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We consider a transmission through the potential relief created by a split gate constriction �quantum point
contact�. Simultaneously, dc and ac voltages Vup�t�=V0+V1 cos �t and Vdw�t�=V0+V1 cos��t+�� are applied
to the gates. We show numerically that the in-phase ac voltages ��=0� smear the conductance steps of the
stationary conductance, while the antiphase ac voltages ��=�� only shift the conductance steps. Moreover,
computation of currents in probing wires connected cross to the time-periodic quantum point contact reveals a
net current for ��0,�. This implies that the Schrödinger equation described by the electron transport under
the effect of the time-periodic long electrodes is equivalent to the transmission in the crossed effective mag-
netic and electric fields, where the in-plane magnetic field b�� is directed along the transport axis and the
electric field e�� is directed perpendicular to the plane of electron transport. Then the vector e�b gives rise
to the galvanomagnetic current directed cross to the electron transport.
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I. INTRODUCTION

Recent decades have seen rapid development in experi-
ment and theory on “quantum devices,” structures whose di-
mensions are comparable with the wavelength of electrons
within them.1 Ballistic electronic devices are typically based
on a two-dimensional electron gas �2DEG� in a III-V hetero-
structure where scattering is small because of the separation
between the donors and electrons. The electrons are then
guided by electrostatic fields produced by patterned gates on
the surface of the structure to produce long wires �equivalent
to electromagnetic waveguides� as well as short wires or
quantum point contacts.2–4

It is known that the conductance of a one-dimensional
ballistic wire is quantized in units of 2e2 /h. This was discov-
ered experimentally2–4 in split gate induced constrictions in
high-mobility 2DEGs. Both experimental5 and theoretical
results6–10 have shown that the accuracy of the observed
quantization is sensitive to the detailed shape of a confining
potential and the presence of impurities. Essential advan-
tages of this system are its reduced dimensionality and lower
electron-gas density, with correspondingly large Fermi wave-
length, which can be varied locally by means of gate elec-
trodes. Point contacts of variable width of the order of the
Fermi wavelength have been defined by applying a negative
voltage to a split gate on top of the heterostructure. A view of
the split gate is presented in Fig. 1�a�, which consists of wide
straight electron waveguide with the split gate above the
waveguide. The confining potential results in the shape of a
quantum point contact �QPC� as shown in Fig. 1�b�.

In the present work, we consider the transmission through
the split gate biased by the dc and ac voltages

Vup�t� = V0 + V1 cos��t�, Vdw�t� = V0 + V2 cos��t + �� ,

�1�

both applied to the upper and lower gates, respectively. If the
waveguides were closed, the device could serve as an elec-
tron pump11,12 that generates dc between two probe elec-
trodes that are kept at the same bias. In recent years, electron

pumps consisting of small semiconductor quantum dots have
received considerable experimental13,14 and theoretical
attention.15–22 Then one can expect that a similar mechanism
could give rise to the output currents in two probing wires
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FIG. 1. �a� A wide straight waveguide with implied split gate on
top of the heterostructure. Voltages �1� are applied to the gates. �b�
The potential relief �2� created by the split gate with applied dc
voltage V0 for V1=0. The bold arrow shows electron flow through
the potential.
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shown in Fig. 1�a� not being equal to each other for electron
flow in an open waveguide through the QPC. Hence we ex-
pect the pumped Hall-like effect because of the phase differ-
ence in ac voltages. Moreover, we justify this effect by
equivalence of the system to the electron transmission in
crossed electric and magnetic fields. The aim of the present
paper is to demonstrate the Hall-like effect for the transmis-
sion through the ac biased QPC provided that the phases of
the ac voltages applied to the gates differ. We calculate the
conductance of QPC as dependent on the Fermi energy of
incident electrons E, the frequency of the ac voltages, and
the phase difference �.

II. TIME-PERIODIC POTENTIAL

The solution for potential profiles created by patterned
polygon gates is given by Davies et al.23 For the form of
gates shown in Fig. 1�a� �split gate wire�, the solution can be
presented as

V�x,y,t� = �
�=up,low

V��t�v��x,y� ,

vup�x,y� =
1

2�
arctan

d + x

h
+

1

2�
arctan

d − x

h
− g�a + y,d

+ x� − g�a + y,d − x� ,

vlow�x,y� =
1

2�
arctan

d + x

h
+

1

2�
arctan

d − x

h
− g�a − y,d

+ x� − g�a − y,d − x� , �2�

where

g�u,v� =
1

2�
arctan

uv
hR

, R = �x2 + y2 + h2,

a is half of the gap of the split gate, d is half of the width of
gates, h is the depth of 2DEG, and � counts the upper and
lower gates shown in Fig. 1�a�.

The stationary potential for V1=0 and V2=0 is shown in
Fig. 1�b�. Profiles of the confining potential �2� for the dif-
ferent phases and times are shown in Fig. 2. One can see
from Fig. 2�a� that for �=0, the in-phase ac voltages modu-
late the width of QPC for the fixed Fermi energy. If the
phases differ by �, the antiphase ac voltages give rise to
effective harmonic vibration of QPC cross to the transport
axis as shown in Fig. 2�b�. A similar problem was considered
by Tang and Chu,24 who studied the quantum transport in a
narrow constriction which is acted upon by an external time-
dependent electric field. However, the essential difference is
that, in our case, two gates responsible for the narrow con-
striction are time dependent. Moreover, we allow the ac volt-
ages of the gates to have different phases.

III. GENERAL EQUATIONS

The methods of numerical calculation of the conductance
through one-dimensional time-periodic potentials are well
developed.25–29 The development of the method for two-

dimensional structures is straightforward. We assume that
electrons are incident to the two-dimensional waveguide
with the width L. Then the wave functions of electrons in the
pth subband incident from the left are

�p�x,y,t� =
1

�2�kp

	p�y�eikpx−iEt, �3�

where

	p�y� = �2 sin��py�, p = 1,2,3, . . . , �4�

E = kp
2 + �2p2. �5�

The energy E is measured in terms E0=
2 /2m*L2, and the
Cartesian coordinates x ,y are measured in terms of the width
L. For the transmission through QPC, the electron undergoes
a transition to the different subbands p�. Moreover, because
of the time-periodic modulation of the QPC potential, the
incident electron acquires the quasienergies E+n�, n
=0, ±1, ±2, . . .. In order to formulate the problem in terms of
the transmission and reflection amplitudes, we assume that
the potential of QPC gates can be neglected at long distance
from QPC. In practice, this distance exceeds the depth h of
the 2DEG. Therefore we can split the whole space into three
parts, the left incoming lead, the right outgoing lead, and the
region of the time-periodic QPC. Then the solution of the
time-dependent Schrödinger equation in the leads can be
written analytically:
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FIG. 2. Profiles of the time-periodic QPC potential �2� cross to
the transport axis for �t=� /2 �solid lines� and �t=3� /2 �dashed
lines�. �a� �=0 and �b� �=�.
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�p�x,y,t� = �eikpx�p�y�e−iEt + �
p�m

rpp�me−ikp�mx�p��y�e−i�E+m��t left

�
p�m

tpp�meikp�mx�p��y�e−i�E+m��t right, � �6�

where

E + m� = kpm
2 + �2p2,

�p�y� = �2 sin �py . �7�

In the scattering region with the time-periodic potential �2�, we present the wave function as

��x,y,t� = �
m

�m�x,y�e−i�E+m��t.

Then the Schrödinger equation takes the following form:

�E + m���m�x,y� = − �2�m�x,y� + V0�
�

v��x,y��m�x,y� +
1

2�
�

V�v��x,y���m+1�x,y�ei�� + �m−1�x,y�e−i��	 , �8�

where the index � enumerates the gates.
We approximate this equation by the finite-difference one introducing the grid x=a0l, y=a0j, where l=0,1 ,2 , . . . ,Nx+1 and

j=1,2 ,3 , . . . ,Ny, Lx=a0Nx, and d=a0Ny =1. Lx is the length of the scattering region:

a0
2�E + m���m�l, j� = �m�l + 1, j� + �m�l − 1, j� + �m�l, j + 1� + �m�l, j − 1� − 4�m�l, j� + a0

2V0�
�

v��l, j��m�l, j� +
1

2�
�

a0
2V�v��l, j�

���m+1�l, j�ei�� + �m−1�l, j�e−i��	 . �9�

In order to obtain the closed system of equations, we have to substitute into this equation the wave functions of the leads
�6� for the slices l=0 and l=Nx+1, respectively,

�p�l, j,t� = �eikpa0l�p�j�e−iEt + �
p�m

rpp�me−ikp�ma0l�p��j�e−i�E+m��t left

�
p�m

tpp�meikp�ma0l�p��j�e−i�E+m��t right, � �10�

where Eqs. �7� are modified the finite-difference approxima-
tion as follows:

a0
2�E + m�� = 4 − 2 cos kpma0 − 2 cos

�pa0

Ny + 1
,

�p�j� =� 2

Ny + 1
sin

�pj

Ny + 1
. �11�

Finally, substituting Eq. �10� into Eq. �9� for the slices l=0
and l=Nx+1, respectively, we obtain the inhomogeneous
system of linear algebraic equations, which can be written in
the following matrix form:

H̃�� = g� , �12�

where H̃ is the matrix of rank N= �Nx+2�Ny�2M +1�, �� is
the vector of the same dimension N of the Ny�2M +1� am-
plitudes of the reflection rpp�m, m=−M ,−M +1, . . . ,M
−1,M, of the same number of the amplitudes of the trans-

mission tpp�m, and the NxNy�2M +1� number of the ampli-
tudes �ml , j specified the wave function in the scattering re-
gion.

We define the conductance G as a ratio of output current
to the input one.30,31 In the tight-binding approximation, the
current-density component along the incident direction can
be evaluated as32

jx�l, j� = j0 Im��*�l, j���l + 1, j�	, j0 =
e


2m*d
, �13�

which is transformed into the well-known quantum-
mechanical expression for the current density in the con-

tinual limit a0→0. Here, ¯̄= 1
T
0

Tdt. . . means an average of
the period of oscillations. After substitution of Eq. �10�
into Eq. �13�, integration over the lead section, and averaging
over the period of oscillations, we obtain the input
current Jin= j0 sin�kp0a0� and the output current Jout

= j0�p�m�tpp�m�2 sin�kp�ma0�. Therefore the conductance
equals
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G = �
p�m

sin kp�ma0

sin kp0a0
�tpp�m�2, �14�

which reduces to the standard expression for the conductance
in the continual approximation.29,30

IV. TIME-PERIODIC QPC

First, we consider the conductance of the time-periodic
QPC without probing wires. The results of computation for
the conductance versus the Fermi energy are shown in Fig. 3.

For the stationary case, one can see that the conductance
is approximately quantized by the value 2e2 /h with oscilla-
tions, because of the quantum interference due to the finite
length of QPC as is well known.6–10 Although the case of the
antiphase ac voltages does not change the width of QPC
compared to the stationary case as shown in Fig. 2�b�, one
can see from Fig. 3 that the conductance steps shift to lower
energies. The in-phase ac voltages give rise to smearing of
the conductance steps as shown in Fig. 3 by the thick solid
line. This effect is a result of the fact that the characteristic
times of the electron transmission through QPC of order
1 /�E�10−1–10−2 are much shorter than the period of oscil-
lation of the QPC width. Therefore, for the transmission
through the in-phase ac biased QPC, electrons effect an adia-
batic slow variation of the QPC width that resulted in smear-
ing of the conductance steps. Indeed, computation of the
conductance for ultrafast in-phase oscillations ��E shows
that the conductance steps are restored and coincided with
the case of the antiphase ac voltages, while variation of the
frequency of the ac voltages up to ���E has no effect in
comparison to �=0.2 as shown in Fig. 3.

V. HALL-LIKE EFFECT

Consider at first the model case of infinite thin wires di-
rected along the x axis and located at y=y�, with applied
voltages V�=V0+V1 cos��t+���. Then Eq. �8� in tight-
binding approximation along the y axis can be written as
follows:

�E + m� + kx
2��m,� = ���m,�+1 + �m,�−1� +

1

2
V1��m+1,�ei��

+ �m−1,�e−i��	 , �15�

where � is the tunneling amplitude between the neighboring
wires. This equation describes effectively a tight-binding
chain enumerated by sites � with the time-periodic potentials
V��t�=V1 cos��t+��� applied at the sites of the chain. Such
a chain wire directed along the y axis was considered in Ref.
21. An existence of pumped current along the y axis was
shown. Therefore for the electron transport along the x axis,
one can expect pumped current along the y axis; in other
words, the Hall-like effect. Hence, one can expect a similar
net current in the y axis even for two gates formed by QPC
provided that they are biased by the ac voltages with differ-
ent phases.

Equation �15� allows us to interpret the Hall-like effect as
related to a galvanomagneticlike one in crossed effective
magnetic and electric fields. Let us take the phase of the �th
wire as ��=�0�. Consider an effective constant magnetic
field b=�0 directed along the x axis. The corresponding vec-
tor potential can be chosen as a= �0,0 ,by�, where we intro-
duced a new auxiliary axis �z axis�. This axis is given by
sites m with the hopping matrix elements V1 /2 in Eq. �15�
and similar to Eq. �9�. Then the Peierls phase factor33,34

exp�ib��=exp�i�0�� is to be substituted along the z axis at
each �m+1,�. Correspondingly, at each �m−1,�, the complex
conjugated Peierls phase factor is to be substituted, i.e., just
as shown in the last term of Eq. �15�. Note that this analog of
the phase difference �0 to the effective magnetic field is ap-
plicable for small �0.34 Next, Eq. �15� shows that along the z
axis the effective constant electric field � is applied. There-
fore, Eq. �15� effectively describes the three-dimensional
motion of an electron homogeneous along the x axis, discrete
along the y axis with the hopping matrix elements �, and
discrete along the z axis with hopping matrix elements V1 /2.
Moreover, the electron moves in the crossed effective elec-
tric field e=� directed along the z axis and the effective
magnetic field b=�0 directed along the x axis. Then the vec-
tor e�b directed along the y axis violates the symmetry
relative to y→−y and gives rise to the galvanomagnetic
current35

jy = �yxzeb � ��0 �16�

for small � and �0. Numerical calculations completely con-
firm this consideration even for two wires ��=1,2� provided
that the ac voltages applied to them have a phase difference.
As Fig. 4 shows, the effect is odd relative to the frequency of
oscillations of QPC.
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FIG. 3. �Color online� Conductance G of QPC in terms of 2e2 /h
versus energy of incident electrons E in terms of 
2 /2m*L2. QPC is
formed by two split gates shown in Fig. 1�a� biased by the voltages
given in Eq. �1� with V0=2000, V1=400, and �=0.2. Thin solid line
corresponds to the stationary transmission with V1=0, thick solid
line corresponds to �=0 �in-phase modulation of QPC�, and dashed
line corresponds to �=� �antiphase modulation of QPC�. The pa-
rameters of QPC constriction are the following: half of the gap of
QPC, a=0.1; half of the width of gates, d=0.2; and the depth of
2DEG, h=0.02, in terms of the waveguide’s width.
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Following Peeters36 and Akera and Ando,37 we take the
waveguide connected to electron reservoirs with chemical
potentials �L and �R, and �L−�R is positive infinitesimal.
Moreover, we take that the waveguide is connected to the
upper and lower Hall contacts, as shown in Fig. 1�a�. The
probes were modeled by the one-dimensional wires con-
nected to the waveguide via hopping matrix element in tight-
binding approach to simulate the weak-link model.36 Follow-
ing Ref. 37, we introduce the magnetoresistance as

Rxy =
h

2e2rxy, rxy =
Tup − Tdw

Tup + Tdw
, �17�

where T�, �=up and dw, are the transmission probabilities in
the upper and lower probing wires, respectively. In order to
find the transmission probabilities, we write the output states
in the probing wires as follows:

���y,t� = �
m

t�,m exp�±ikwmy − iEt − im�t� , �18�

where E+m�=kwm
2 +�. The auxiliary parameter � is intro-

duced in order that the wave numbers of the probing wires
kwm were real for the incident energy E. In other words, the
role of � is to compensate the difference between propaga-
tion bands of the wide waveguide and the narrow probing
wire. Then, from Eq. �18�, we obtain the transmission prob-
abilities

T� = �
m

�t�,m�2, � = up and dw. �19�

Results of numerical computation for the Hall resistance
are shown in Figs. 5 and 6. Numerically, we have to restrict
the number of the quasienergies labeled by the integer m
=0, ±1, ±2, . . .. Empirically, we chose M � �m� for a given
amplitude of the ac voltage such that M→M +1 gives no
visible modification of the results. In practice, we chose M
=3,4.

VI. CONCLUDING REMARKS

In conclusion, we present dimensional estimations of the
results. Taking the typical width of the electron waveguide as
1 �m, we have the characteristic energy E0�5�10−2 meV.
For the dc voltage of the split gate of order 1 V, we have
V0�104. The dimensionless frequency equals �=
� /E0.
For the ac frequency �=107 Hz,13 we obtain ��10−4. Cor-
respondingly, for �=1 GHz, we have �=0.01, while the
characteristic traveling time through QPC is of order 1 /�E
1. Therefore, for the micron devices, the ac voltage can be
considered as an adiabatic process. However, as Fig. 4
shows, the linear behavior of the magnetoresistance rxy is
preserved up to ����5. Finally, for the ac gate voltage of
order 100 mV, we obtain the amplitude of the time-periodic
perturbation V1�104.

Our computations of the transmission through the ac
biased QPC show two interesting results. The first is a
smearing of the conductance steps for �=0, which is
caused by the oscillation of the width of the QPC as
shown in Fig. 3. The second result is that the phase differ-
ence ��0,� of the ac gate voltages results in the Hall-like
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−0.05
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FIG. 4. The magnetoresistance given by formula �17� versus
frequency of oscillations for �=� /2, energy E=1500, dc voltage
V0=2000, and ac voltage V1=400. The parameters of the split gate
are the same as in Fig. 3.
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FIG. 5. The magnetoresistance versus � for energy E=1500, dc
voltage V0=2000, ac voltage V1=400, and �=0.1. The parameters
of the split gate are the same as in Fig. 3.

1300 1400 1500 1600 1700 1800 1900 2000

−6

−4

−2

0

2

4

x 10
−4

E

r xy

FIG. 6. The Hall resistance versus the Fermi energy E for the dc
voltage V0=2000, the ac potential V1=400, �=0.2, and the phase
difference �=� /2.
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effect measured by probing wires connected as shown in
Fig. 1�a�. The effect was interpreted such that the
Schrödinger equation described by the electron transport un-
der the effect of the time-periodic long electrodes is equiva-
lent to the discrete three-dimensional electron motion in the
crossed effective electric and magnetic fields, where the elec-
tric field e�� is directed along the z axis and the magnetic
field b�� is directed along the transport axis. Then the vec-

tor e�b gives rise to the galvanomagnetic current directed
along the y axis cross to the electron transport.
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