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We analyze the Bogoliubov spectrum of the three-site Bose-Hubbard model with a finite number of
Bose particles by using a semiclassical approach. The Bogoliubov spectrum is shown to be associated with
the low-energy regular component of the classical Hubbard model. We identify the full set of the integrals
of motion of this regular component and, quantizing them, obtain the energy levels of the quantum system.
The critical values of the energy, above which the regular Bogoliubov spectrum evolves into a chaotic
spectrum, is indicated as well.
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Recent experiments with cold bosonic atoms in optical
lattices [1] has renewed the theoretical studies of the Bose-
Hubbard model (BH model), which constitutes one of the
fundamental Hamiltonians in the condensed matter theory.
The number of phenomena, discussed in the frame of this
model, is so diverse that sometimes it is difficult to see any
link between them. In particular, this concerns the phe-
nomena of superfluidity and quantum chaos. Indeed, the
former phenomenon assumes the regular phononlike exci-
tation spectrum, described by the Bogoliubov theory [2,3],
while the latter phenomenon implies a highly irregular
excitation spectrum, described by the random matrix the-
ory [4–7]. This seeming contradiction is resolved by not-
ing that these two spectra refer to different characteristic
energies of the system. It is the aim of the present work to
understand of how the regular Bogoliubov spectrum (BS)
of the BH model evolves into an irregular one as the system
energy is increased.

First, we recall the essentials of the BS. Having in mind
Bose atoms in the 1D optical lattice, the Bose-Hubbard
Hamiltonian reads

 Ĥ � �
T
2

XL
l�1
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n̂l�n̂l � 1�; (1)

where the first term in the right-hand side of (1), with T
being the hopping matrix element, describes the tunneling
of the atoms between different lattice sites, and the second
term, with U being the microscopic interaction constant,
takes into account the short-range interactions between the
neutral atoms. The BS describes the low-energy excitations
of the system (1), and there are at least two different
methods to derive this spectrum: The first method is traced
back to the original works by Landau and Bogoliubov and
involves the famous Bogoliubov-de Gennes transformation
[3]; the second approach uses the Leggett ansatz for wave
functions, followed by analytic diagonalization of a
3-diagonal semi-infinite matrix [7]. Common features of
the methods are that (i) the starting point of the analysis is
the Hamiltonian of the BH model in the Bloch basis
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[which one obtains from (1) by using the canonical trans-
formation b̂k � �1=

����
L
p
�
P
l exp�i2�kl=L�âl], and (ii) both

methods assume the limit N ! 1, U ! 0, g � UN=L �
const, where g is the so-called microscopic interaction
constant. After taking this limit, the spectrum of the system
(2) is given by the direct sum of L linear spectra

 E�k�m � E�k�0 ���k�m; (3)

with ��k� �
����������������������
2g�k � �2

k

q
and �k � T�1� cos�2�k=L��.

Let us also note that, since ���k� � ��k�, it is convenient
to restrict the index k in Eq. (3) to strictly positive values.
Then the energy levels of every single spectrum (3) are
�m� 1�-fold degenerate. In what follows, we shall label
the degenerate sublevels of the given Bogoliubov level by
the index j.

We stress that the above result is valid only in the limit
N � 1 and that for any finite N the BS (3) provides only
an approximation to the low-energy spectrum of the BH
model. Having in mind cold atoms in optical lattices, it is a
problem of fundamental interest to find the finite-N cor-
rections to the BS. Indeed, in contemporary laboratory
experiments with optical lattices, the number of atoms
rarely exceeds N � 105, and it is not clear in advance
how strong the finite-N effects could be. In what follows,
we analyze this problem by considering the simplest non-
trivial case of the three-site BH model. For the three-site
BH model, there is only one value for the single-particle
excitation energy � � T�1� cos�2�=3�� � 3T=2, and,
hence, the index k in Eq. (3) can be omitted. It is also
worth noting that the three-site BH system has been in-
tensively studied during the past decade with respect to the
phenomenon of self-trapping in the system of coupled
nonlinear equations [8,9], generalization of the dynamical
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regimes of the celebrated two-site BH system [10,11], and
as a model for multiparticle quantum chaos [4,6]. In the
present work we use the three-site BH system as a model
for studying the BS of the interacting Bose particles in a
lattice.

To get answers to questions posed in the introductory
part of the Letter, we employ the ‘‘semiclassical’’ method,
where 1=N plays the role of the effective Planck’s constant.
This method explicitly refers to the classical dynamics of
the BH system and provides in this way a deeper insight in
the structure of its quantal spectrum. In particular, we show
below that (i) the finite-N BS is not linear, (ii) the
Bogoliubov levels are split with respect to the second
quantum number j, and (iii) that this splitting finally results
in the transition from a regular to an irregular (chaotic)
spectrum at higher energies. As an illustration to these
statements and for the purpose of future references,
Fig. 1 shows the energy spectrum of the three-site BH
model for N � 40 and 0 � g � 4. All of the mentioned
effects, which we shall quantify in the rest of the Letter, are
clearly seen in the figure.

As an intermediate step, let us derive the BS (3) of the
three-site BH model by using semiclassical arguments. The
classical counterpart of the Hamiltonian (2) is obtained by

scaling it with respect to the total number of particles
Ĥ=N ! H, E=N � ~E and identifying the operators
b̂yk =

����
N
p

and b̂k=
����
N
p

with pairs of canonically conjugated
variables �b	k; bk�, where k � �1; 0; 1. Next, we switch to
the action-angle variable bk �

����
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p

exp�i�k� and explicitly
take into account that

P
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This reduces our system of 3 degrees of freedom to a
system of 2 degrees of freedom:
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where I0 � 1� I�1 � I�1 and the phases �
1 of variables
b
1�t� are measured with respect to the phase of b0�t�. The
low-energy dynamics of the system (4), which is associated
with the low-energy spectrum of the system (1), implies
I
1 � I0. Keeping in the Hamiltonian (4) only the terms
linear on I
1, and using one more canonical transforma-
tion,
 

I � I�1 � I�1; � � ���1 � ��1�=2;

J � �I�1 � I�1�=2; # � ��1 � ��1; (5)

we have

 Heff � ��� g�I � g
������������������
I2 � 4J2

p
cos�2��: (6)

Note that Heff does not include phase #, and, hence, the
action J is an integral of motion. Finally, we integrate the
system (6) by introducing a new action ~I � �1=2��H
I��; ~E�d� and resolving this equation with respect to

the energy. This gives ~E � �~I, where, as before, � ���������������������
2g�� �2

p
is the Bogoliubov frequency. Note that the

energy is independent of the action J, which may be chosen
arbitrary in the interval jJj � ~I=2. Referring to the original
quantum problem, this action J obviously labels the de-
generate sublevels of the excited Bogoliubov states.
Indeed, the semiclassical quanitization corresponds to ~I �
m=N, m � 0; 1; . . . , and J � j=N, j � �m=2, �m=2�
1; . . . ; m=2. Thus, the energy spectrum is given by Em �
�m with �m� 1�-fold degeneracy of every level.

Now we are prepared to discuss the finite-N corrections
to the BS. Let us analyze the dynamics of the classical
system (4) in more detail, without assuming I
1 � I0.
First, we shall consider the symmetric solutions, where
b�1�t� � b�1�t�. Expressing the Hamiltonian (4) in terms
of the canonical variables (5) and setting there # � 0 and
J � 0, we have

 H1D � ��� g�I � g�1� I�I cos�2�� � 3gI2=4

� gI
��������������������
2�1� I�I

p
cos���: (7)

The phase portrait of the 1D system (7) is depicted in
Fig. 2(a). Our particular interest in this phase portrait is
the trajectories near the origin I � 0, which can be asso-
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FIG. 1. Energy spectrum of the three-site BH model for N �
40. The energy is measured with respect to the ground energy E0

and scaled with respect to the Bogoliubov frequency � � ��g�.
Error bars indicate the energy intervals, where the classical
counterpart of the system shows chaotic dynamics.
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ciated with the Bogoliubov states. It is seen in the figure
that these trajectories are strongly affected by the elliptic
point in the upper part of the phase space. As a conse-
quence, the eigenfrequency of the system depends on the
action ~I. Namely, ~� � ~��~I� vanishes for the separatrix
action ~I	, and for ~I� ~I	, one has ~��~I� � �� �~I, where
the nonlinearity � is a unique function of g. (For instance,
for g � 0:1, 1, and 4, we have �=� � 0:1, 0.6, and 1,
respectively.) Referring to the original quantum problem,
this result means that the energy difference between the
�m� 1�th and mth Bogoliubov levels decreases as �m=N.

Next, we address the ‘‘stability’’ of the symmetry plane
trajectories depicted in Fig. 2(a) with respect to variation of
J. Within the Bogoliubov approximation, the action J is an
integral of motion and may be chosen arbitrary in the
interval jJj � ~I=2. It should be understood, however, that
in reality the action J does depend on time. An example of
this dependence is given in Fig. 3. It is seen that the time
evolution of the system is a superposition of fast dynamics,
where J�t� and #�t� oscillate with the Bogoliubov fre-
quency (more precisely, with the frequency ~�), and slow
dynamics, with the characteristic frequency of the orders of
magnitude smaller than the Bogoliubov frequency. Going
ahead, we note that this new frequency defines the splitting
of the Bogoliubov levels in Fig. 1, and for the moment we
stress only that the system dynamics remains regular. This
conclusion holds for any trajectory of the effective 1D
system (7), providing the condition that a trajectory lies
well below the separatrix. If we choose a trajectory closer
to the separatrix, we observe a transition from regular to
chaotic dynamics. We identify the border of the transition
to chaos by calculating the Poincaré cross section of (4) for
different values of the energy ~E and evaluating the volume
of the chaotic component as the function of energy [12]. It
is found that the chaotic region is restricted to a relatively

narrow energy interval ~Emin�g� � ~E � ~Emax�g�. For g �
1, the phase trajectories of the system (7), corresponding to
~Emin and ~Emax, are marked by the bold lines in Fig. 2(a).
Additionally, the error bars in Fig. 1 indicate the chaotic
energy intervals for different values of g. The depicted
borders are consistent with the visual analysis of the spec-
trum and suggest the following simple criteria of the
transition to chaos: It takes place when the total splitting
of the Bogoliubov levels with respect to the second quan-
tum number j exceeds the mean distance ~� between the
levels.

To complete the visual analysis of the spectrum, we also
mention its upper regular part, which is associated with the
central stability island in Fig. 2(a). In principle, using as the
starting point the classical counterpart of the Hamiltonian
(1) [i.e., considering the three-site BH model as a system of
three coupled nonlinear oscillators], one can estimate the
upper border of chaos ~Emax�g� analytically. In the present
work, however, we are interested only in the lower border
~Emin�g�.

The question on the sublevels splitting is in turn. As it
was already mentioned, this splitting is defined by the slow
dynamics of the system. To address this slow dynamics, we
introduce the new variables �J � �1=2��

H
Jd~� and �# �

�1=2��
H
#d~�, where ~� � ~�t is the phase conjugated to

the action ~I. (Note that the action ~I is an adiabatic integral
of motion and, hence, does not depend on time.) The
Hamiltonian equations of the motion for the variables �J
and �# read
 

_�# � h@H=@#i � �2g �J;

_�J � �h@H=@Ji � 6gV�g; ~I� sin�3 �#=2�;
(8)

where V�g; ~I� � h�I=2�3=2 cos�i and h� � �i means time av-
erage over one period of the fast dynamics. Thus, the slow
dynamics is defined by the pendulumlike Hamiltonian:
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FIG. 2. (a) Phase portrait of the 1D system (7) for g � 1. The
bold lines restrict the chaotic region, where the trajectories are
unstable with respect to variation of �J; #�. (b) Slow dynamics of
the variables �J � hJi and �# � h#i for g � 1 and ~I � 0:133.
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FIG. 3. An example of time evolution of the conjugated var-
iables J�t� and #�t� in the regular regime. Parameters correspond
to the second from top trajectory in Fig. 2(a).
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 Hslow � �g �J2 � 4gV�g; ~I� cos�3 �#=2�: (9)

It is worth noting that, to obtain (9), we have assumed the
quantity V�g; ~I� to be independent of �J, which can be
justified only for �J� ~I=2. Nevertheless, the Hamiltonian
(9) is found to capture well the main features of the low-
energy regular dynamics for arbitrary �J. In particular, it
correctly predicts the existence of stable points at # �
0;
4�=3, where the phases of b
1�t� are locked to 0
and 120 degrees with respect to each other [see
Fig. 2(b)]. The size of the stability islands around these
fixed points is obviously given by the separatrix trajectory
of the pendulum, i.e., is proportional to jV�g; ~I�j1=2.

It is instructive to consider the limiting case g! 0.
As is easy to show, in this limit V�g; ~I� ! 0 and, hence,
Hslow ! �g �J2. Let us prove that these results correspond
to the first-order quantum perturbation theory on U.
Indeed, calculating the first-order corrections to the
energies of the quasimomentum Fork states j�m;ji�

jm=2�j;N�m;m=2�ji, we have �E � �U=2L� 

h�m;jj
P
b̂yk1
b̂yk2
b̂k3
b̂k4

~��k1 � k2 � k3 � k4�j�m;ji �

��U=L�j2, or � ~E � �g �J2. Thus, for small g the splitting
between sublevels grows linearly with g. This linear re-
gime changes to a nonlinear one as soon as the second term
in the Hamiltonian (9) takes a non-negligible value. This
second term also causes the rearrangement of the suble-
vels, clearly seen in Fig. 1. Needless to say, in this case the
second quantum number is defined by the action ~J �
�1=2��

H �Jd �#, which amounts to the phase volume en-
circled by the trajectories in Fig. 2(b).

We conclude the Letter by formulating quantitative cri-
teria for the onset of quantum chaos. As mentioned earlier,
the transition to an irregular spectrum occurs when the total
splitting of the mth Bogoliubov level compares with the
Bogoliubov frequency. Ignoring the nonlinear corrections,
one has g�m� 1�2=4N ��, or

 mcr �

�
4N

��������������������
�2 � 2�g

p
g

�
1=2
: (10)

Through the relation Ecr � �mcr, this estimate defines the
critical value of energy above which the regular spectrum
transforms into a chaotic one. [For example, for N � 40
the estimates (10) predict thatmcr drops tomcr � 13 at g �
4, which should be compared with mcr � 16 in Fig. 1.]

In conclusion, we have analyzed the BS of the finite-N
BH model. In the present work, we restricted ourselves by
considering the three-site BH model, although many of the
reported results hold for L> 3 as well. An advantage of the
three-site model is that, thanks to a relative low dimension-
ality of the system, its classical dynamics can be under-
stood in every detail. In particular, the phase space of the
system essentially consists of two regular and one chaotic
component in between, where the low-energy regular com-
ponent is shown to be associated with the BS. We identify
the full set of the integrals of motion for this low-energy

regular component and, quantizing them, obtain the low-
energy levels of the quantum BH model. These levels are
labeled by two quantum numbers m and j. The first quan-
tum numberm corresponds to the usual Bogoliubov ladder,
where the distance between neighboring levels is approxi-
mately given by the Bogoliubov frequency � (i.e.,
Em�1;j � Em;j ��). The second quantum number j labels
�m� 1� sublevels of the mth Bogoliubov level, where the
splitting between the sublevels is proportional to the inter-
action constant g and inverse proportional to the system
size N (i.e., Em;j�1 � Em;j � g=N). If we go up the energy
axis, the total splitting of the Bogoliubov levels compares
the distances between them, and the energy spectrum
shows a transition from a regular to an irregular (chaotic)
one.

The described scenario of evolution of the BS into a
regular, Bogoliubov-like spectrum and further into a cha-
otic spectrum also holds for the BH model with L> 3 sites.
However, to indicate the critical energies for these transi-
tions remains an open problem. The qualitative difference
between the three-site and, for example, five-site BH mod-
els is that the latter system has two different Bogoliubov
frequencies, associated with two single-particle excitation
energies. For some values of the macroscopic interaction
constant g, these frequencies become commensurable,
which strongly affects the onset of chaos. We reserve this
problem of interacting Bogoliubov spectra for future
studies.
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