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Semiclassical analysis of the Bogoliubov spectrum in the Bose-Hubbard model
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We analyze the Bogoliubov spectrum of the Bose-Hubbard model with a finite number of sites and Bose
particles by using a semiclassical approach. This approach allows us to take into account the finite-size effects
responsible for evolution of the Bogoliubov spectrum into an irregular (chaotic) spectrum at higher energies. A
manifestation of this transition for the excitation dynamics of the Bose-Hubbard system is discussed as well.
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I. INTRODUCTION

The Bose-Hubbard model (BH model) constitutes one of
the fundamental Hamiltonians in the condensed matter
theory. The number of phenomena, discussed in the frame of
the BH model, is so diverse that sometimes it is difficult to
see any link between them. In particular, this concerns phe-
nomena of superfluidity and quantum chaos. Indeed, the
former phenomenon assumes a phononlike excitation spec-
trum, described by Bogoliubov theory [1,2], while the latter
phenomenon implies a highly irregular excitation spectrum,
described by the random matrix theory [3—6]. This seeming
contradiction is resolved by noting that these two spectra
refer to different characteristic energies of the system. It is
the aim of the present work to understand (i) how the regular
Bogoliubov spectrum evolves into an irregular one as the
system energy is increased and (ii) how this transition might
be related to superfluidity of the BH system.

To approach the outlined problems we first consider the
simplest nontrivial case of the 3-sites BH model. Indeed, as
shown below in Sec. II, the 3-sites BH model can be for-
mally treated by using Bogoliubov theory but, at the same
time, is known to be chaotic. The fact that the 3-sites BH
model is a chaotic system follows from the simple classical
arguments, where it is viewed as a system of three coupled
nonlinear oscillators [7-11]. Since one has only two con-
served quantities (the energy E and the number of particles
N) for three degrees of freedom, the system cannot be inte-
grated [12]. We revisit the problem of chaos in the 3-sites
BH model in Sec. IV, where we show that, along with the
chaotic component, the system has two regular components,
associated with low and high energies. Here the additional
local integrals of motion exist, and for the low-energy regu-
lar component we find these integrals explicitly. Moreover,
quantizing them, we obtain the Bogoliubov spectrum as well
as the finite-N corrections to this spectrum (Secs. III-V).

Thanks to a relatively low dimensionality of the 3-sites
BH model, it can be exhaustively analyzed, both classically
and quantum mechanically. Unfortunately, this is not the case
for the L-sites BH system. To get a feeling of how generic
the results are on the 3-sites system, we consider in Sec. VI
the next complexity case of the 5-sites BH model. A quali-
tative difference between the 3-sites and 5-sites BH models
is that the latter system has two different Bogoliubov fre-
quencies and, hence, two Bogoliubov spectra. We analyze
interactions between Bogoliubov spectra, which may consid-
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erably affect the onset of quantum chaos. In particular, the
critical energy separating the regular and chaotic spectra is
lowered by one order of magnitude as compared to the
3-sites system.

Finally, in Sec. VII we touch upon the problem of super-
fluidity in the finite-L BH system. In the elementary level
this problem can be reformulated as the system response to
an external perturbation such as, for example, dragging an
impurity through the superfluid [13]. We consider a particu-
lar external perturbation in the form of harmonic driving of
the BH system. (To some extent, this mimics excitations by
dragging an impurity, where the dragging velocity is associ-
ated with the frequency of harmonic driving.) Clearly, if the
driving frequency is close to the Bogoliubov frequency, the
system may be excited from its ground state. Depending on
the system parameters, we have observed two qualitatively
different regimes of excitations, reversible and irreversible,
which are explained in terms of the regular and chaotic en-
ergy spectrum.

II. THE BOGOLIUBOV SPECTRUM

The Bogoliubov spectrum describes elementary excita-
tions of the interacting Bose particles. The standard deriva-
tion of this spectrum involves an expansion of the field op-
erator near the mean-field solution, followed by the
Bogoliubov—de Gennes transformation. The method is
simple but has two drawbacks. First, it ignores the conserva-
tion law for the particle number and, second, being rather
formal it hides the underlying classical dynamics of the sys-
tem. In this section, following Ref. [6], we introduce the
Bogoliubov spectrum in a different way, which is free from
the above-mentioned drawbacks and is particularly suited for
our present aims.

To be concrete, we shall discuss the Bogoliubov spectrum
with respect to the 3-sites BH model,

L=3 =3

A US e
H=-=2, (4}, ,d,+Hc)+—>, didaa, (1)
200 25

although the approach is valid for arbitrary L. Using the ca-
nonical transformation b, =(1/ v’Z)E, exp(i2wkl/L)a;, the
Hamiltonian (1) takes the form

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.76.026207

ANDREY R. KOLOVSKY
A 27k \ ~i
H=-T>, cos(—)b,’(bk
k L

2o bj b} byby 8k, +ky— ks —ky),  (2)
2Lk1,k2,k3,k4 1 Ky TR3TRY

where 8(k)=1 if k is a multiple of L and 5(k)=0 otherwise.

For L=3 the Hilbert space of (2) is spanned by the quasimo-

mentum Fock states |n_;,ny,n,,), where =;n,=N, the total

number of particles.

For U=0 the ground state of (2) is the product state
|W)=|0,N,0), where all particles have zero quasimomen-
tum. The energy of this state is Egp=—TN+UN(N—-1)/2,
which is often referred to as the mean-field or Gross-
Pitaevskii ground energy. (From now on we shall measure
the system energy with respect to this energy.) For U# 0, to
find the ground and first excited states of the system, one
uses the ansatz [2]

NI2

|\I,> = E Cy
n=0

n,N—2n,n). (3)

Substituting (3) in (2) and assuming the limit N— o0, U—0,
g=UN/L=const, we obtain the following equation on the
coefficients c,,:

2(8+ g)nc, + gnc,_ + gn+1)c,,. = Ec,, (4)

where g=NU/L and 6=T[cos(2m/3)—1]=1.5T are the so-
called macroscopic interaction constant and single-particle
excitation energy, respectively. The matrix equation (4) can
be solved analytically by mapping it to a differential equa-
tion. Namely, introducing the generating function ®(6)
=(1/V2m)2,c,e™?, we have

HD(0) =ED(0), D(0+2m) =D(6), (5)

Ho=2(8+g)h+gle®h+he?, A=—-idlds. (6)

The spectrum of the eigenvalue problem (5) is given by E,
=Ey+2Qn [6], where ()=12g5+ 6" is the celebrated Bogo-
liubov frequency and Ey=—/2+(5+g) is the Bogoliubov
correction to the Gross-Pitaevskii ground energy (E;<<0).

It should be mentioned that, instead of (3), one can use a
slightly different ansatz,

w=>c,

n,N-2n-p,n+p), (7)

which modifies Eq. (4) as
(6+8)(2n+pc, +g\n(n+p)c,
R —
+gV(n+1)(n+p+1)c,, =Ec,. (8)

The spectrum of (8) is again linear but is shifted with respect
to the previous spectrum by p quanta of the Bogoliubov fre-
quency,

E,,=Ey+QQ2n+p). 9)

n,p

As a consequence of the last equation, excited energy levels
of the Bogoliubov spectrum are multiple degenerate. To deal
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FIG. 1. (Color online) Energy spectrum of the 3-sites BH model
for N=40. The energy is measured with respect to the ground en-
ergy E, and scaled with respect to the Bogoliubov frequency ().
Error bars indicate energy intervals, where the classical counterpart
of the system shows chaotic dynamics.

with this degeneracy it is convenient to introduce instead of
the quantum numbers n and p a different set of the quantum
numbers: the number m, which counts Bogoliubov levels
begging from the ground state m=0, and the number j,
which labels the degenerate sublevels of the mth level. To fix
notations we shall call the number m by primary quantum
number and the number j by secondary quantum number.
This second quantum number takes integer values for even m
and half-integer values for odd m in the interval |j| =m/2.
Thus we have

E,j=Ey+Qm, Q=1\2g6+&, [jl=m/2. (10)

The corresponding to (10) wave functions are denoted by
|¥,, ), where [W,, )=|m/2—j,N—m,m/2+j) for g=0. Thus
the second quantum number j is associated with the mis-
match in population of k=—1 and k=+1 quasimomentum
states.

Concluding this section, we would like to stress that the
above result is valid only in the limit of infinite N and for any
finite N the low-energy spectrum of the BH-model deviates
from the Bogoliubov spectrum (10). As an illustration to this
statement, Fig. 1 shows the energy spectrum of the 3-sites
BH model for N=40 and 0=g=4. It is seen in the figure
that (i) the spectrum is not linear, and (ii) Bogoliubov levels
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are split with respect to the secondary quantum number. In
the subsequent sections we shall quantify both of these ef-
fects by using a semiclassical approach. This approach will
also allow us to indicate the critical energy, above which the
spectrum of the BH model is chaotic.

III. SEMICLASSICAL APPROACH

As an intermediate step we shall derive the Bogoliubov
spectrum by using the semiclassical arguments. The classical
counterpart of the Hamiltonian (2) is obtained by scaling it

with respect to the total number of particles, H/N—H, and
identifying the operators EZ/ VN and 1;k/ VN with pairs of ca-
nonically conjugated variables (b, ,b;). Thus, we have

1
27k .
H=-T, cos(i>bkbk
k=—1 3
g - ~
+2 2 bbybih Sk +ky—ks— k). (1)
kykokaiky

Neﬁ we change to the action-angle variables, b,
=vI exp(if,), which provide a better insight into the system
dynamics. In these variables the Hamiltonian (11) reads

H=>, (— T cos(2mk/3)1, + %1%) +2¢ > Ly
k k#k'

+2¢ X ILiLncos(26,— 6 — 6).  (12)
k#k"#K"

Taking into account that Iy+1/,;+/_;=1 is an integral of the
motion, this system of three degrees of freedom can be re-
duced to the system of only two degrees of freedom. Indeed,
measuring the phases 6,; with respect to the phase 6,, we
have

S . 0H oH JH'
=0 — b= =",

al,,  dly dl,
where H'=H'(I,,,6.,) is obtained from the Hamiltonian
(12) by substituting there Ip=1-1,;—I_; and setting 6, to
zero. In what follows we drop the prime sign, i.e., H always
refers to the Hamiltonian of the reduced system of two de-
grees of freedom.

As mentioned in Sec. II, the Bogoliubov spectrum de-
scribes the low-energy excitations, where n,; is much
smaller than n,, the number of particles in the k=0 quasimo-
mentum state. Semiclassically, the latter condition means
I, < 1y~ 1. Keeping in the Hamiltonian H=H(1,, 6,,) only
the first-order terms on I,,, we have (up to an additive con-
stant)

H=~ (6+g) Ly +1_y) +2g\II_; cos(0,y + 6_), (13)

where, as before, 6=T[1-cos(27/3)]=3T/2. Next, using
the canonical transformation,

I=I+1, 0= 0+1+6_1,

(14)
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P:[+1—1_1, ’l?=(0+1—0_1)/2,

we reduce the Hamiltonian (13) to
H=(8+ g)(2I+ P) + 2gNI(I + P)cos 6. (15)

Since H in Eq. (15) does not depend on 1, the action P is
an integral of the motion. It is also straightforward to see that
P corresponds to the number p in the quantum problem (8).
In particular, if we set P=0, the Hamiltonian (15) coincides
with the classical counterpart (i/N—1) of the effective
Hamiltonian (6),

H.;=2(8+g)I + 2gI cos 6. (16)

Finally, we integrate the system (16) by introducing a new
action,

7=Lff;1(e,i)d0, (17)
2T

and resolving Eq. (17) with respect to the energy E=E/N.
We have

7= £ d0=—
2w ) 28+2g¢(1+cos ) 20

(18)

or E=2QI. Generalization of this result to nonzero P pro-

vides the degenerate Bogoliubov spectrum E=Q/(21+ P).

Concluding this section we mention that, instead of the
transformation (14), one can use a different canonical trans-
formation,

I=1,+1_,, 6=(6,,+6.)/2,

J=(y—1_)2, 9=0, -0, (19)

which corresponds to the labelling of Bogoliubov levels by
the quantum numbers m and j. Then the low-energy Hamil-
tonian has the following form:

Heg=(8+ )1+ g\’ - 4J° cos(26). (20)

Integrating the system (20) we again get linear dependence
of the energy on the action 1,

E=QI, I<1. (21)
However, now the energy is independent of the integral of
the motion J, which may be chosen arbitrarily in the interval

7| =172.
IV. TRANSITION TO CHAOS

The results of the preceding section refer to the limiting
case of low energies, where I; < 1 (k#0). With an increase
of energy, as it was already mentioned in the introduction,
the BH system shows a transition to chaos. In this section we
revisit the problem of chaos in the 3-sites BH model [3,5].
Through the section we shall use the canonical substitution
(19). After this substitution (and taking into account that I,
=1-1) the classical Hamiltonian (12) takes the following
form:
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FIG. 2. Left-hand side: phase portrait of the 1D system (23) for
g=1. Bold lines restrict the chaotic region, where trajectories are
unstable with respect to the variation of (J,). Right-hand side:
slow dynamics of the variables J=(J) and 9=(9) for g=1 and I
=0.133.

1 3 r
H=6l+g| —+1-=P—-7*+2(1-1)\/ = = J*cos(26)
2 4 4
—(1 [ 3
+2\r’1—1<—+J) ——Jcos<t9+—19)
2 2 2
—(1 I 3
+2V1 =1\ = =J|\/Z-+Jcos| 60— -] |. (22)
2 2 2

First we shall analyze the symmetric solutions b,(f)
=b_,(t). The imposed condition means that one should set
J=0 and 9=0 in the Hamiltonian (22). The resulting effec-
tive one-dimensional (1D) Hamiltonian reads as follows:

Hip=(8+g)I+g(1-1)1Icos(26) —3gl*/4
+gIN2(1 = DI cos(6). (23)

For g=1 the phase portrait of the 1D system (23) is depicted
in Fig. 2(a). Our particular interest in this phase portrait are
trajectories near the origin /=0, which can be associated with
the Bogoliubov states. It is seen in the figure that these tra-
jectories are strongly affected by the elliptic point in the
upper part of the phase space. (It is worth mentioning that
with further increase of g, the second elliptic point appears at
0=+ and I=0.5.) As a consequence, the eigenfrequency of

the system depends on the action L Namely, ﬁ=ﬁ(7) van-
ishes for the separatrix action 7*, and for I<T" one has
QD =Q-1, (24)
where the nonlinearity 7y is a unique function of g. (For ex-
ample, y/Q=0.1,0.6,1 for g=0.1,1,4.) Referring to the
quantum problem, the result (24) means that the energy dif-

ference between (m+1)th and mth Bogoliubov levels de-
creases as ym/N.
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FIG. 3. Time evolution of the conjugated variables J and ¥ for
g=1. The initial conditions are (/(0), 6(0))=(0.08,0), (J(0),3(0))
=(0.01,0).

Next we address the stability of phase trajectories de-
picted in Fig. 2 with respect to variation of J. Within the
approach of Sec. III (where we discussed the limiting case
I« 1), the action J is an integral of the motion and may be

chosen arbitrarily in the interval |J| =I/2. It should be un-
derstood, however, that this is an approximation and in real-
ity the action J does depend on time. An example of this
dependence is given in Fig. 3. It is seen that time evolution is
a superposition of fast dynamics, where J(r) and 9(r) oscil-
late with the Bogoliubov frequency (more precisely, with the

frequency (1), and slow dynamics, with the characteristic
frequency of the orders of magnitude smaller than the Bogo-
liubov frequency. Going ahead, we note that this new fre-
quency defines the splitting of Bogoliubov levels in Fig. 1,
and for the moment we only stress that the system dynamics
remains regular. To support this statement, Fig. 4(a) shows
the Poincare cross section of the system (22) by the plane
0=0. We come back to this regular regime in the next sec-
tion.

The stability phase portrait depicted in Fig. 4(a) is typical
for any trajectory of the effective 1D system (23), providing
the trajectory lies well below the separatrix. If we choose a
trajectory closer to the separatrix, we observe a transition
from regular to chaotic dynamics [see Fig. 4(b)]. We identify
the border of chaos by using the standard Monte Carlo ap-
proach. Namely, generating initial conditions (I, 0,,) at
random and running this trajectory for a long time, we build
up the Poincare cross section of the system (11) by the plane
6_;. [Numerically it is more convenient to work with the
original variables b, = I, exp(if),), without doing the canoni-
cal transformation (19).] The maximally available cross sec-
tion volume, given by 0</,, <1 and —7<6,, <, is di-
vided by O X Q equal cells and we count the number of cells
q(r) visited by the trajectory. Clearly, the number of visited
cells is of the order of Q, if the trajectory is regular, and
essentially exceeds this characteristic value if the trajectory
is chaotic. The results of the described Monte Carlo simula-
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FIG. 4. Stability phase portrait for g=1 and (1(0), 6(0))
=(0.08,0) (left-hand side) and (1(0), 6(0))=(0.4,0) (right-hand
side). Cross section by the plane 6=0 of five different trajectories is
shown. (The crossing of trajectories is an artificial fact caused by
folding them into the interval —m=9<r.)

tions are depicted in the lower panel of Fig. 5 for g=1. It is
seen in the figure that the chaotic region is restricted to a

relatively narrow energy interval 0.75 < E < 1.25. In Fig. 2(a)
we mark by bold lines the phase trajectories of the effective
1D system, corresponding to boundaries of this energy inter-
val. Thus a finite perturbation of a symmetry-plane trajec-
tory, located between the bold lines, typically makes the dy-
namics chaotic. On the contrary, outside the marked region,
the symmetry plane trajectory is stable with respect to a fi-
nite perturbation.

Using the above method, we determined chaotic regions
for different values of the interaction constant g. The result
of these extensive numerical studies is summarized by the

0.2 T
3
k M/ ‘*’hﬂ‘ “.."’.
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FIG. 5. Fraction of the cross-section phase volume, visited by

the trajectory with given energy E after £~ 5000 crossings for L
=3 (bottom) and L=5 (top).
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FIG. 6. Dependence of the action / on the conjugated phase 6
for the parameters of Fig. 3. The upper subplots zoom in the de-
picted dependence around =0 and 6/27=40.

error bars in Fig. 1. The depicted borders are consistent with
visual analysis of the spectrum and suggest the following
simple criteria of the transition to chaos: it takes place when
the splitting of Bogoliubov levels with respect to the second
quantum number j exceeds the mean distance Q) between the
levels.

V. SPLITTING OF THE BOGOLIUBOV LEVELS

To quantify the level splitting, we shall discuss the low-
energy regular dynamics of (22) in more detail. First, we
note that the action /=(1/2)$1d6, introduced in Sec. I1I, is
an adiabatic integral of the motion and, hence, does not de-
pend on the second pair of the conjugated variables (J, ).
This statement is illustrated in Fig. 6, where we plot I as a
function of @ for the parameters of Fig. 3. It is seen in the
figure that the square under the curve I=1(6) keeps constant
for any 2 interval, although the functional dependence it-

self slowly changes with time. The conjugated to 1 variables
6 defines the fast dynamics of the system through the relation

6=0Q1, where ﬁ:ﬁ(f) is the corrected Bogoliubov fre-
quency.

To address the slow dynamics we introduce new variables
J=(1/2m)$Jd6 and O=(1/2m)$Idf. (Essentially this
amounts to averaging of J and ¥ over one period of the fast
dynamics.) Assuming, as before, I, < 1, we obtain from (22),

5 ~— 2gj,
(25)
J =~ 3gV(g,D)sin(3972),
where
Vlg,D) = (L NIy + I\, )cos 6), (26)

and (---) means time average. Thus, the slow dynamics is
defined by a pendulumlike Hamiltonian,
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Hgow=—gJ> + gV(g,Dcos(3972). (27)

It is worth noting that, to obtain (27), we have assumed
the quantity (26) to be independent of J, which is justified for

7] < 1/2. Nevertheless, the Hamiltonian (27) is found to
capture well the main features of the low-energy regular dy-

namics for arbitrary J. In particular, it correctly predicts the
existence of stable stationary points at 9=0,+47/3, where
the relative phase of the complex amplitudes b_,(7) is locked
to 0° or £120°, respectively [see Fig. 2(b)]. The size of the
stability islands around these fixed points is obviously given

by the pendulum separatrix, i.e., proportional to |V(g,7)|“ 2,
It is instructive to consider the limiting case g — 0. As it is

easy to show, in this limit V(gj)—>0 and, hence, Hg,,,

=—gJ2. Let us prove that this result corresponds to the first-
order quantum perturbation theory on U for the Hamiltonian
(2). Indeed, calculating the first-order correction to the en-
ergy of the quasimomentum Fock state |¥,, )=|m/2-j,N
—-m,m/2+j), we have

U caa A~
AE=o (W, | 20 b bbby Sk + ko= ks = k)|,
ky.ko.k3.ky

or AE/N=-gJ?, where J=j/N. Thus for small g the splitting
between sublevels grows linearly with g. This linear regime
changes to a nonlinear one as soon as the second term in the
Hamiltonian (27) takes a non-negligible value. This second
term also causes a rearrangement of the sublevels, clearly
seen in Fig. 1. Needless to say that in this case the second

quantum number is defined by the action J=(1/2m)$Jd9,
which amounts to the phase volume encircled by trajectories
in Fig. 2(b).

We conclude this section by formulating a quantitative
criteria for the onset of quantum chaos. As mentioned earlier,
the transition to irregular spectrum occurs when the total
splitting of the mth Bogoliubov level compares with the Bo-
goliubov frequency. Ignoring the nonlinear corrections, one
has g(m+1)>/4N~ (), or

(29)

Mme, =

<4Nv/m> 172
3

Through the relation E. =~ Qm,, this estimate defines the
critical energy above which the regular spectrum transforms
into a chaotic one. [For example, for N=40 the estimates
(29) predicts that m,, drops to m..=13 at g=4, which should
be compared with m_.,=16 in Fig. 1.]

VI. INTERACTING BOGOLIUBOV SPECTRA

To which extent are the above results on the 3-sites BH
model valid for the general case L>3? To answer this ques-
tion we shall analyze the 5-sites BH model. The 5-sites BH
model has two different Bogoliubov frequencies and, hence,
may capture additional effects, not present in the 3-sites sys-
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tem. In particular, we shall focus on mutual influence of the
different Bogoliubov spectra.

To study this mutual influence, we include into consider-
ation the following processes: annihilation of two particles in
the k=0 quasimomentum state and creation of them in either
the states k=+1 or k=+2; annihilation of two particles in the
k=+1 quasimomentum state and the creation of them in the
states k=0 and k=+2 (and the symmetric process for k
=—1); annihilation of two particles in the k=+2 quasimo-
mentum state and the creation of them in the states k=0 and
k=-1 (and the symmetric process for k=-2). The semiclas-
sical Hamiltonian for these processes reads as follows:

—
H= (8 +g)I_+ 1) +2g\I_Icos(0_; + 0,,)
+ (6 + @)y + I,5) + 28Iyl 5c08(0_, + 6,,)
— —
+ 28l N1,5c08(26, — 0,5) +2gI_NI_,cos(26_, — 6_,)

+2gl,, v’Zcos(Z 0,,—6_))+ 2g1_2\e"Zcos(2 0,-86,,),
(30)

where it was implicitly assumed that /=~ 1. The first two
terms in the Hamiltonian (30) obviously correspond to two
independent Bogoliubov spectra, while the rest describes in-
teractions between the spectra. For simplicity, we shall con-
sider only the symmetry plane solutions, i.e., we set in (30)
I=1,=0L/2, 6_41=0,,=0, and [ ,=1,=1,/2, 6_,=0,,
= ¢,. Considering the terms responsible for interactions in
(30) as a perturbation and introducing the actions 71,2
=§1,,d6, 5, we have

H= 9171 + 9272 + gi] \/272005(251 - ’52)

+ gL\ 2T cos(26, - 6,). (31)

It immediately follows from (31) that the mutual influence of
spectra (more precisely, the mutual influence of two degrees
of freedom, associated with two spectra) is a resonant pro-
cess, where the resonance condition reads as

20(g) = Qa(g). (32)

(For the 5-sites BH model this condition is satisfied at g
=0.7135.) Moreover, since we are interested in the limiting

case 1, 121, the last term in (31) can be safely neglected.

Then the quantity J= 21,+1, is an integral of the motion and
the system can be integrated analytically. We omit this stan-
dard analysis and only mention that the integrated dynamics
essentially corresponds to periodic oscillations of the actions

1, . and 72 with the characteristic frequency Q;,,~gJ" (see
Fig. 7).

One finds a quantum manifestation of the above-discussed
classical dynamics in the form of avoided crossings between
Bogoliubov levels. To study this problem systematically, we
diagonalize the Hamiltonian of the 5-sites BH model in the
truncated quasimomentum  Fock basis  |n_,,n_;,ng
+N",n,1,n,), where Zm;=N' and N'+N'=N, the total
number of particles. Clearly, by using the truncated basis,
one can find only the low-energy spectrum. (We control an
accuracy by watching the spectrum convergence as the pa-
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FIG. 7. Classical dynamics of the 5-sites BH model in the near
resonant regime (g=0.5). The initial conditions are I,;=0.04, 6,
=0 and 1,,=0.004, 6.,=0. The dashed line in the lower subplot
shows the quantity J=21,+1I, =(2I,+1I,), which is an integral of the

motion in the limit 7, , —0.

rameter N’ is increased.) The upper and lower panels in Fig.
8 show the low-energy spectrum of the 5-sites BH model for
N=101 and N=401, respectively. A number of avoided
crossings at g=0.7135 is clearly seen. According to the clas-
sical estimate _for Q- the gaps of these avoided crossings
scales as g/VN [14], which fully agrees with the depicted
numerical results. We also would like to note that interac-
tions between the spectra enhance the splitting of Bogoliu-
bov levels with respect to the second quantum number. In-
deed, as shown in Sec. V, this splitting scales as g/N and
would not be resolved in the scale of the figure if there were
no interactions.

The discussed interactions between two degrees of free-
dom, associated with two Bogoliubov spectra, also facilitate
the transition to chaos at higher energies. The upper panel in
Fig. 5 shows results of the symmetry-plane analysis of the
S5-sites system. For symmetry-plane trajectories the eight-
dimensional phase space of the system is reduced to four
dimensions and, thus, we can employ the same method of
Poincare cross section as was used earlier in Sec. IV. It is
seen in the figure that the border of chaos in the 5-sites BH
model is tremendously lowered as compared to the 3-sites
system.

VII. EXCITATION DYNAMICS

It has been shown in the preceding sections that for a
finite N the regular Bogoliubov spectrum of the finite-L BH
model evolves into a chaotic spectrum as the system energy
is increased. This has important consequences when one ad-
dresses the excitation of the system. In this section we ana-
lyze a particular form of excitation, which can be viewed as
dragging an impurity through a superfluid. Namely, we con-
sider the following model:

PHYSICAL REVIEW E 76, 026207 (2007)
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°4

(E-E

Z

FIG. 8. The low-energy spectrum of the 5-sites BH model for
N=101 (top) and N=401 (bottom). The energy is measured with
respect to the ground energy E, and scaled with respect to the
Bogoliubov frequency (). The truncation parameter N'=21.

H(t)=Hy+ > Af(l - wt), (33)
1

where I:IO is the Hamiltonian of the L-sites BH model. (As a
physical realization of this model one can think about Bose
atoms in a ring optical lattice with a superimposed rotating
speckle pattern.) Assuming the system to be initially in the
ground (superfluid) state, periodic driving may excite the
system and we are interested in details of this process
[15-17].

We begin with the case of vanishing interactions and shall
assume for simplicity harmonic driving,

f(l- wt) = ecosRml/L — wt). (34)

Changing from the Wannier to Bloch basis, we have,
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A1) = Hy+ 5(2 bl b + Hc) (35)
k

where H, is given in Eq. (2). For U=0 the ground state of (2)
is a product state, where all atoms have zero quasimomen-
tum. To be concrete, let us consider again the case L=3.
Then the excitation process corresponds to the following se-
quence of transitions:

0,N,0) —

ON-1,1)—

ON=2,2)— -,

i.e., atoms are brought one by one to the state with the qua-

. . N
simomentum k=+1. Introducing |W(1))=2"_.c,.(1)|0,N
—m,m), this process is described by the system of linear
equation on the coefficients c,,,

€ . .
iém = 5mcm + E(Um+le[wtcm+l + vme_[wtcm—l) s (36)

where

Un={0.N=m—1,m+1[b{,b,
VIN=m)(m+1).

0,N —m,m)

Equation (36) formally coincides with the Schrddinger equa-
tion for a spin in alternating magnetic field and can be solved
analytically. In particular, considering the mean energy E(r)

=(¥(r) |PA10| (1)), one has

E(t)=E(0) + A[1 - cos(@t)], (37)
where

N& e

- a=\(6-w’+&. (39

For the purpose of future comparison, Fig. 9(a) shows time
evolution of the mean energy for g=0 and €=0.2. A good
overall agreement with the analytical solution (37) and (38)
is noticed. A deviation from this solution at w=0.75 is a
second-order process, which corresponds to population of
the k=—1 quasimomentum state through virtual population
of the k=+1 state. This process has maximal intensity at w
=06/2, where the characteristic frequency of oscillations
scales as €.

We proceed with the case U#0. For U#0 the ground
state of the system is the Bogoliubov state |‘I’m 7 with the
quantum numbers m=j=0. The upper panel in Fig. 10 shows
the transition matrix elements from the ground to all other
eigenstates of the system,

V(E) = (W lbT,bo|Wo.0),

which are labelled in the figure by the eigenenergy E. It is
seen that the function v(E) is dominated by a single transi-
tion to the Bogoliubov state |¥, ;). Analogously, the
strength function for the latter state is dominated by the tran-
sition to the Bogoliubov state [W, ;) (middle panel). Thus the
dominant excitation process corresponds to the following se-
quence of transitions:

PHYSICAL REVIEW E 76, 026207 (2007)

77
/////
MW

FIG. 9. (Color online) Mean energy of the 3-sites BH model for
different values of the driving frequency w. Parameters are N=40,
€=0.2, g=0 (upper panel) and g=2 (lower panel).

0.4
0 1 I L
0 5 10 15 20
0.4
0 1 e I L
0 5 10 15 20
0.4
£
w
; l
0 L i M[J HJH X3 L
0 5 10 15 20

(E-E )@

FIG. 10. Transition matrix elements from the Bogoliubov states
|Wo0) (top), |¥y ) (middle), and |¥,6) (bottom) to all other
eigenstates. Parameters are N=20 and g=2.
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FIG. 11. Energies of the Bogoliubov states \‘Ifmﬁ with j=m/2
(left-hand side) and the transition matrix elements between these
states (right-hand side) for g=0 (crosses) and g=2 (circles), N
=20.

|\I'0,0> - |\I’1,1/2> - |q’2,1> - |‘1’3,3/2> -

The indicated sequence reflects an approximate selection rule
for the transition matrix elements between Bogoliubov
states, which holds if primary quantum number m is smaller
than the critical number (29). Introducing |W(z))
=3, ¥, ), we come back to Eq. (36), where one
must substitute om by the energy of the mth Bogoliubov
states with the second quantum number j=m/2 and the tran-
sition matrix element v,,=\(N—m)(m+1) by the transition

matrix element vm=<‘I’m+1,(m+1),2|ISLI;O|\I’m,m,2). We com-
pare the energies E,, and the elements v, for N=20 and
different values of g in Fig. 11. Note that for g # 0 the num-
ber m is restricted to m <m,,. Above this critical value Bo-
goliubov states are destroyed, which also means the absence
of any selection rule (see lower panel in Fig. 10).

We shall solve Eq. (36) by employing a semiclassical ap-
proach. The semiclassical Hamiltonian of the system (36)
obviously reads

H,=HyI)+ ev(Dcos(0—wr), I<I,,, (39)

where Hy(I) and v(I) are obtained by interpolating data in
Fig. 11. Thus we are faced with the problem of a driven
nonlinear oscillator. As known, harmonic driving can excite
a nonlinear oscillator only up to a finite /=I". One obtains
this maximal value by following the phase-space trajectory
of an effective system:

H) =HyI) - ol + ev(I)cos(¢'), 6 =6-cwt, (40)

originating at /=0. Figure 12 shows the phase portrait of the
effective system (40) for g=2, €=0.2, and two different val-
ues of the driving frequency w. In the right-hand panel, cor-
responding to w=2.87 (value of the Bogoliubov frequency ()
at g=2), I'=~0.3 is below the border of chaos /.,~0.5. Re-
ferring to the original quantum system this means that the

PHYSICAL REVIEW E 76, 026207 (2007)
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FIG. 12. (Color online) Phase portrait of the effective system
(40) for g=2, €=0.2 and driving frequency w=2.2 (left-hand panel)
and o= ~2.87 (right-hand panel). The bottom of the shadowed
region [where the model (40) is not applicable] indicates the border
of chaos.

excitation process is reversible and involves only a few low-
est levels of the Bogoliubov spectrum. If w is decreased, the
nonlinear resonance with the center at ' =0 moves up and at
w=12.6 the upper part of the separatrix trajectory crosses the
border of chaos. Thus the system can be efficiently excited
from its ground state into the chaotic region, where energy
dissipates. With further decrease of the driving frequency, the
lower part of the separatrix trajectory detaches the /=0 axis
and, hence, again only a few lowest levels can be excited.
The results of direct numerical simulations of the 3-sites BH
model, presented in the lower panel of Fig. 9, fully support
the above analytical prediction. It is seen in the figure that
excitations are irreversible only in a narrow frequency win-
dow 2.4<w<2.6. Outside this window, the system cannot
come through the regular part of the spectrum and the exci-
tation process resembles that for g=0. We also mention that
the frequency interval, where the system resonantly responds
to harmonic driving, is shifted towards larger frequencies as
compared to the case g=0. This shift reflects the square root
dependence of the Bogoliubov frequency on the microscopic
interaction constant, (=(2g 8+ 6°)"%, and may be considered
as a test for the Bogoliubov spectrum.

We also studied excitations of the 5-sites BH model (see
Fig. 13). For g=0 time evolution of the mean energy is simi-
lar to that for L=3, with two minor differences: (i) the sys-
tem resonantly responds to a smaller frequency w=48;=1
—cos(27/5); (ii) the second-order excitation process corre-
sponds to the population of k=+2 quasimomentum state
(through virtual population of k=+1 state) and is defined by
the condition 2w=&,=1-cos(47/5). The lower panel in Fig.
13 shows evolution of the mean energy for g=2.1. Similar to
the case L=3, excitations were found to be irreversible in
some frequency interval wpi,(€) <w<wy(€), shifted to
higher frequencies. (Since for L=5 the minimal single-
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FIG. 13. (Color online) Mean energy of the 5-sites BH model
for different values of the driving frequency w. Parameters are N
=21, €=0.1, g=0 (upper panel) and g=2.1 (lower panel).

particle excitation energy & is smaller than for L=3, this
frequency shift is even more pronounced in Fig. 13 than in
Fig. 9.)

VIII. CONCLUSION

In conclusion, we have analyzed the low-energy spectrum
of the BH model with finite number of sites L and finite
number of particles N. For infinite number of particles this
spectrum is given by the Bogoliubov spectrum, which is usu-
ally introduced by using the Bogoliubov—de Gennes transfor-
mation. This standard method, however, is rather formal and
hides the underlying classical dynamics of the BH model. In
this work we use a semiclassical method which, by defini-
tion, explicitly refers to the classical dynamics and provides
in this way a deeper insight in the structure of the low-energy

PHYSICAL REVIEW E 76, 026207 (2007)

spectrum. In particular, it allows one to account for finite size
effects, which are of fundamental importance for experi-
ments with cold atoms in optical lattices.

In the present work we are mainly concerned with the
3-sites BH model. An advantage of the 3-sites model is that
its classical dynamics can be understood in every detail. In
particular, the phase space of the system essentially consists
of two regular and one chaotic component in between, where
the low-energy regular component is shown to be associated
with the Bogoliubov spectrum. We identify the full set of
integrals of the motion for this low-energy regular compo-
nent and, quantizing them, obtain low-energy levels of the
quantum BH model. These levels are labelled by two quan-
tum numbers, m and j. The first quantum number m corre-
sponds to the usual Bogoliubov ladder, where the distance
between neighboring levels is approximately given by the
Bogoliubov frequency  (i.e., E,,1 j—E,, ;~ ). The second
quantum number j labels (m+1) sublevels of the mth Bogo-
liubov level, where the splitting between sublevels is propor-
tional to the interaction constant g and inverse proportional
to the system size N (i.e., E,, ;11— E,,;~g/N). If we go up
the energy axis, the total splitting of the Bogoliubov levels
compares the distances between them and the energy spec-
trum shows a transition from a regular to irregular (chaotic)
one.

The described scenario of evolution of the Bogoliubov
spectrum into a regular, Bogoliubov-type spectrum and fur-
ther into a chaotic spectrum also holds for the finite-N BH-
model with L>3 sites. However, for L>3 the border of
chaos is essentially lowered due to interactions between dif-
ferent Bogoliubov spectra, associated with different single-
particle excitation energies. We analyzed interactions be-
tween the spectra by considering the 5-sites BH system,
where the critical energy of the transition to chaos is found
approximately 10 times smaller than for L=3. It is an open
problem of how this critical energy scales with the number of
sites L. We reserve this problem for future studies, only not-
ing here its formal analogy with the famous Fermi-Pasta-
Ulam problem [18].

The identified global structure of the energy spectrum
(i.e., the regular Bogoliubov-type spectrum followed by a
chaotic spectrum) defines the excitation dynamics of the
finite-N BH system. In this work we consider excitations by
an external harmonic field. It is shown that the system reso-
nantly responds to the external field when the driving fre-
quency compares the Bogoliubov frequency. If this reso-
nance condition is satisfied, the system rapidly climbs up the
Bogoliubov ladder of levels (with the energy increase ~1°)
until it reaches the chaotic region. Starting from this moment
the further increase of the energy has a diffusive character.
These numerically observed dynamics of the mean energy
suggest a simple method for detecting the border of chaos in
a laboratory experiment with cold atoms in optical lattices.
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