1g 0.105 0.105 0.105 −0.018 −0.018 −0.018 −0.022 −0.022 −0.022

a1g→eg1� −0.052 0.104 −0.052 0.007 0.007 −0.015 −0.016 0.033 −0.016

eg1� −0.019 a1g→eg2� −0.090 0.000 −0.090 0.013 −0.013 0.000 −0.028 0.000 0.028

eg1� →eg1� −0.068 −0.039 −0.068 0.014 0.014 −0.020 −0.015 −0.073 −0.015

eg2� −0.019 eg1� →eg2� 0.016 0.000 −0.016 −0.020 0.020 0.000 −0.034 0.000 0.034

eg2� →eg2� −0.048 −0.077 −0.049 −0.009 −0.009 0.026 −0.054 0.005 −0.054
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x=0.61 �see Table I�. The doping concentration used to cal-
culate the chemical potential � was fixed to be x=0.61 for
both Hamiltonians. Although one finds the pronounced dif-
ferences in the dispersion around the M point, they are small
around the FS. Since most of the physical quantities are de-
termined by the states lying close to the Fermi level, we can
safely ignore the small differences of the band structure and
describe the doping evolution of the NaxCoO2 by simply
varying the chemical potential. In the following, we will use
ab initio parameters calculated for x=0.33 and change the
chemical potential to achieve different doping concentra-
tions.

Within the rigid-band approximation, the eg� hole pockets
are well below the Fermi level for x�0.41. Most important,
however, we find that the local minimum of the band disper-
sion around the � point �see Fig. 3� yields an inner FS con-
tour centered around this point. The area of this electron FS
pocket increases upon increasing the doping concentration x.
As we will show later, the main reason for the local mini-
mum around the � point is the presence of the next-nearest-
neighbor hopping integrals, which enter our tight-binding
dispersion. Although this minimum is not yet directly ob-
served by ARPES experiments, note that the inner FS con-
tour would reduce the total FS volume and therefore may
explain why the volume of the FS observed in ARPES so far
is larger than what follows from Luttinger’s theorem.28 Fur-
thermore, an emergence of this pocket would influence the
Hall conductivity at high doping concentrations, which
would be interesting to check experimentally.

Note that the appearance of the inner contour of the FS
around the � point for large doping concentrations is not
unique to our calculations, previously, it has been obtained
within the LDA calculations for a single Co layer per unit
cell.14

III. MAGNETIC SUSCEPTIBILITY

To analyze the possibility of the itinerant magnetism, we
calculate the magnetic susceptibility �0�q ,�=0� based on
the Hamiltonian H0. The doping-dependent evolution of the
peaks in Re �0�q ,0� is shown in Fig. 4. At x=0.41, the eg�
bands are below the Fermi level, and the FS takes the form
of the rounded hexagon. This results in a number of nesting
wave vectors around the antiferromagnetic wave vector

QAFM. The corresponding broad peaks in the Re �0�q ,0� ap-
pear around QAFM, indicating the tendency of the electronic
system toward a 120° AFM spin-density wave �SDW� or-
dered state.29 Upon increasing doping, the Fermi level
crosses the local minimum at the � point, resulting in an
almost circular inner FS contour. As soon as this change of
the FS topology occurs, the scattering at the momentum
QAFM is strongly suppressed at xm�0.56. Simultaneously, a
new scattering vector Q1 at small momenta appears. Corre-
spondingly, the magnetic susceptibility peaks at small mo-
menta, indicating the tendency of the magnetic system to-
ward an itinerant SDW order with small momenta. The

FIG. 3. �Color online� Calculated tight-binding energy disper-
sion, the density of states �DOS�, and the Fermi surface for
Na0.61CoO2 within the rigid-band approximation with ab initio pa-
rameters for x=0.61 �the solid blue curve� and for x=0.33 �red
dashed curve�. The horizontal �green� line denotes the chemical
potential � for x=0.61.

FIG. 4. �Color online� The contour plot of the real part of the
magnetic susceptibility Re �0�k ,�=0� as a function of the momen-
tum in units of 2� /a �left�, and the Fermi surface for corresponding
doping concentration x �right�. The arrows indicate the scattering
wave vectors Qi as described in the text.
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relevance of the local minimum around the � point for the
formation of the scattering at small momenta was originally
found in Ref. 27.

For large x, the area of the inner FS contour increases,
leading to a further decrease of the Q1. Observe that for x
�0.88, the FS topology again changes, yielding six distant
FS contours that move Q1 further to zero momenta. The
scattering at small momenta seen in the bare magnetic sus-
ceptibility for x�xm is qualitatively consistent with the fer-
romagnetic ordering at QFM= �0,0�, observed in the neutron-
scattering experiments.18–20

IV. EFFECTS OF STRONG ELECTRON CORRELATIONS

It is important to understand the impact of electronic cor-
relations on the magnetic instabilities obtained within the
rigid-band approximation. Since obtained magnetic suscepti-
bility depends mostly on the topology of the FS one expects
that the behavior shown in Fig. 4 will be valid even if one
considers a random-phase approximation �RPA� susceptibil-
ity with an interaction term Hint taken into account, at least in
case the only interaction is the on-site Hubbard repulsion U.
The only difference would be a shift of the critical concen-
trations xm, at which the FS topology changes and the ten-
dency to the AFM order changes toward the tendency to the
FM ordered state. Similar to Refs. 16 and 30, we add the
on-site Coulomb interaction terms to Eq. �1�. At present, it is
not completely clear to which extent the electronic correla-
tions govern the low-energy properties in NaxCoO2 due to
multiorbital effects in this compound, which complicates the
situation. Therefore, in the following, we discuss three dif-
ferent approximations valid for different U / t ratios.

A. Hubbard-I approximation

To analyze the regime of strong electron correlations, we
project the doubly occupied states out and formulate an ef-
fective model equivalent to the Hubbard model with an infi-
nite value of U. This approximation could be justified by the
large ratio of the on-site Coulomb interaction on the CoO2
cluster U with respect to the bandwidth W. In the atomic
limit, the local low-energy states on the Co sites are the
vacuum state 	0� and the single-occupied hole states 	a��,
	e1��, and 	e2��. The single-particle hole excitations and lo-
cal atomic states are shown in Fig. 5. The simplest way to

describe the quasiparticle excitations between these states is
to use the projective Hubbard X operators that take the no-
double occupancy constraint into account automatically:31

Xf
m↔Xf

p,q�	p�q	, where index m↔ �p ,q� enumerates quasi-
particles. There is a simple correspondence between the fer-
mioniclike X operators and single-electron creation-
annihilation operators: df
�=
m�
��m�Xf

m, where �
��m�
determines the partial weight of a quasiparticle m with spin �
and orbital index 
. In these notations, the Hamiltonian of
the Hubbard model in the limit U→� has the form

H = − 

f ,p

�p − ��Xf
p,p − 


f�g



m,m�

tfg
mm�Xf

m†Xg
m�. �3�

To study a quasiparticle energy spectrum of the system
and its thermodynamics, we use the Fourier transform of the
two-time retarded Green function in the frequency represen-
tation G
��k ,E��dk
� 	dk
�

† ��E. This can be rewritten as

G
��k ,E�=
m,m��
��m����
* �m��Dmm��k ,E�, where

Dmm��k ,E�= Xk
m 	Xk

m�†��E is the matrix Green function in the
X-operator representation.

Using the diagram technique for Hubbard X operators,32,33

one obtains the generalized Dyson equation34

D̂�k,E� = �Ĝ0
−1�E� − P̂�k,E�t̂k + �̂�k,E��−1P̂�k,E� . �4�

Here, Ĝ0
−1�E� stands for the �exact� local Green function,

G0
mm��E�=�mm� / �E− �p−q��. In the Hubbard-I approxima-

tion, the self-energy �̂�k ,E� is equal to zero and the strength

operator P̂�k ,E� is replaced by the sum of the occupation

factors, Pmm��k ,E�→Pmm�=�mm��Xf
p,p�+ Xf

q,q��,
m=m�p ,q�. Here, “¯�” stands for the usual thermodynamic
average. Thus, one obtains

D̂�0��k,E� = �Ĝ0
−1 − P̂t̂k�−1P̂ . �5�

In the paramagnetic phase, the occupation factors are
Xf

0,0�=x, Xf
a�,a��= �1−x� /2, Xf

e1,2�,e1,2��=0 which yields the

diagonal form of the strength operator, and P̂=diag��1
+x� /2 ,x ,x�. Therefore, the quasiparticle bands formed by
the a1g→a1g hoppings will be renormalized by the �1
+x� /2 factor, while the quasiparticle bands formed by the eg�
hopping elements will be renormalized by x.

In Fig. 6, the quasiparticle spectrum, the DOS, and the FS
are displayed in different approximations. Within Hubbard-I
approximations, one finds the narrowing of the bands upon
lowering the doping concentration x due to the doping de-
pendence of the quasiparticle’s spectral weight introduced by

the strength operator P̂. However, the doping evolution of
the FS is qualitatively similar to that in the rigid-band pic-
ture. Namely, the bandwidth reduction and the spectral
weight renormalization do not change the topology of the
FS. As a result, the presence of the strong electronic corre-
lations within Hubbard-I approximations does not qualita-
tively change our results for the bare susceptibility. Quanti-
tatively, the critical concentration xm shifts toward higher
values of the doping and becomes xm�0.68. The reason for
this shift is the band narrowing and the renormalization of

FIG. 5. �Color online� A schematic picture of the local atomic
states on Co and the single-particle excitations in NaxCoO2. Here,
nh stands for number of holes and mi enumerates single-particle
excitations. The filling factor of the corresponding state upon
changing the doping concentration x is given in square brackets.

ITINERANT IN-PLANE MAGNETIC FLUCTUATIONS AND… PHYSICAL REVIEW B 75, 094511 �2007�

094511-5



the quasiparticle’s spectral weight, which enters the equation
that determines the position of the chemical potential �.

Luttinger’s theorem, which holds for a perturbative ex-
pansion of Green’s function in terms of the interaction
strength, is violated within the Hubbard-I approximation.
This violation is due to the renormalization of the spectral
weight of Green’s function by the occupation factors in the
strength operator in Eq. �4�. This is the reason why in spite of
the eg� band narrowing, the eg� hole pockets at the Fermi sur-
face are still present at x=0.33.

B. Gutzwiller approximation

The Gutzwiller approximation35–37 for the Hubbard model
provides a good description for the correlated metallic sys-
tem. Its multiband generalization was formulated in Ref. 38.
In this approach, the Hamiltonian describing the interacting
system far from the metal-insulator transition for U�W,

H = H0 + 

f ,


U
nf
↑nf
↓, �6�

with H0 being the free electron Hamiltonian �1�, is replaced
by the effective noninteracting Hamiltonian

Heff = − 

f ,
,�

�
 + �
� − ��nf
� − 

f�g,�




,�

t̃ fg

�df
�

† dg�� + C .

�7�

Here, t̃ fg

�= tfg


��q
�
�q�� is the renormalized hopping, q
�

=x / �1−n
��, n
�= �0	nf
�	�0��nf
��0 is the orbital’s fill-
ing factors, and x=1−

�n
� is the equation for the chemi-
cal potential. �
� are the Lagrange multipliers yielding the
correlation-induced shifts of the single-electron energies. The
constant C is determined from the condition that the ground-
state energy is the same for both Hamiltonians,

�0	Heff	�0� = �g	H	�g� , �8�

where 	�0� is the wave function of the free-electron system
�Eq. �7�� and 	�g� is the Gutzwiller wave function for the
Hamiltonian �Eq. �6��.

The Lagrange multipliers are determined by minimizing
the energy,

�0	Heff	�0� = − 


,�

�
 + �
� − ��nf
��0

− 

f�g,�




,�

t̃ fg

�df
�

† dg���0 + C , �9�

with respect to the orbital filling factors n
�. Here, C
=

,��
�n
�, as determined from Eq. �8�. This results in
the following expression for the single-electron energy renor-
malizations:

�
� =
1

2�1 − n
�� 

f�g,�

t̃ fg

�df
�

† dg���0. �10�

It is this energy shift that forces the eg� FS hole pockets to
sink below the Fermi energy,16 which is clearly seen in the
doping-dependent evolution of the quasiparticle dispersion
and the FS, as obtained within the Gutzwiller approximation
�Fig. 6�. Although the narrowing of the bands due to strong
correlations is similar to the one found in the Hubbard-I ap-
proximation, the FS obeys Luttinger’s theorem. Note that, in
contrast to the Hubbard-I approximation, the relative posi-
tions of the t2g bands are also renormalized by �
�.

At the same time, for x�0.4, the topology of the FS in
the Gutzwiller approximation is qualitatively the same as in
the rigid-band picture. This also yields similar results for the
bare susceptibility’s doping dependence discussed in Sec. III.
The only effect of the strong correlations for �0 is the ob-
served shift of the critical concentration toward higher val-
ues, xm�0.6. This is due to combined effect of the bands
narrowing and the doping dependence of the a1g and eg�
bands’ relative positions, determined by Eq. �10�.

Note that, for x�0.4, due to different FS topologies that
occur in the Gutzwiller approximation, the bare susceptibil-
ity differs from that obtained in Ref. 29 where the strong
renormalization of the electronic bands removing eg� pockets
from the FS was neglected.

C. Fluctuation exchange approximation

A certain disadvantage of the Gutzwiller- and Hubbard-I-
like approximations is that the dynamic character of elec-

FIG. 6. �Color online� Calculated band structure and the Fermi
surface topology for NaxCoO2 for x=0.33, 0.47, 0.58, and 0.68 The
dashed �red�, solid �blue�, and dash-dotted �cyan� curves represent
the results of the rigid-band, the Gutzwiller, and the Hubbard-I ap-
proximations, respectively. The horizontal �green� line denotes the
position of the chemical potential �.
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tronic correlations is not taken into account within these ap-
proaches. At the same time, the momentum and frequency
dependencies of the self-energy ��k ,�� play a crucial role,
in particular, in determining the low-energy excitations close
to the Fermi level. In this section, we focus on the a1g band
with nearest- and next-nearest-neighbor hopping integrals
only and employ the single-band FLEX �Ref. 39� approxi-
mation which sums all particle-hole �particle� ladder graphs
for the generating functional self-consistently valid for inter-
mediate strength of the correlations. The FLEX equations for
the single-particle Green’s function G, the self-energy �, the
effective interaction V, the bare ��0�, and renormalized spin
��s� and charge ��c� susceptibilities read

Gk��n� = ��n − �k + � − �k��n��−1, �11�

�k��n� =
T

N


p,m

Vk−p��n − �m�Gp��m� , �12�

Vq��m� = U2�3

2
�q

s ��m� +
1

2
�q

c��m� − �q
0��m�� , �13�

�q
0��m� = −

T

N


k,n

Gk+q��n + �m�Gk��n� , �14�

�q
s,c��m� =

�q
0��m�

1 � U�q
0��m�

, �15�

where �n= i�T�2n+1� and �m= i�T�2m�. Here �k is the a1g

bare band dispersion. In the last equation, the “�” sign in the
denominator corresponds to the �q

s ��m�, while the “�” sign
corresponds to the �q

c��m�. We compute the Matsubara sum-
mations using the “almost real contour” technique of Ref. 40.
That is, the contour integrals are performed with a finite shift
i� �0��� iT� /2� into the upper half-plane. All final results
are analytically continued from �+ i� onto the real axis �
+ i0+ by Padé approximation. The following results are based
on FLEX solutions using a lattice of 64	64 sites with 4096
equidistant � points in the energy range of �−30,30�. The
temperature has been kept at T=0.05�, where � is the hop-
ping amplitude to the nearest neighbors for the a1g band
corresponding to t1

a1ga1g = t2
a1ga1g = t3

a1ga1g. The Hubbard repul-
sion was set to U=8�.

Previously, the FLEX approximation has been applied
successfully to the study of superconductivity as well as spin
and charge excitations in NaxCoO2.41,42 Complementary to
this, we will focus on the quasiparticle dispersion and study
the impact of the momentum and frequency dependencies of
the ��k ,��, and the role played by the next-nearest-neighbor
hopping integral �� corresponding to t4

a1ga1g = t5
a1ga1g = t6

a1ga1g.
The quasiparticle dispersion Ek, which is determined from
equation Ek−�k+�−�k�Ek�=0, is shown in Fig. 7 for ��
=0 and ��=−0.45, in units of �. First, observe that the local
minimum around the � point appears only if the next-
nearest-neighbor hopping integral �� is included which
agrees with our previous findings. In addition, we obtain a
pronounced mass enhancement of the order of unity at the
FS crossings—the so-called kink structure. This enhance-

ment is due to low-energy spin fluctuations which are present
in �q

s ���.41

To shed more light on the two-dimensional spin correla-
tions, in Fig. 8 we display the static spin structure factor
Re �k

s ��=0� from the FLEX for two different doping con-
centrations. As doping increases from x=0 toward x=0.35,
the maximum in the spin susceptibility �k

s ��=0� moves to-
ward the K point of the first Brillouin zone �BZ� and devel-
ops into a sharp and commensurate peak at QAFM, and the
incommensurate spin fluctuations are suppressed. One may
also note that the commensurate peak is �60% larger for

FIG. 7. Quasiparticle dispersion Ek �in units of �, relative to ��
within FLEX approximation for �a� ��=0 and �b� ��=−0.45 and for
two doping concentrations.

FIG. 8. Doping dependence of the static spin structure factor
Re �k

s ��=0� for �a� ��=0 and �b� ��=−0.45. Note that for large U
=8�, the commensurate peak at K point is absent at a very low x.
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��=−0.45 than for ��=0. These results are consistent with
those obtained in previous sections. We further notice that
the quasiparticle dynamics go through a smooth evolution
with doping in NaxCoO2, and show no signs of unusual be-
havior at x=0.

The frequency dependence of the imaginary part of the
quasiparticle self-energy, i.e., Im �k, near the FS is shown in
Fig. 9. We find the self-energy to be nearly isotropic along
the FS with only a weak maximum occurring into the direc-
tion of the commensurate spin fluctuations. Near the Fermi
energy, the self-energy is clearly proportional to �2 at low
energies for all dopings shown, which is indicative of the
normal Fermi-liquid behavior. This is in sharp contrast to the
FLEX analysis of the Hubbard model on the square lattice
close to a half-filling. There one typically finds “marginal”
Fermi-liquid behavior with Im �k�� over a wide range of
frequencies.43,44 Therefore, along this line one is tempted to
conclude that the normal state of the superconducting cobal-
tates is more of a conventional metallic nature than in the
high-Tc cuprates. This becomes even more evident, if one
realizes from Fig. 9 that the quasiparticle scattering rate dis-
plays its smallest curvature for x=0.35, which implies that
the quasiparticles are rather well defined there. For lower x,
the proximity of the FS to the van Hove singularity �see flat
region of dispersion in Fig. 7� enhances both the absolute
value of Im �k�� and of the curvature. This effect is most
pronounced for ��=0.

V. CONCLUSION

To conclude, we have calculated the doping-dependent
magnetic susceptibility in the tight-binding model with ab

initio calculated parameters and found that, at a critical dop-
ing concentration xm, electron pocket develops on the FS in
the center of the Brillouin zone. For x�xm, the system shows
a tendency toward a 120° AFM ordered state, while for x
�xm, a peak in the magnetic susceptibility forms at small
wave vectors, indicating a strong tendency toward an itiner-
ant FS state. Within a tight-binding model, we have esti-
mated xm to be approximately 0.56. Analyzing the influence
of a strong Coulomb repulsion and the corresponding reduc-
tion of the bandwidth and the quasiparticle spectral weight in
the strong-coupling Hubbard-I and Gutzwiller approxima-
tions, we have shown that the critical concentration changes
to xm�0.68 and xm�0.6, respectively. At the same time, the
underlying physics of the formation of the itinerant FM state
remains the same.

We neglected the bonding-antibonding splitting due to the
three dimensionality in the nonintercalated compounds. This
splitting was taken into account in Ref. 41, where within the
FLEX approximation, the single a1g-band Hubbard model
was considered. The results obtained also suggest a tendency
to FM fluctuations for high doping concentrations. The pres-
ence of a local band minimum around the � point played a
crucial role, as we also found in our present study.

To analyze the low-energy quasiparticle properties at low
doping concentrations, we have employed the single-band
Hubbard model within the FLEX approximation. We have
found a significant FS mass enhancement of order unity due
to quasiparticle scattering from spin fluctuations. In contrast
to the Hubbard model on the square lattice, we have found
that the quasiparticle scattering rate displays a conventional
Fermi-liquid type of energy dependence. We have also
shown that the static spin structure factor exhibits a large
commensurate peak at wave vector QAFM for doping concen-
trations of x�0.35. This response was found to be signifi-
cantly enhanced by the next-nearest-neighbor hopping, em-
phasizing its significance.
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