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1.

 

 The diverse physical properties of the cobaltate
Na

 

x

 

CoO

 

2

 

 attracted much attention after the discovery of
the unconventional superconductivity in its hydrated
counterpart, Na

 

x

 

CoO

 

2

 

 · 

 

y

 

H

 

2

 

O [1]. The phase diagram of
this compound, with varying electron doping

 

 x

 

 and
water intercalation 

 

y

 

, is rich and complicated; in addi-
tion to superconductivity, it exhibits magnetic and
charge orders and some other structural transitions [2–
5]. The parent compound, Na

 

x

 

CoO

 

2

 

, is a quasi-two-
dimensional system with Co in CoO

 

2

 

 layers forming a
triangular lattice where the Co–Co in-plane distance is
three times smaller than the interplane one. An Na ion
resides between the CoO

 

2

 

 layers and gives additional 

 

x

 

electrons to the layer, thus, lowering the Co valence
from Co

 

4+

 

 (3

 

d

 

5

 

 configuration) to Co

 

3+

 

 (3

 

d

 

6

 

 configura-
tion) upon 

 

x

 

 changing from 0 for the virtual compound
CoO

 

2

 

 to 1 for NaCoO

 

2

 

. The hole in the 

 

d 

 

orbital occu-
pies one of the 

 

t

 

2

 

g

 

 levels, which are lower than the 

 

e

 

g

 

levels by about 2 eV [6]. The degeneracy of the 

 

t

 

2

 

g

 

 lev-
els is partially lifted by the trigonal distortion, which
splits it into the higher 

 

a

 

1

 

g

 

 singlet and the lower two 
states.

The first principle LDA (local density approxima-
tion) and LDA + 

 

U

 

 band structure calculations predict
Na

 

x

 

CoO

 

2

 

 to have a large Fermi surface (FS) with

 

 

 

¶ 

 

The text was submitted by the authors in English.

eg'

 

mainly 

 

a

 

1

 

g

 

 character and centered around the 

 

Γ

 

 = (0, 0,
0) point and also six hole pockets of mostly  charac-
ter near the 

 

K

 

 = (0, 4

 

π

 

/3, 0) points of the hexagonal
Brillouin zone for a wide range of 

 

x

 

 [6, 7]. At the same
time, recent Angle-Resolved Photo-Emission Spectros-
copy (ARPES) experiments [8–11] reveal doping
dependent Fermi surface evolution for a wide range of
Na concentrations (0.3 

 

≤

 

 

 

x

 

 

 

≤

 

 0.8) with no sign of the
hole pockets. The observed Fermi surface is centered
around the 

 

Γ

 

 point and has a mostly 

 

a

 

1

 

g

 

 character. Fur-
thermore, the measured dispersion of the top of the
valence band is twice as narrower as compared to the
LDA calculated bands.

Concerning the magnetic properties, the local spin
density approach (LSDA) predicts Na

 

x

 

CoO

 

2

 

 to have a
weak intraplane itinerant ferromagnetic (FM) state for
almost all Na concentrations 0.3 

 

≤

 

 

 

x

 

 

 

≤

 

 0.7 [12]. On the
contrary, neutron scattering finds the 

 

A

 

-type antiferro-
magnetic order implying the ferromagnetic order
within the Co layer only for 0.75 

 

≤

 

 

 

x

 

 

 

≤

 

 0.9 with an
ordering temperature of 

 

T

 

m

 

 

 

≈

 

 22 K with the interplane

 

J

 

c

 

 and intraplane 

 

J

 

ab

 

 exchange constants being 12 meV
and –6 meV, respectively [13–15].

In this letter, we derive an effective low-energy
model describing the bands crossing the Fermi level on
the basis of the LDA band structure calculations. Due
to the FS topology, which is inferred from the LDA
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Starting from the ab initio band structure for Na

 

x

 

CoO

 

2

 

, we derive the single-electron energies and the effective
tight-binding description for the 

 

t

 

2

 

g

 

 bands using a projection procedure. We find that, due to the presence of the
next-nearest-neighbor hoppings, a local minimum in the electronic dispersion close to the 

 

Γ

 

 point of the first
Brillouin zone forms. Therefore, in addition to a large Fermi surface, an electron pocket close to the 

 

Γ

 

 point
emerges at high doping concentrations. The latter yields a new scattering channel resulting in the peak structure
of the itinerant magnetic susceptibility at low momenta. This indicates an itinerant in-plane ferromagnetic state
above a certain critical concentration 

 

x

 

m

 

, which is in agreement with neutron scattering data. Below 

 

x

 

m

 

, the mag-
netic susceptibility shows a tendency towards antiferromagnetic fluctuations. We estimate the value of 0.56 <

 

x

 

m

 

 < 0.68 within the rigid band model and within the Hubbard model with infinite on-site Coulomb repulsion
consistent with the experimental phase diagram.
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band structure, the magnetic susceptibility 

 

χ

 

0

 

(

 

q

 

, 

 

ω

 

 = 0)
reveals two different regimes for different dopings: for

 

x

 

 < 0.58, it shows pronounced peaks at the antiferro-

magnetic (AFM) wave vector 

 

Q

 

AFM

 

 = {(2

 

π

 

/3, 2

 

π

 

/ ),
(4

 

π

 

/3, 0)} resulting in the tendency towards the in-
plane 120

 

°

 

 AFM order, while, for 

 

x

 

 > 0.58, the peaks at
low momenta near the 

 

Q

 

FM

 

 = (0, 0) form clearly dem-
onstrating the tendency of the system towards the itin-
erant in-plane FM ordered state. We find that the forma-
tion of the electron pocket around the 

 

Γ

 

 point is crucial
for the in-plane FM ordering at high doping concentra-
tions.

 

2.

 

 The band structure of Na

 

0.33

 

CoO

 

2

 

 (Fig. 1) was
obtained within the LDA [16] in the framework of the
TB-LMTO-ASA (tight binding approach to the LMTO
using atomic sphere approximation) [17] computation
scheme. The crystal structure parameters were taken
from [18]. The bands crossing the Fermi level have
mostly an 

 

a

 

1

 

g

 

 character, which is consistent with previ-
ous LDA findings [6]. Note that the small FS pockets
near the 

 

K

 

 point with -symmetry present at 

 

x

 

 = 0.33
disappear for higher dopings because the correspond-
ing bands sink below the Fermi level.

To construct the effective Hamiltonian and to derive

the effective Co–Co hopping integrals  for the 

 

t

 

2

 

g

 

-
manifold, we apply the projection procedure [19, 20].
Here, (

 

αβ

 

) denotes a pair of orbitals: a1g,  or .
The indices f and g correspond to the Co sites on the tri-
angular lattice. The obtained hoppings are given in the
table, and the obtained single-electron energies εα are

equal to the following (in eV, relative to ):  = 0,

 =  = –0.053.

A comparison between the bands obtained using the
projection procedure and the LDA bands is shown in
Fig. 1, which confirms the Co–t2g nature of the near-

3

eg'

t fg
αβ

eg1' eg2'

ε
a1g ε

a1g

ε
eg1' ε

eg2'

Fermi level bands [6, 21]. For simplicity, we have enu-

merated the site pairs    with n = 0, 1, 2, …
(see Fig. 2a and the correspondence between the in-
plane vectors and the index n in the table). Due to the
C3 symmetry of the cobaltate lattice, the following

equalities are present:  = ,  = , and

 = . In addition,  =  for a1g  a1g hop-

pings, which, however, does not hold for  orbitals.
Thus, since the hybridization between the a1g and the

 bands is not small, a simplified description of the
bands crossing the Fermi level in terms of the a1g band

t fg
αβ tn

αβ

t3
αβ t1

αβ t5
αβ t4

αβ

t9
αβ t7

αβ t1
αβ t2

αβ

eg1 2,'

eg'

Fig. 1. Calculated near-Fermi level LDA band structure and
partial density of states (PDOS) for Na0.33CoO2. The con-
tribution of Co-a1g states is denoted by the vertical broad-
ening of the bands with thickness proportional to the weight
of the contribution. The crosses indicate the dispersion of
the bands obtained by projection on the t2g orbitals.

In-plane hopping integrals  for different in-plane vectors n = (f, g) for NaxCoO2, x = 0.33

n = (f, g) (0, 1) (0, 2)

α  β

a1g  a1g 0.123 0.123 0.123 –0.022 –0.022 –0.021 –0.025 –0.025 –0.025

a1g  –0.044 0.089 –0.044 0.010 0.010 –0.021 –0.021 0.042 –0.021

a1g  –0.077 0.000 0.077 0.018 –0.018 0.000 –0.036 0.000 0.036

  –0.069 –0.005 –0.069 0.018 0.018 –0.026 –0.017 –0.085 –0.017

  0.037 0.000 –0.037 –0.026 0.026 0.000 –0.039 0.000 0.039

  –0.026 –0.090 –0.027 –0.011 –0.011 0.033 –0.062 0.006 –0.062

tn
αβ
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only (neglecting the  band and the corresponding
hybridizations; see, e.g., [22]) may lead to an incorrect
result due to its higher symmetry. In the following, we
neglect the interlayer splitting present for the kz = 0
plane because of its subtle effect on the topology of the
FS [6].

Then, the free electron Hamiltonian for the CoO2-
plane in a hole representation is given by

(1)

where dkασ ( ) is the annihilation (creation) opera-
tor for the hole with the momentum k, spin σ, and

orbital index α, nkασ = dkασ; and  is the Fourier
transform of the hopping matrix element. Introducing

the matrix notations  =  and  = , the
hoppings matrix elements in the momentum represen-
tation are given by

(2)

where k1 = kx – ky, k2 = ky, k3 = kx + ky.

Within this rigid band approximation, the doping-
dependent evolution of the electronic dispersion, the
density of states (DOS), and the FS is shown in Fig. 3.
We notice that, already at x = 0.48, the FS  hole pock-

eg'

H0 εα µ–( )nkασ

k α σ, ,
∑– tk

αβdkασ
† dkβσ,

α β,
∑

k σ,
∑–=

dkασ
†

dkασ
† tk

αβ

t̂k( )αβ tk
αβ t̂n( )αβ tn

αβ

t̂k 2 t̂1 k2cos=

+ 2 t̂2 k3cos 2 t̂3 k1cos 2 t̂4 k1 k3+( )cos+ +

+ 2 t̂5 k2 k1+( )cos 2 t̂6 k1 k2–( )cos+

+ 2 t̂7 2k2cos 2 t̂8 2k3cos 2 t̂9 2k1,cos+ +

3
2

------- 1
2
--- 3

2
------- 1

2
---

eg'

ets are absent. Most importantly, we find another inter-
esting feature. Namely, the local minimum of the band
dispersion around the Γ point yields the appearance of
the second FS contour centered around this point. This
electron FS pocket becomes larger upon increasing
doping x. As was shown in [23] for the Hubbard model
on a triangular lattice, the main reason for the local
minimum around the Γ point is the presence of the next-
nearest-neighbor hoppings, which also enter in our cal-
culations.

Although this minimum is not yet directly observed
in ARPES experiments, the presence of the associated
second FS contour would reduce the FS volume and
resolve the issue why the volume of the FS observed in
ARPES is larger than is expected from Luttinger theo-
rem [24]. Furthermore, an emergence of this pocket
would influence the Hall conductivity at high doping
concentrations, which is interesting to check experi-
mentally.

3. To analyze the possibility of itinerant magnetism,
we calculate the magnetic susceptibility χ0(q, ω = 0)
based on the Hamiltonian H0. The doping-dependent
evolution of the peaks in Reχ0(q, 0) is shown in Fig. 4.
At x = 0.45, the  bands are below the Fermi level and
the FS has the form of a rounded hexagon. This results
in a number of nesting wave vectors around the antifer-
romagnetic wave vector QAFM. The corresponding
broad peaks in the Reχ0(q, 0) appear around QAFM,
indicating the tendency of the electronic system
towards the 120° AFM ordered state [25]. Upon
increasing doping, the Fermi level crosses the local
minimum at the Γ point, resulting in the second almost
circle FS contour. As soon as this change of the FS
topology takes place, the scattering at the momentum
QAFM is quickly suppressed, and it vanishes already at

eg'

y

x
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Fig. 2. (a) Schematic crystal structure of the Co layer in NaxCoO2 with hopping notations within the first three coordination spheres
(C.S.). (b) LDA-calculated Fermi surface with the cylindrical part having mostly a1g character and six hole pockets having mostly

 character. The kx and ky coordinates of the symmetry points are given in units of 2π/a with a being the in-plane lattice constant.eg'
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xm ≈ 0.56. Most importantly, a new scattering vector,
Q1, appears. This wave vector is small and yields peaks
in the magnetic susceptibility at low momenta, indicat-
ing the tendency of the magnetic system to shift
towards itinerant FM order. For larger x, the inner FS
contour increases leading to a further decrease of the
Q1. In the case of x ≈ 0.88, the FS topology changes
again, resulting in a six distant FS contours yielding an
even smaller length of Q1. The obtained scattering at
low momenta in the magnetic susceptibility for x > xm

is qualitatively consistent with the scattering around
QFM = (0, 0) observed in the neutron scattering experi-
ments [13–15].

4. Since the obtained magnetic susceptibility
depends mostly on the topology of the FS, one expects
that the behavior shown in Fig. 4 will be valid even if
one takes the interaction term Hint into account, at least

in the case if it is the on-site Hubbard interaction U. The
only difference would be a shift of the critical concen-
trations xm, at which the FS topology changes and the
tendency to the AFM order changes towards the FM
ordered state. To check this, we have taken the strong
electron correlations into account by adding the on-site
Coulomb interaction terms to H0 similar to [26, 27].
The effective on-site Hubbard repulsion Ueff ≈ 4 eV on
the Co sites is much larger than the bare bandwidth
W ≈ 1.2 eV, and, thus, it is possible to project doubly occu-
pied states out and formulate an effective model equivalent
to the Hubbard model with an infinite value of U.

In the atomic limit, local low-energy states on the
Co sites are the vacuum state |0〉 and the single-hole
states |aσ〉, |e1σ〉, |e2σ〉. The simplest way to describe
the quasiparticle excitations between these states is to

use the projective Hubbard X-operators [28]:  X f
m

 

Fig. 3.

 

 Calculated band structure and Fermi surface for Na

 

x

 

CoO

 

2

 

 for 

 

x

 

 = 0.47, 0.68, and 0.73. The dashed (light gray) and solid
(black) curves represent the rigid-band approximation and the Hubbard-I solution, respectively. The horizontal line denotes the self-
consistently calculated chemical potential 

 

µ

 

.
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≡

 

 |p〉〈q|, where the index m  (p, q) enumerates
quasiparticles. There is a simple correspondence
between the X-operators and single-electron creation–

X f
p q,       annihilation operators:  d f ασ  = ( m ) , where 

γ
 

ασ

 

(

 

m

 

) determines the partial weight of a quasiparticle

 

m

 

 with spin 

 

σ

 

 and orbital index 

 

α

 

. In these notations,

γ ασm∑ X f
m 
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Fig. 4.

 

 Grayscale plot of the real part of the magnetic susceptibility Re

 

χ

 

0

 

(

 

k

 

, 

 

ω

 

 = 0) as a function of the momentum in units of 2

 

π

 

/

 

a

 

(left), and the Fermi surface for the corresponding doping 

 

x

 

 (right). The arrows indicate the scattering wave vectors 

 

Q

 

i

 

 as described
in the text. 
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the Hamiltonian of the Hubbard model in the limit

 

U

 

  

 

∞

 

 has the form

(3)

In the so-called Hubbard-I approximation within the
generalized Dyson equation for the 

 

X

 

-operators [29–
31], the quasiparticle bands formed by the a1g  a1g

hoppings will be renormalized by the (1 + x)/2 factor,
while the quasiparticle bands formed by the  hop-
pings will be renormalized by x.

In Fig. 3, the quasiparticle spectrum is shown. One
finds that, within the Hubbard-I approximations, the
bands become narrower with lowering x due to the dop-
ing dependence of the quasiparticle spectral weight.
Most importantly, the doping evolution of the FS is
qualitatively the same as in the rigid-band picture.
Thus, the bandwidth reduction and spectral weight
renormalization do not change the topology of the FS.
Therefore, the presence of the strong electronic correla-
tions does not qualitatively change our results for the
bare susceptibility. Quantitatively, the critical concen-
tration xm shifts towards higher values, and within Hub-
bard-I it becomes xm ≈ 0.68.

5. To conclude, we have shown that, in the model
with ab-initio calculated parameters, the magnetic sus-
ceptibility is doping dependent. At the critical doping
concentration, xm, the electron pocket on the FS in the
center of the Brillouin zone well develops. For x < xm,
the system shows a tendency towards the 120° AFM
ordered state, while, for x > xm, the peak in the magnetic
susceptibility is at small wave vectors, thus, indicating
a strong tendency towards the itinerant FS state. Within
the tight-binding model, xm is estimated to be around
0.56. Analyzing the influence of the strong Coulomb
repulsion and the corresponding reduction of the band-
width and the quasiparticle spectral weight in the
strong-coupling Hubbard-I approximation, we show
that the critical concentration changes to xm ≈ 0.68. At
the same time, the underlying physics of the formation
of the itinerant FM state remains the same.
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